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Early fault detection for the induction machine became a necessity to prevent the 

escalation of failures to severe levels, thereby avoiding unscheduled downtimes. Among 

the various failure modes in electrical machines, rotor-related faults, such as air gap 

eccentricity, require particular attention and to detect this type of defects model-based 

methods are extensively used in this field. However, because of the intricacies of the 

diagnosed model and the time-consuming investigations it renders the diagnosis process 

more laborious and less efficient. This article focuses on applying a non-model based 

approach that relies in general on feature extraction using discrete wavelet transform 

decomposition analysis of stator current signal for various  stages of air gap eccentricity 

and under multiple operating conditions and as a first step of the conducted work, through 

performing an in-depth energy distribution analysis through all of the decomposed signal 

levels to extract the best sub-signal level that holds the most relevant information about 

the machine’s condition alongside to RMS values of the signal. The second part of the 

research focuses on employing the extracted features as input data used for training a 

multi-layer perceptron algorithm such as support vector machine and decision trees. Our 

endeavor is to choose the most accurate algorithm for the multiclass classification. 
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1. INTRODUCTION

Electrical machines, like any mechanism, are prone to 

undesirable sudden breakdowns that may hinder the industrial 

process from functioning properly. This could lead to critical 

economic losses and, in some cases, may endanger the 

operating personnel due to hazardous threats that the 

breakdowns may cause. 

The importance of three-phase induction motors (IM) 

across various industries is due to their ability to generate high 

motive power, their durability, and their low maintenance 

costs. These motors serve as the primary mover in about 90% 

of industrial equipment worldwide, highlighting their crucial 

role in industrial operations [1]. 

Induction machine faults have been diagnosed using various 

frequency analysis methods, including fast Fourier transform 

(FFT), power spectrum estimation, and envelope spectrum 

analysis [2]. The disadvantage of this technique is based on the 

fact that it requires that the signal being processed is stationary 

and linear and that the rotational speed has transient mode, 

which represents a limitation by this technique. Therefore, to 

mitigate this obstacle a Time-Frequency analysis is performed 

such as Short Fast Fourier Transform (STFT) [3], the premise 

of this technique is based on the FFT method with applying a 

sliding window to enhance the frequency resolution. However, 

the limitation of this method is the fixed size of the window 

which is not practical with the transient nature of the signal. 

Another method is being applied for this regard, Wigner-Ville 

distribution (WVD) [4] which delivers better frequency 

resolution under the same conditions, another drawback of this 

approach is the generation of undesirable large frequencies. 

Empirical mode decomposition (EMD) [5-7] on the other hand, 

is a self-adaptive approach, which produce a series of intrinsic 

mode functions (IMFs) and with the help of the Hilbert 

Transform (HT) [8], it can estimate instantaneous frequencies, 

but its limitation resides on the generation of undesirable 

negative frequencies. Wavelet Transform (WT) delivers an 

enhanced frequency resolution results thanks to its local 

frequency-time domain properties [9]. 

This work’s focus orbits around the combination of signal 

processing through Discrete Wavelet Transform (DWT) 

decomposition of the stator current signal and an Artificial 

Intelligence (AI) driven model that utilizes the denoised data 

signal and through a meticulous study of the decomposed 

levels, the most suitable frequency detail band level was 

chosen to be used for feature extraction by using both of 

energy distribution analysis and RMS values, both of these 

factors will be introduced as inputs for machine learning 

algorithms such as Support Vector Machine (SVM) and 

Decision Trees (DT). 

1.1 Related works 

Widagdo et al. [10] mentioned that failures due to air gap 
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eccentricity are predicted by decomposing the leakage flux 

spectrum waveform using discrete wavelet transform. This 

method was tested using the leakage flux data from a 1.5 Kw 

induction motor. Experimental results validated the 

effectiveness of this approach in detecting eccentricity failures. 

Nikhil et al. [11] used various indices to detect eccentricity 

are introduced, along with their boundary conditions and 

potential areas for future research. Finally, the merits and 

demerits of each index are discussed, and a comparison is 

made between them. 

Rouaibia et al. [12] introduced two methods for diagnosing 

and detecting eccentricity faults, as well as evaluating their 

severity, by monitoring stator current signals. The approaches 

use the Park vector method and DWT to differentiate between 

healthy and faulty machine conditions. The simulation results 

obtained through these techniques enable the detection and 

diagnosis of eccentricity faults and their severity. 

Laala et al. [13] presented a contribution in the classification 

of a vibration signal for bearing fault, where wavelet packet 

decomposition (WPD) and multi-layer perceptron (MLP) were 

combined. At first, the most suitable component to bearing 

defect was used as a fault indicator. Then, feature extraction 

was used for the classification by MLP algorithm. 

 

 

2. AIR GAP ECCENTRICITY MODEL 
 

The data collected is from three phase squirrel cage model, 

Table 1 illustrates the parameters of the machine. 

 

Table 1. Induction machine parameters 

 

Parameter Identification 

Machine type 
3-phase squirrel cage with 

inclined bar 

Number of bars 40 

Frequency 50 Hz 

Rated Voltage 415 V 

Winding number 28 

Air gap radius 82 mm 

Air gap thickness 0.8 mm 

Rotor length 0.11 m 

Rotor leakage inductance 6.1 mH 

Rotoric bar resistance 31×10-6 Ω 

Rotoric bar leakage 

inductance 
0.095×10-6 H 

Stator phase resistance 1.75 Ω 

Short circuit ring resistance 2.2×10-6 Ω 

Short circuit ring segment 

leakage inductance 
0.018×10-6 H 

Permeability 12.56×10-7 H/m 

 

 
 

Figure 1. Eccentricity types: a-static, b-dynamic, c-mixed 

 

Air gap eccentricity in a three-phase induction motor occurs 

when the rotor (the rotating part) is not correctly aligned with 

the stator magnet (the stationary part). This misalignment 

causes the distance between the rotor and stator surfaces (the 

air gap) to be uneven around the rotor's circumference [14]. 

Among the most frequent mechanical faults that can affect 

induction motors, one that stands out extensively is 

eccentricity, a fault that can manifest in static, dynamic or the 

combination between both in mixed eccentricity [15-17]. 

Figure 1 clearly shows the various types of eccentricity [18]. 

Figure 2 illustrates air gap eccentricity impact on the current 

signal, it’s notable that at early stage there’s no visible change 

in the wave form of the current, only in extreme stage. 

 

 
(a) Healthy stator current 

 
(b) Air gap irregularity early stage 

 
(c) Air gap irregularity extreme stage 

 

Figure 2. Eccentricity influence on stator current 

 

Air gap irregularity is a common defect that happens 

frequently and it can manifest even in newly fabricated 

machines since the margin between the stator and the rotor 

circuit is too thin which is called the air gap. Therefore, the 

chosen profile for air gap eccentricity for this research would 

be set to 10% deemed tolerable, 20% noticeable with a degree 

of a precaution when dealing with the defected machine, 30% 

is an alarming rate and requires an immediate intervention to 

prevent from condition deterioration which could lead to other 

undesirable defects (deterioration of insolation condition, 

short-circuit, rising temperature...etc.). 

Despite the fact that even in newly manufactured machines 

a 10% of air gap irregularity exists, and its up to the 

manufacturer to reduce this level to its minimum value [19]; 
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researchers chose 20% for static and 38.46% for dynamic 

eccentricity levels as prominent thresholds since they can be 

suitable index for the diagnosis, the more eccentricity level 

increases the more the harmonic component increases also 

[20]. 

 

2.1 Frequency domain analysis 

 

Stator current frequency analysis equation in induction 

machines can be determined as follows [21]:  

 

𝑓𝑒𝑐 = 𝑓1[(𝑘1𝑅 ± 𝑛𝑑)(1 − 𝑠)/𝑝 ± 𝑣] (1) 

 

As was previously mentioned, FFT delivers a strong 

analysis in the frequency domain. However, it struggles when 

dealing with a non-stationary signal, which is a huge drawback 

of this technique that causes spectral leakage of the hidden 

frequencies that hold important information about the 

condition of the machine, which would be afterwards critical 

for decision making. 

Linear spectral analysis has been performed on the current 

signal for both healthy and faulty machines to extract 

frequency information related to the defect and it has been 

shown in Figure 3. 

 
(a) Linear specter of healthy stator current 

 
(b) Linear specter of faulty stator current 

 

Figure 3. Linear spectral analysis 

 

 

3. DISCRETE WAVELET TRANSFORM  
 

To mitigate the limitation of FFT technique when dealing 

with non-stationary signal, WT delivers a robust time-

frequency domain analysis for both stationary and non-

stationary signals, and among its tools DWT is the most 

efficient technique in terms of computational capabilities 

which gives more accuracy when dealing with non-stationary 

signal and especially at low frequency [22, 23]: 

 

𝐷𝑊𝑇(𝐽, 𝑘) =
1

√2𝐽
∫  

+∞

−∞

𝑥(𝑡)𝜓∗ (
𝑡 − 𝑘 ⋅ 2𝐽

2𝐽
)d𝑡

= 2
−𝐽
2 𝜓(2−𝐽 ⋅ 𝑡 − 𝑘) 

(2) 

DWT relies on the decomposition of the raw signal back to 

its constituent point (scales), which give us an information 

about the frequency band at a particular time frame. 

DWT is conducted through a sequential operation using a 

high-pass filters H (details) and through a series of low-pass 

filters L (approximations).  

Figure 4 shows the decomposition process of DWT starting 

from raw signal until getting subsignals. 

 

 
 

Figure 4. DWT decomposition process 

 

Raw signal x(t) is divided into two ports, the first one 

contains the high frequency band, and the second one low 

frequency band, both of them are combined for the 

decomposition and the reconstruction of the original signal [24, 

25]. 

The low frequency part called approximations (Aj) contains 

the low-frequency information of the original signal belong to 

[0, fs2–(j+1)]. The high-frequency part called detail (Dj) 

contain high frequency information included in the interval 

[fs2–(j+1), fs2–j]. Practically, the DWT decomposition at 

level N of signal x(t), giving rise to one approximation 

coefficient vector AN and N detail coefficient vectors Dj are 

expressed by [26, 27]: 

 

𝑥(𝑡) = 𝐴𝑁(𝑡) +∑  

𝑁

𝑗=1

𝐷𝑗(𝑡) (3) 

 

It can be shown that the approximation and detail 

coefficients can be recursively calculated by: 

 

𝐴𝑗,𝑘 = √2∑  

+∞

−∞

𝐿[𝑛]𝐴𝑗−1,2𝑘+𝑛 (4) 

 

𝐷𝑗,𝑘 = √2∑  

+∞

−∞

𝐻[𝑛]𝐴𝑗−1,2𝑘+𝑛 (5) 

 

Before getting into the mother wavelet function selection, it 

is mandatory to choose the number of decomposition levels 

that are suitable to cover all of the details and approximations 

frequency range, which can be determined by the following 

equation:  

 

𝑓𝑠
2𝑁+1

≤ 𝑓𝑒  (6) 

 

where, fe which is the fundamental frequency, and fs is the 

sampling frequency set to fs=10KHz. 
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3.1 Time-frequency domain analysis  

 

The first step of the research is to perform a full 

decomposition of the stator raw current signal, and to achieve 

this 1-D DWT decomposition was used up to 12 levels to cover 

all the ranges of frequency bands of both approximations and 

details by using debauchees -24 as the mother wavelet function 

and the sampling frequency was set to 10KHz. Full 

decomposition results for both healthy and air gap irregularity 

current signals were collected to be compared later on (Figure 

5). 

 

 
 

Figure 5. DWT signal decomposition and reconstruction 

 

 
(a) Decomposition levels of a healthy signal  

 
(b) Decomposition levels of a faulty signal 

 

Figure 6. Full decomposition of stator current 

 

Till the present day, there’s no specific rule that dectates the 

choice of a specific mother wavelet. However, through various 

deep studies it was noticed that Debauchees mother wavelet 

povides more stability and a robust reconstruction of the 

original signal with maintaining information since it locates 

less in time with less oscillation due to its dilation nature, 

which makes it practical for the diagnosis of induction 

machine [28]. Figure 6 shows the complete decompostion 

usnig DWT of raw current signal for healthy and faulty 

machines. 

After analyzing the obtained results of the full 

decomposition for both approximation and detail frequencies 

in healthy and faulty condition, we can notice that air gap 

irregularity manifests some changes in high frequency (detail 

frequency) band [1000-5500Hz] and they’re more visible in 

levels 4, 5 and 6, which can deliver a promising comparison 

opportunity, further results are discussed thoroughly in the 

next section. 

Three decomposition levels were selected since they show 

promising characteristic comparison and contain inherent 

frequency that characterize air gap defect which are levels 4, 5 

and 6th level of detail decomposition illustrated in Figure 7. 

 

 
(a) Healthy detail frequency levels 

 
(b) Faulty detail frequency levels 

 

Figure 7. Detail levels 4, 5 and 6 

 

 

4. ENERGY DISTRIBUTION ANALYSIS  

 

4.1 Wavelet energy  

 

The consumed energy at each level of decomposition is 

calculated, to identify and validate the frequency bands 

containing the defect frequency for both faulty and healthy 
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cases under different load conditions. For this purpose, the 

energy linked to each Dj detail signal of the torque signal is 

expressed as follow:  

 

𝐸𝑗 = ∑  

𝑛

𝑘=1

𝐷𝑗,𝑘
2 (𝑛) (7) 

 

where, j is the specific number of the levels of decomposition, 

Dj,k is the magnitude related to the coefficient of the 

decomposed level j, n is the DWT decomposition time. 

An energy distribution analysis was performed in order to 

determine the most suitable and pertinent detail levels that 

dissipate more energy under various operating conditions and 

for various severity degree of the defect for each type of air 

gap eccentricity, the results are shown in Figure 8.  

 

 
(a) Energy distribution analysis of the decomposition levels at 

early stage of air gap irregularity weak load 

 
(b) Energy distribution analysis of the decomposition levels at 

30% air gap irregularity weak load 

 
(c) Energy distribution analysis of the decomposition levels at 

30% air gap irregularity medium load 

 

Figure 8. Energy distribution analysis under various 

conditions for air gap types 

 

It became evident that the most pertinent results for energy 

distribution reside in levels 6, 7 and 8 with a prominent 

advantage for level 7, that exhibits the peak of energy 

dissipation for all of the operating conditions and under various 

fault types and severity degrees. 

Detailed results of dissipated energy levels are shown in 

Table 2. 

 

Table 2. Dissipated energy through decomposition levels 

 
Machine 

Condition 

Decomposition 

Level 

Dissipated Energy 

(J) 

HAG 

D6 1.173×105 

D7 2.504×106 

D8 2.344×106 

SAGE 

D6 1.164×105 

D7 2.522×106 

D8 2.363×106 

DAGE 

D6 1.155×105 

D7 2.206×106 

D8 2.359×106 

MAGE 

D6 1.126×105 

D7 2.529×106 

D8 2.392×106 

 

 

5. ARTIFICIAL INTELLIGENCE MODEL 

 

5.1 Support vector machine (SVM) 

 

SVM branches out from machine learning models under 

supervised learning algorithms by performing a linear 

classification for a multiclass dataset. It provides great 

generalization abilities even when dealing with a small 

number of dataset samples [29]. Its architecture is shown in 

the Figure 9 [30], the margin in this structure is the distance 

between the decision boundaries and the support vectors, 

while the latter contains the group of data samples that are 

approximate to decision boundary which represents a 

hyperplane of the linear classification [31]. 

 

 
 

Figure 9. SVM basic architecture 

 

The decision boundary is determined by the following 

equation:  

 

d(x) = w𝑥𝑖 + b (8) 

 

where, w is the weight vector, xi is the input data and b is the 

bias. 

The distance of the margin can be obtained as follows:  

 

margin =
2

∥ 𝑤 ∥
+ C∑  

𝑛

𝑖=1

𝜉𝑖  (9) 

 

In case of misclassification where the data can’t be linearly 

classified ξ is the variable slack that can adjust the rate of 

misclassification, C is a parameter defined by the user, the 
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higher this parameter’s value, the lower the degree of 

misclassification. 

 

5.2 Decision trees  

 

Decision Trees (DT) is one of the strongest classification 

algorithms and used in many fields [32], it effectively unites a 

series of basic test, the construction of conceptual rules are 

easier in comparison with the numerical weights which are 

used in neural networks of connections between nodes [33, 34]. 

Each one of the trees compose the branches and the nodes, 

those nodes each one of them represents a feature that would 

be classified, the value taken by the node is defined by each 

subset. Figure 10 shows how decision trees algorithm works 

starting with the root node responsible for dividing into 

decision nodes   

 

 
 

Figure 10. DT process 

 

 

6. PROPOSED METHODOLOGY  

 

The proposed method is based on two steps, in the first 

section of the paper, a signal processing was employed using 

DWT full decomposition, in order to denoise our raw current 

signal for the purpose of extracting the most suitable feature 

from the obtained signal, then an energy distribution analysis 

was conducted in order to choose the best frequency band 

sensitive to the variations of current signal for both healthy and 

faulty machines, root mean square (RMS) was backed as a 

fault indicator to reinforce the learning process in the 

upcoming section. Later, an AI-based diagnosis was 

performed using machine learning algorithms in hope to 

classify the chosen dataset into 3 classes: fault type, fault 

localization and severity degree as shown in Figure 11. 

 

6.1 Machine learning application 

 

In this section, two machine learning algorithms were 

employed for the diagnosis of air gap eccentricity, the first 

algorithm is SVM, after training our model using energy levels 

and RMS values as inputs the results of testing the model’s 

precision is shown in the confusion matrix (Figure 12). 

SVM model exhibited some satisfying results when 

classifying early stage degrees for both static and dynamic air 

gap eccentricity which served the purpose of monitoring of 

this defect with an overall accuracy above 70% and also the 

detection of the fault itself by successfully distinguishing 

healthy samples from the faulty ones with an accuracy of 79%. 

The chosen architecture for SVM model is shown in the 

following Table 3. The evaluation of SVM model results are 

shown in Table 4. 

 
 

Figure 11. Diagnosis process flowchart 

 

 
 

Figure 12. Data scatter plot based on severity degree and 

dissipated energy levels 

 

Table 3. SVM chosen architecture settings 

 
Classifier Parameter Chosen Setting 

SVM 

Kernel Function Linear kernel 

Standardization 
Input features are 

standardized 

Box Constraint 1 

Kernel Scale Not used 

Multiclass Scheme One-vs-one 
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Table 4. SVM evaluation results 

 
Condition Precision Recall F1score 

DAGE-20%- 100% 75% 85% 

DAGE-30%- 80% 66% 72% 

HAG 84% 87.5% 85.7% 

MAGE-20%- 100% 75% 85.7% 

MAGE-30%- 47% 66% 55% 

SAGE-20%- 69% 75% 72% 

SAGE-30%- 53% 58% 56% 

 

The second machine learning algorithm chosen is DT 

algorithm, which delivered outstanding results in comparison 

to SVM model by successfully classifying the defected 

samples and the healthy ones and each type of the defect 

alongside its severity degree. The chosen architecture for DT 

model is shown in Table 5. 

 

Table 5. DT chosen architecture settings 

 
Classifier Parameter Chosen Setting 

DT 

Splitting Criterion Gini’s diversity index 

Max Splits 100 

Minimum Leaf Size 1 

Maximum Tree Depth No strict cap 

Pruning Post-pruning 

Surrogate Splits Not used 

 

 
 

Figure 13. Confusion matrix results using SVM 

 

 
 

Figure 14. Confusion matrix results using DT 

 
 

Figure 15. ROC curve plot 

 

The results of classification are shown in the confusion 

matrix (Figure 13). 

Confusion matrix results are illustrated in Figure 14, that 

shows outstanding performance results and classification 

capabilities. 

DT model achieved 1.00 results at various threshold settings, 

which indicates that the model has a strong distinguishing 

capacity between the chosen classes. As was previously 

illustrated in Figure 15. 

 

 

7. CONCLUSIONS 

 

After applying the proposed methodology, it becomes 

evident that using DWT decomposition for the purpose of 

employing energy dissipation levels and RMS values as fault 

indicators combined with machine learning, proved reliable 

for the classification of air gap eccentricity and can serve quite 

effectively the purpose of monitoring task for this type of 

defects in induction machine.  

The task for choosing the best classifier for the detection of 

air gap irregularity went through training various models and 

the best models in terms of accuracy of detection were SVM 

with an overall 70% accuracy and DT classifier with 100% 

accuracy. 

The main challenge lies in providing more complex data in 

terms of harmonics and noise in the signal which would render 

the detection more challenging and would require introducing 

other models with more specific settings for the 

hyperparameters. Therefore, the upcoming work will focus on 

using more features for fault classification and introducing 

more severity degrees in hope of achieving a global diagnosis 

process with maintaining a strong monitoring capability. 
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NOMENCLATURE 

 

f1 Frequency supply, Hz 

feq  Eccentricity frequency, Hz 

fe Fundamental frequency, Hz 

fs Sampling frequency, Hz 

K1 Any integer  

R Number of rotor slots 

P Number of pairs of poles 

nd Eccentricity order  

s Slip 

v  Order of stator time harmonics 

 

Greek symbols 

 

ψ Mother wavelet 

ξ Slack variable  

 

Subscripts 

 

AI Artificial intelligence  

FFT Fast Fourier transform 

DAGE Dynamic air gap eccentricity 

DT Decision trees 

DWT Discrete wavelet transform 

HAG Healthy air gap 

HT Hilbert transform 

MAGE Mixed air gap eccentricity 

MLP Multi layer perceptron 

RMS Root mean square 

SAGE Static air gap eccentricity  

STFT Short fast Fourier transform 

SVM Support vector machine 

WPD Wavelet packet decomposition 

WT Wavelet transform 
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