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This research paper presents a method for encrypting images by combining a 7D-chaotic 

system with microfluidic techniques to generate dynamic S boxes. The core of this approach 

involves using a generalized form of the Lorenz system called a 7D system, which offers 

complex behavior, wide distribution, and good ergodicity. These unique features are used 

to improve image encryption strategies. This study explores the field of microfluidics with 

a focus on its control of fluid dynamics at a small scale where surface forces dominate. This 

interdisciplinary technique combines engineering, physics, and mathematics to create a kind 

of S-box. A new encryption method is proposed by addressing the limitations of image 

encryption in large-size images. It demonstrates how integrating behavior and microfluidic 

technology can create an efficient encryption mechanism suitable for highly secure data 

applications. The paper provides insights into the algorithm implementation, encryption 

process, and potential use cases. The effectiveness of this approach is highlighted after 

implementing some statistical analysis that plays a significant role in demonstrating the 

encryption method's security. The elevated value of the NPCR and UACI determines its 

robustness to differential attack analysis. 
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1. INTRODUCTION

In the current era, the field of image encryption has seen 

notable advancements. However traditional methods still face 

challenges that limit their effectiveness. While these methods 

work well for some types of data, they fail to address the 

complexities presented by image data, such as high 

redundancy and large file sizes [1-4]. These limitations can be 

observed in many aspects, for example, Insufficient 

Complexity; where the simplicity and predictability of their 

maps make them vulnerable to some types of attacks. Lack of 

Scalability; where traditional methods face difficulties when 

dealing with high-resolution images due to the load and time 

required for encrypting sized files. Security for Sensitive 

Applications; where the existing encryption methods often fail 

to meet the security requirements in critical fields, like military 

and medical imaging where security is paramount. Ensuring 

the security of the system is one of the most crucial aspects of 

any cryptographic primitive. Therefore, the challenge is to find 

an approach that could share unique characteristics with them 

and overcome such limitations. Due to their properties that 

meet the cryptography requirements, such as complex 

behavior, a large distribution, and higher ergodicity, the chaos 

theory is extremely significant in cryptographic systems [5-8]. 

Since this discovery, several investigators have presented 

many encryption systems based on highly performed chaotic 

systems. For example, Hua et al. [9] proposed a new 2D 

Logistic-Sine-Coupling Map-based encryption image 

technique (2D-LSCM). Al-Saidi et al. [10] adopted new 2D 

maps to be used for the construction of a new image encryption 

technique (2D-LICM). Roy et al. [11] investigated colour 

image encryption algorithm processes which employed the 

polarization dynamics synchronization in a free-running 

vertical-cavity surface-emitting laser (VCSEL). Farhan et al. 

[12] presented a novel chaotic system possessing the peculiar

ability to move both inside and outside of a cylinder

periodically. In the same year, Ali et al. [6] proposed an

encryption method based on a new chaotic map called 2D-

HLCM. Additionally, in 2021 Alwan et al. [13] introduced a

new chaotic encryption method called 2D-LCHM. In their

2023 study, Ndassi et al. [7] developed an innovative

cryptosystem based on compression. This system uniquely

blends a high-dimensional chaotic system with a Dynamic S-

Box, and utilizes 2D compress sensing for image encryption.

The encryption process incorporates a secret key generated

through the SHA-256 function. Additionally, the system

features a key-dependent Mordell elliptic curve-based

Dynamic S-Box for substituting the compressed image.

Moreover, Alwan et al. [8] introduced a new encryption

algorithm based on an nD-hyperchaotic system derived from

the Lorenz system.

This paper introduces a new image encryption method that 

overcomes limitations in the aforementioned previous 

methods. This is achieved by combining a 7D chaotic system 

with a dynamic mechanism to generate new S-boxes utilizing 

microfluidic technology. This integration does not increase the 

complexity and unpredictability of the encryption process, it 

also ensures the scalability and robustness of the algorithm, 
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which makes it suitable for high-resolution images. The 

dynamic nature of the S-boxes generated using these new 

techniques provides a higher level of security that meets the 

requirements of sensitive applications and represents an 

advancement in the field of image encryption. 

 

 

2. THE NEW 7D-CHAOTIC SYSTEM 

 

In this section, we introduced a new 7D hyperchaotic 

system for some reason such as; increased complexity 

compared to lower-dimensional systems, highly unpredictable 

and robust cryptographic keys [14, 15]. Furthermore, the 

additional dimensions in a 7D system refer to more complex 

interactions between variables, enhancing the system's 

ergodicity and distribution in the state space. This case ensures 

achieving the diffusion and confusion principles of Shannon 

[16]. Based on the Lorenz system [17], the 7D chaotic system 

is defined by 

 
𝑑𝑋1

𝑑𝑡 
= (𝑎 ∗ 𝑥(2) − 𝑥(6))𝑥(7) 

𝑑𝑋2

𝑑𝑡 
= (𝑏 ∗ 𝑥(3) − 𝑥(7))𝑥(1) 

𝑑𝑋3

𝑑𝑡 
= (𝑐 ∗ 𝑥(4) − 𝑥(1))𝑥(2) 

𝑑𝑋4

𝑑𝑡 
= (𝑑 ∗ 𝑥(5) − 𝑥(2))𝑥(3) 

𝑑𝑋5

𝑑𝑡 
= (𝑒 ∗ 𝑥(6) − 𝑥(3))𝑥(4) 

𝑑𝑋6

𝑑𝑡 
= (𝑓 ∗ 𝑥(7) − 𝑥(4))𝑥(5) 

𝑑𝑋7

𝑑𝑡 
= (𝑔 ∗ 𝑥(1) − 𝑥(5))𝑥(6) 

(1) 

 

where, 𝑥(𝑖) 𝑖 = 1, … ,7  is the initial state and 

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) is the parameters of the system (1).  

 

2.1 The equilibria and its stability 

 

Equilibrium points of system (1) are obtained by setting its 

right-hand side to zero, that is, 

 

(𝑎 ∗ 𝑥(2) − 𝑥(6)) ∗ 𝑥(7) = 0  

(𝑏 ∗ 𝑥(3) − 𝑥(7)) ∗ 𝑥(1) = 0  

(𝑐 ∗ 𝑥(4) − 𝑥(1)) ∗ 𝑥(2) = 0  

(𝑑 ∗ 𝑥(5) − 𝑥(2)) ∗ 𝑥(3) = 0  

(𝑒 ∗ 𝑥(6) − 𝑥(3)) ∗ 𝑥(4) = 0  

(𝑓 ∗ 𝑥(7) − 𝑥(4)) ∗ 𝑥(5) = 0  

(𝑔 ∗ 𝑥(1) − 𝑥(5)) ∗ 𝑥(6) = 0 

(2) 

 

Therefore, we have some equations come from Eq. (2) 

 
𝑎𝑋2 = 𝑋6𝑋7 

𝑏𝑋3 = 𝑋7𝑋1 

𝑐𝑋4 = 𝑋1𝑋2 

𝑑𝑋5 = 𝑋2𝑋3 

𝑒𝑋6 = 𝑋3𝑋4 

𝑓𝑋7 = 𝑋4𝑋5 

𝑔𝑋1 = 𝑋5𝑋6 

 

By solving these equations, we have a trivial equilibrium 

point occurs when all variables are set to zero: 

𝑋1 = 𝑋2 = 𝑋3 = 𝑋4 = 𝑋5 = 𝑋6 = 𝑋7 = 0 
 

This is because setting all variables to zero satisfies all the 

equations simultaneously. 

If we assume 𝑋1, 𝑋2, … , 𝑋7 are not all zero, we will have: 

 

𝑋2 =
𝑋6𝑋7

𝑎
,  𝑋3 =

𝑋7𝑋1

𝑏
,  𝑋4 =

𝑋1𝑋2

𝑐
,  𝑋5

=
𝑋2𝑋3

𝑑
, 𝑋6 =

𝑋3𝑋4

𝑒
,  𝑋7

=
𝑋4𝑋5

𝑓
, 𝑋1 =

𝑋5𝑋6

𝑔
 

(3) 

 

With simple substitution we have,  

 

𝑋2 =
𝑋6𝑋7

𝑎
 and 𝑋3 =

𝑋7𝑋1

𝑏
, substitute into 𝑋4 =

𝑋1𝑋2

𝑐
, 

we get 𝑋4 =
𝑋1⋅

𝑋6𝑋7
𝑎

𝑐
=

𝑋1𝑋6𝑋7

𝑎𝑐
 

(4) 

 

Since 

 

𝑋5 =
𝑋2𝑋3

𝑑
, 

𝑋5 =

𝑋6𝑋7

𝑎
⋅

𝑋7𝑋1

𝑏
𝑑

=
𝑋1𝑋6𝑋7

2

𝑎𝑏𝑑
 

(5) 

 

Substitute 𝑋4 and 𝑋5 back into 𝑋6 =
𝑋3𝑋4

𝑒
, we have: 

 

𝑋6 =

𝑋7𝑋1

𝑏
⋅

𝑋1𝑋6𝑋7

𝑎𝑐
𝑒

=
𝑋1

2𝑋6𝑋7
2

𝑎𝑏𝑐𝑒
 

(6) 

 

and for 𝑋7 =
𝑋4𝑋5

𝑓
, we have 

 

𝑋7 =

𝑋1𝑋6𝑋7

𝑎𝑐
⋅

𝑋1𝑋6𝑋7
2

𝑎𝑏𝑑
𝑓

=
𝑋1

2𝑋6
2𝑋7

3

𝑎𝑏𝑐𝑑𝑓
 

(7) 

 

Substituting the above values into the other equations leads 

to a complex set of nonlinear equations Therefore, the non-

trivial equilibrium points depend on the specific values of the 

parameters and require complex numerical methods to solve 

due to the nonlinear nature of the system. 

The selection of parameters plays a role in achieving the 

desired behavior and ensuring the robustness of the encryption 

process. These parameters were chosen based on the following 

factors [9, 11, 18, 19]: 

• Complexity and Sensitivity; We carefully selected 

parameters that exhibit a level of complexity and 

sensitivity to conditions. This is vital for generating 

sequences that enhance the security of the encryption. 

• Distribution and Ergodicity; Our chosen parameters 

ensure a uniform distribution of the map across the state 

space contributing to the system ergodicity. This uniform 

distribution is essential for creating an unpredictable S-

box. 

• Real-world Applicability; Practical applicability in real-

world scenarios was also taken into consideration when 

selecting these parameters. We aimed to ensure that the 

system can be efficiently implemented without requiring 

resources. 

• Robustness to Cryptanalytic Attacks; The selection 

process also focused on resistance against attacks. 

Parameters that contribute to a level of security against 
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linear cryptanalysis were given priority. 

To understand how the 7D hyperchaotic system behaves 

under certain conditions and ascertain its suitability, for 

encryption purposes it is crucial to conduct a stability analysis. 

 

2.2 Attractor 

 

 
 

Figure 1. Attractors of 7D-hyperchaotic system 

 

It visualizes and analyzes how the system evolves through 

iterations. These plots provide insights into how slight changes 

in conditions affect the system response. A dynamical system's 

attractor represents a set of points in state space that depict the 

output of the system. Figure 1. shows the attractor of the 7D- 

hyperchaotic system utilizing different parameters values, in 

this case, a=40; b=60; c=8; d=20; e=0.1; f=77; g=10. Figure 

1(a) shows attractor diagrams with different values of the 

initial states ( 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 )= ( 1, 1, 2, 2, 1, 1, 1 ), 

(1, 1, 2, 2, 1, 1, 0.1), and (1, 1, 2, 2, 1, 0.1, 0.1) blue, red and 

green, respectively. 

 

2.3 Lyapunov exponents 

 

Lyapunov exponents (LE) are computed to evaluate how 

sensitive the system is to its conditions. A positive Lyapunov 

exponent indicates behavior, which is desirable for encryption. 

The calculation of these exponents for the 7D system is 

complex. Requires methods and a thorough understanding of 

the system's dynamics. The rate of divergence or convergence 

of surrounding trajectories is measured by LE. It can be 

mathematically defined as [5]: 

 

𝜆 ≅
1

𝑡
ln 

∥ 𝛿𝑥(𝑡) ∥

∥ 𝛿𝑥(0) ∥
 (8) 

 

where, 
∥δx(t)∥

∥δx(0)∥
 refers to the distance between two different 

trajectories as illustrated in Figure 2. In this Figure 2(a), (b) 

and (c), show hyperchaotic behavior of the proposed system, 

especially, for the parameters (a=40; b=60; c=8; d=20; e=0.1; 

f=77; g=10), (a=40; b=60; c=8; d=20; e=0.1; f=77; g=10), and 

(a=40; b=60; c=8; d=20; e=0.1; f=77; g=10), respectively.  

 

  
 

(a) (b) (c) 

 

Figure 2. LE of the 7D- hyperchaotic system 

 

 
 

Figure 3. PE of all variables 
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2.4 Permutation entropy 

 

Entropy is a concept in information theory, thermodynamics, 

and dynamical systems, that measures the unpredictability, or 

the amount of information in a system [8]. In this paper, we 

introduced a special type of entropy called Permutation 

Entropy (PE). The measure is defined as; 

 

𝐻𝑃𝐸 = − ∑  

𝑁

𝑖=1

𝑝𝑖log2 𝑝𝑖 

 

where, 𝑝𝑖  is the probability of the 𝑖 -th permutation pattern 

occurring in the time series, and 𝑁  is the total number of 

possible patterns (which depends on the window length). The 

average PE across multiple windows is also computed to 

provide a single value that represents the complexity of the 

variable's time series, where the parameter set (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) 

maximizes the system's overall complexity. A parameter 

sweep across specified ranges is performed. For each 

combination of parameters, the system of differential 

equations was numerically integrated to produce time series 

data, and the average PE across all dimensions was calculated. 

The parameter set that resulted in the highest average PE was 

selected as the optimal configuration, indicating the most 

chaotic system behavior. Figure 3 shows the PE of all variables 

where the best parameters are; a=55.0, b=40.0, c=10.0, d=20.0, 

e=0.075, f=75.0 and the initial values are: 

 

𝑥(1) = 0.1, 𝑥(2) = 0.1, 𝑥(3) = 0.1, 𝑥(4) = 0.1, 𝑥(5) =
0.1, 𝑥(6) = 0.1 and 𝑥(7) = 0.1 

 

 

3. NEW IMAGE ENCRYPTION METHOD 

 

The algorithms of image encryption are divided into two 

categories. One treats a digital image as a bitstream and 

encrypts the image using traditional techniques. The other 

category uses current techniques like chaos, wavelet 

transforms, and so on. The performance of the algorithms that 

are based on chaotic maps is good [5].  

S-boxes play a role, in image encryption because of the 

connection between neighbouring pixels, in images. If not 

properly encrypted this correlation makes images available to 

attacks. By using S-boxes we can minimize this correlation 

and enhance the security of the encrypted image. This section 

introduces a new S-box and strings letters and mixture them 

via the microfluidic technique. However, this S-box is adopted 

to generate keys for the image encryption algorithm. 

 

3.1 Design of a new S-box 

 

S-boxes play a crucial role in providing the strength, 

reliability, and security of image encryption methods. This is 

achieved due to its nonlinearity improves confusion and 

diffusion and offers protection against different types of 

cryptographic attacks. Microfluidic technology (MF) offers 

unique advantages in controlling and manipulating fluids at a 

micro-scale, where surface forces such as capillary action and 

electrokinetic effects dominate [20]. These principles enable 

the precise generation of complex cryptographic elements, 

making microfluidics a valuable tool in enhancing the security 

and efficiency of encryption systems. By understanding and 

leveraging these forces, microfluidic devices can produce 

highly secure, dynamic cryptographic components that are 

difficult to predict [21]. MF can be used to mix fluids that 

represent different chaotic sequences such as system (1) in a 

highly controlled environment. The chaotic nature of the 

system, combined with the micro-scale precision of fluid 

manipulation, results in the generation of dynamic and highly 

unpredictable cryptographic elements such as S-box [21, 22]. 

In this work, a new Dynamic S-Box is unique due to its 

integration with advanced MF and the use of a 7D 

hyperchaotic system is designed. This combination allows for 

the real-time generation of highly adaptive and unpredictable 

S-boxes, significantly enhancing security by introducing 

dynamic variability with each encryption process. The MF 

ensures precise control and mixing of chaotic sequences, 

which is difficult to achieve with conventional methods, 

thereby providing a superior defense against cryptographic 

attacks. Figure 4 shows the flowchart of the S-box generation 

steps. 

This section introduced a procedure to generate a new S-

box based on system (1) and MF. Figure 3 shows this 

procedure. 

 

3.1.1 Generate random sequence based on system (1) 

To generate random sequence based on system (1). First 

step is set initial state and parameters of system (1) with set 

iterations and time, after that, we implement the system 

generates seven randoms chaotic sequences, these steps 

illustrated in Algorithm 1. 
 

Algorithm 1: Generate SC chaotic system sequence 

Input: initial parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔); 
Output: Random sequence; 

Begin 

for 𝑖 = 1 to 7 

 

Apply (1) to generate random numbers with 7 

dimensions  

𝑿 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓, 𝒙𝟔, 𝒙𝟕], 𝒙𝒊  with size n, 𝑖 =
1,2, … ,7; 

 SC(i)=sum(𝑥𝑖); 

End 

𝑆𝐶 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑖𝑜𝑛(𝑆𝐶(𝑖)), by MF; 

Random sequence 𝑆𝐶; 

End 
 

3.1.2 Microfluidic mixer to generate S-box 

In this phase, we generated an S-box based on system (1), 

and a string of letters, then mixed them via the microfluidic 

mixer; as shown in Algorithm 2 and Table 1.  
 

Algorithm 2: Generate an S-box via microfluidic 

1.  Input: SC, a string of letters and numbers and some 

symbols 𝑆𝑙; 
2.  Output: S- box 

 Begin 

3.  Convert 𝑆𝐶 into binary numbers; 

4.  Generate sequences of letters and numbers and some 

symbols 𝑆𝑙;  
5.  𝑆𝑙 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑖𝑜𝑛(𝑆𝑙), by Microfluidic 

technique; 

6.  Convert 𝑆𝐶 into binary numbers; 

7.  S= 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑖𝑜𝑛(𝑆𝑙, 𝑆𝐶), by Microfluidic 

technique; 

8.  S- box =reshape(S) into 𝑛 × 𝑛; 

9.  end 
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Table 1 shows a sample of10 × 10  S-box generated via 

microfluidic technique with the hexadecimal number. The size 

of the S-box can be changed according to the size of the image 

to be encrypted. 

The utilization of the microfluidic technique offers 

numerous benefits compared to traditional methods in the 

generation of S-boxes for encryption purposes. The utilization 

of the microfluidic technique provides a dynamic generation 

and precise control, integration with chaotic maps. It is an 

excellent choice for enhancing the encryption algorithm's 

security due to its efficiency and scalability. 

 

 
 

Figure 4. Flowchart of S-box generation steps 

 

Table 1. Sample of S-box generated via a microfluidic technique of size 10×10 

 
S-Box via Microfluidic  

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10 

12D0 8316 B162 060C 42D1 0CB8 C483 52B0 8B06 3162 

60C1 0C58 C18C 1831 8B16 3062 060C 64C1 2C18 C58B 

83C6 3162 060C 62B2 0B58 C183 5831 8B16 B160 060C 

2B58 B18B 12C0 836B 3C62 062C 60C5 0C1B C5CB 38C0 

B160 162C 621C 0B18 C185 18B1 8326 B060 160C 62C5 

C13B 18C1 8306 3060 142C 62C5 1C58 C28B 18B0 8B16 

18C0 8B16 3060 060C 62C5 2C18 C583 38B0 8B16 B062 

62C1 2C38 328B 58C1 8B16 3160 16C2 62B1 2C58 C1B3 

8B06 30B2 150C 60B5 2C85 C583 5831 8313 B160 062B 

2C5B C15B 18B2 8B06 3162 1B2C 62C5 BC18 C182 1830 

Also, the dynamic nature of the S-boxes generated by 

microfluidics makes it challenging for cryptanalysis resistance 

to attacks. Attackers cannot rely on precalculated tables or 

traditional methods of analyzing cryptographic systems, as the 

properties of the S-boxes change in an unpredictable manner 

with each encryption instance. Microfluidic techniques have a 

wide range of applications for data encryption, not just limited 

to images. This adaptability makes this technique valuable in 

various fields that require strong encryption, such as 

telecommunications, data storage and secure transmissions. 
 

3.2 S-box performance metrics 
 

At this stage of our work, we need to test our proposed 

algorithm using well-known analysis frameworks in the 

scientific community to ensure the effectiveness of our S-box. 

For example, we will evaluate its performance based on 

nonlinearity, the Avalanche Effect (AE), and the Output Bit 

Independence Criterion (BIC) to demonstrate the effectiveness 

of the proposed S-box design. 

 

1. Nonlinearity 

One of the tests to measure the efficiency of an S-box is 

nonlinearity, which is defined as the minimum Hamming 

distance between the S-box function and the set of all affine 

functions [22], it can be mathematically defined as: 

 

𝑆(𝑓)(𝜔) = ∑  

𝜔∈𝐺𝐹(2𝑛)

(−1)𝑓(𝑥)⊕𝑥⋅𝜔 (9) 

 
where, the dot product between 𝑥 and 𝜔 is defined by: 
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𝑥 ⋅ 𝜔 = 𝑥1 ⋅ 𝜔1 ⊕ 𝑥2 ⋅ 𝜔2 ⊕ … 𝑥𝑛 ⋅ 𝜔𝑛 

 

Thus, the nonlinearity is calculated by 

 

𝑁𝑓 = 2𝑛−1 (1 − 2−𝑛 max
𝜔∈𝐺𝐹(2𝑛)

 |𝑆(𝑓)(𝜔)|) (10) 

 

The nonlinearity of the proposed S-box and some previous 

methods are shown in Table 2.  

 

Table 2. The nonlinearity of some S-boxes 

 
S-Box Methods Value 

Proposed 106 

[12] 106 

[23] 105 

[24] 100 

[25] 106 

 

2. Avalanche effect (AE) 

The AE measures how much the output changes when a 

single input bit is flipped. The general idea, where a flipping 

one bit of the input sequence has the effect of changing about 

half of the bits in the output [23]. Table 3 shows the AE of the 

proposed S-box and some previous methods.  

 

Table 3. AE values of some S-boxes 

 
S-Box Methods AE 

Proposed 0.7555625 

Ref. [12] 0.5783 

Ref. [24] 0.4971 

Ref. [25] 0.4825 

Ref. [26] 0.4916 

 

3. Bit Independence Criterion (BIC) 

The BIC measures how independently the output bits 

behave when specific input bits are flipped. It checks the 

independence between pairs of output bits for different input 

bit changes. The general idea of BIC lies in the flipping of one 

input bit will cause an independent and unpredictable changes 

in the output bits. The BIC values should show minimal 

correlation between the effects on different output bits [23]. 

Table 4 shows the BIC of our proposed S-box and some other 

S-boxes from the literature. 

 

Table 4. BIC of the proposed S-box and some other S-boxes 

 
S-Box Methods BIC-SAC BIC-Nonlinearity 

Proposed  0.6064 104.2 

Ref. [12] 0.5064 103.92 

Ref. [24] 0.5044 102.96 

Ref. [25] 0.4962 101.9 

Ref. [26] 0.5058 104.14 

 

3.3 Encryption part 

 

In this part, three steps (Confusion Pixels, Pixels-

permutation, Substitution) are implemented to produce the 

encrypted image. In our proposed encryption algorithm, we 

choose some parameters to generate S-boxes using a system 

(1) with parameters: 𝑎 = 40, 𝑏 = 60, 𝑐 = 8, 𝑑 = 20, 𝑒 = 0.1, 

𝑓 = 77 , and 𝑔 = 10 , and initial state 𝑥(𝑖) = 0.1 . These 

parameters were chosen to ensure that the chaotic system 

exhibits strong sensitivity to initial conditions and generates 

highly unpredictable sequences, essential for secure S-box 

construction based on its evaluation tests. The system (1) 

produced by iterating this system is mapped to an 8x8 S-box, 

with each sequence value normalized and converted into an S-

box entry. To add an additional layer of randomness, 

microfluidic technology is employed to mix and refine the 

chaotic sequences, resulting in a unique S-box for each 

encryption session. This S-box is then integrated into the 

image encryption process at the substitution stage, where it 

replaces pixel values in the image with their corresponding S-

box values. The continuous adaptation of the S-box for each 

block of data significantly enhances the security, making the 

encryption resistant to a variety of cryptographic attacks. They 

are described as a block diagram in Figure 5. 

 

 
 

Figure 5. The encryption process structure 

 

3.3.1 Confusion process 

 

The process of rearranging the positions of pixels is referred 

to as confusion. Let us say we have a  plain image called I with 

dimensions m × n where each pixel's value falls within the 

range of [0, 255]. To change the locations, we create a random 

matrix that matches the size of the original image. Then we 

proceed to modify the locations based on this random matrix. 

The confused pixels of the image can be generated as shown 

in Algorithm 3. In the decryption part, the confusing image 

should pass through Algorithm 4 which represents the inverse 

operations. 

 

Algorithm 3: Confusion process 

1.  Input: plain image I. 

2.  Output: Image P after the confusion process  

 Begin 

3.  R = row’s size of I; 

C = column’s size of I; 

4.   R_new= a new random R; 

C_new= a new random C; 

5.  for 𝑖 = 1 to R  

6.      for j= 1 to C 

7.       P=I(R_new(i), C_new(j)); 

8.     end 

9.  end 

 end 
 

Algorithm 4: The inverse of the Confusion process  

1.  Input: Confused image P; R_new; C_new; 

2.  Output: the original image I; 

 Begin 

3.  R = row’s size of I; 

C = column’s size of I; 

4.  for 𝑖 = 1 to R  

5.     for j= 1 to C 

6.      I(i,j)=P(R_new(i), C_new(j)); 

7.    end 

8.  end 

 end 
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3.3.2 Diffusion process  

The process of altering the image's values is known as 

diffusion. Let us say we have an image called I with 

dimensions m × n, where each pixel has a value ranging in [0, 

255]. To modify these values, we apply the XOR operation 

using an S-box. The diffusion pixels of the image can be 

generated as shown in Algorithm 5. In the decryption part, we 

used Algorithm 6 which performed the inverse operations on 

the diffused image. 

 
Algorithm 5: Diffusion pixels 

1.  Input: Confused image P; S-box; 

2.  Output: Diffusion image D; 

 Begin 

3.  R = size of the row of P; 

C = size of the column of P; 

4.  for 𝑖 = 1 to R  

5.     for j= 1 to C 

6.   D(i, j)= 𝑃(𝐼, 𝑗)𝑋𝑂𝑅 𝑆_𝑏𝑜𝑥(𝐼, 𝑗); 
7.    end 

8.  end 

 end 

 
Algorithm 6: Diffusion inverse  

1.  Input: Diffusion image D; S-box; 

2.  Output: Confused image P; 

 Begin 

3.  R = size of the row of D; 

C = size of the column of D; 

4.  for 𝑖 = 1 to R  

5.     for j= 1 to C 

6.   P(i,j)= 𝐷(𝐼, 𝑗)𝑋𝑂𝑅 𝑆_𝑏𝑜𝑥(𝐼, 𝑗); 
7.      end 

8.  end 

 End 

 

 
3.3.3 Substitution of pixel values 

This part of the encryption operation used the S-box to 

change the values of pixels via substitution values of the image 

with values of the S-box. The substitution values of image 

pixels are generated by Algorithm 7. Algorithm 8 is used to 

perform the inverse operations on the substitution values of the 

image in the decryption part. 

 
Algorithm 7: Substitution of pixel values 

1.  Input: Diffusion image D; S-box; 

2.  Output: Cipher image C; 

 Begin 

3.  R = size of the row of D; 

C = size of the column of D; 

4.  for 𝑖 = 1 to R  

5.    for j= 1 to C 

6.      C(i,j)=S_box(i,j); 

7.    end 

8.  end 

 end 

Algorithm 8: Inverse of substitution process 

1.  Input: Cipher image C; S-box; 

2.  Output: Diffusion image D; 

 Begin 

3.  R = size of the row of C; 

C = size of the column of C; 

4.  for 𝑖 = 1 to R  

5.    for j= 1 to C 

6.      D(i,j)=S_box(I,j); 

7.    end 

8.  end 

 end 

 

After these three operations (confusion pixels, diffusion 

Pixels and substitution of Pixel’s values), the cipher image is 

obtained. The main steps are abstracted in Algorithm 9. 

 

Algorithm 9: Encryption process 

1.  Input: Plain image P; S-box; 

2.  Output: Cipher image C; 

 Begin 

3.  R = size of the row of I; 

C = size of the column of I; 

4.  Apply confusion pixels algorithm % Algorithm 3 

5.  Apply diffusion pixels algorithm % Algorithm 5 

6.  Apply substitution values of pixels algorithm % 

Algorithm 7 

7.  Cipher image C; 

 end 

 

3.4 Decryption process 

 

In general, the decryption operation is the inverse operation 

of encryption algorithm, which means the last stage of 

encryption become the first stage in the encryption algorithm. 

The steps, for decryption are outlined in Figure 6. 

 

 
 

Figure 6. The decryption processes 

 

 

4. SIMULATION RESULTS 
 

To assess the quality of encrypted images, we can employ 

various statistical tests. At the beginning of our experiment, 

we chosen carefully the parameters of system (1), as these 

choices significantly impact the randomness and 

unpredictability of the encrypted images. The parameters 𝑎 =
40 , 𝑏 = 60 , 𝑐 = 8 , 𝑑 = 20 , 𝑒 = 0.1 , 𝑓 = 77 , and 𝑔 = 10 

and the initial state of each variable was set to 0.1 to maximize 

the system's sensitivity to initial conditions, thereby producing 

sequences that are highly unpredictable. One such test is the 

histogram test, which helps analyze the uniform distribution of 

pixel values in the encrypted images. A high level of statistical 

significance in these tests indicates that your encryption 

technique effectively randomizes pixel values, crucial for 

thwarting statistical attacks. Another analysis method involves 

evaluating the correlation coefficients between adjacent pixels 

in the encrypted images. When the correlation coefficient is 

lower and closer to zero, it produces a higher level of security 

as it indicates that the encryption process efficiently breaks 

down any correlation present in the original image. We can 

also calculate the information entropy of encrypted images to 

gain insights into their randomness. Ideally, an entropy value 

close to 8 (for 256 grey levels) signifies a high level of 

randomness present in the encrypted image.
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4.1 The histogram 

 

One of the most effective tests to show the efficiency of a 

powerful encryption algorithm is histogram analysis. A 

histogram is a graphical representation showing the frequency 

distribution of pixel intensity values in the image. In our 

simulation we applied our algorithm to several images and 

Figure 7 illustrates a comparative analysis of image 

histograms before and after encryption. Subfigure (a) shows 

the plain images in their original form, while subfigure (b) 

presents the corresponding histograms, highlighting the pixel 

intensity distributions, also, subfigure (c) depicts the 

encrypted versions of the same images from (a), and subfigure 

(d) shows the histograms of these encrypted images. 
 

4.2 Correlation measure 
 

The correlation coefficient 𝐶𝐶 values from -1 to 1, if 𝐶𝐶 =

1 that means a perfect positive linear relationship, 𝐶𝐶 = −1 

mean perfect negative linear relationship, and 𝐶𝐶 = 0 mean 

no linear relationship. The correlation measure can be defined 

mathematically as: 

 

𝐶𝐶 =
𝐸(𝑥 − 𝐸(𝑥))𝐸(𝑦 − 𝐸(𝑦))

√𝐷(𝑥)√𝐷(𝑦)
 

 

where, 

 

𝐸(𝑥) =
1

𝑁
∑  

𝑁

𝑖=1

𝑥𝑖   and  𝐷(𝑥) =
1

𝑁
∑  

𝑁

𝑖=1

(𝑥𝑖 − 𝐸(𝑥))2 

 

The results of some colour images for the correlation of 

pixels are shown in Table 5. Figure 8 shows the correlations 

of the images in Winne bear directions. 

 

 
 

Figure 7. The histogram of some images: (a) plain images; (b) histogram of (a); (c) the encrypted images of (a); (d) histogram of 

(c) 

 

 
 

Figure 8. Correlation of Winne bear: (a) original image and its cipher image, where (b), (c) and (d) shows three directions, 

vertical, horizontal, and diagonal, respectively 
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Figure 9. Entropy values of Lena’s image for different algorithms 

 

Table 5. Correlation coefficients of some plain and cipher images 

 
Name Plain Color Image Cipher Image 

 Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena 0.932142 0.94836 0.91287 -0.000285 -0.00578 -0.00316 

Tree 0.963143 0.96724 0.92598 -0.005129 -0.00512 -0.00372 

Jelly Beans 0.9618 0.97963 0.94991 -0.000878 -0.00406 -0.00144 

Moon 0.96243 0.9639 0.91748 -0.000113 0.002852 0.001445 

Table 6. Entropy of some images 

 
Image Plain-Image Cipher Image 

Lena 7.4530 7.998 

Tree 7.652 7.998 

Peppers 7.6840 7.9979 

 

 

Table 7. Values of entropy test for Lena image 

 
Methods Values 

Plain Image 7.5984 

Proposed 7.998  

Ref. [27] 7.9971 

Ref. [28] 7.9969 

Ref. [29] 7.9970 

Ref. [30] 7.9455 

Ref. [31] 7.9970 

 

4.3 The entropy measures 
 

Shannon [16] proposed the first haphazardness measure in 

1948, which determined the expected information value in 

communication in bits units. The entropy of Shannon can be 

defined as: 
 

𝐻(𝑒) = ∑  

𝐸

𝑖=1

𝑝(𝑒𝑖)log 
1

𝑝(𝑒𝑖)
 

 

where, E is the total number of symbols 𝑒𝑖, and 𝑝(𝑒𝑖) refers to 

the probability of 𝑒𝑖. If the information source transmits 256 

symbols, then 𝐻(𝑒) = 8. The entropy results of some images 

are illustrated in Table 6. Table 7 show the comparison of 

entropy values of Lena’s image between our proposed 

encryption algorithm and some previous algorithms. Figure 9 

shows the entropy values of Lena’s image for different 

algorithms. 

 

 

5. THE SECURITY PERFORMANCE MEASURE 

 

For evaluating the security of the encryption technique to 

withstand different attacks for example differential attacks, 

where these attacks involve making small changes to the 

original image and observing the resulting differences in the 

encrypted output. Some performance measures are 

implemented to show the effectiveness of the proposed 

technique. The dynamic nature of the generated S-box, which 

changes with each encryption instance significantly enhance 

security against both differential and linear cryptanalysis. 

 

 

5.1 Analysis of key sensitivity performance 

 

The Mean Absolute Error (MAE) serves as a technique for 

measuring the disparity between two continuous variables. In 

the context of image encryption, it functions to ascertain the 

dissimilarity between two images: the original (plain) image 

and the encrypted (ciphered) image. The MAE is computed 
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using the following formula: 

 

𝑀𝐴𝐸 =
1

𝑟𝑜𝑤 × 𝑐𝑜𝑙
∑  

𝑟𝑜𝑤−1

𝑖=0

∑  

𝑐𝑜𝑙−1

𝑗=0

|𝑃𝑖,𝑗 − 𝐶𝑖,𝑗| 

 

where the 𝑟𝑜𝑤 and 𝑐𝑜𝑙 represent the dimensions of the images, 

referring to the number of rows and columns, respectively of 

the image. While the 𝑃𝑖,𝑗 refer to the value of the pixel at the 

location i-th row and j-th column of the plain image, while 𝐶𝑖,𝑗 

refer to the value of the pixel at the location i-th row and j-th 

column of the ciphered image. A higher MAE value indicates 

a significant difference between the plain and cipher images, 

signifying a favourable outcome for encryption as it suggests 

that the encrypted image bears little resemblance to the 

original, making decryption more challenging. Mean Squared 

Error (MSE) provides a measure of dissimilarity between two 

images by calculating the average of the squared differences 

between corresponding pixels: 

 

𝑀𝑆𝐸 =
1

𝑟𝑜𝑤 × 𝑐𝑜𝑙
∑  

𝑟𝑜𝑤−1

𝑖=0

∑  

𝑐𝑜𝑙−1

𝑗=0

(𝑃𝑖,𝑗 − 𝐶𝑖,𝑗)
2
 

 

The analysis of pixel differences between the plain and 

cipher images is presented in Table 8. 

 

5.2 Number of Pixels Change Rate (NPCR)  

 

The NPCR, or the Number of Pixel Changes Rate, 

quantifies the percentage of pixel positions where two 

encrypted images exhibit differences. In simpler terms, it 

gauges the extent of pixel alterations when a single pixel in the 

original image changes. If 𝐶1(𝑖, 𝑗) and 𝐶2(𝑖, 𝑗) represent two 

encrypted images, the NPCR is given by the formula: 

 

𝑁𝑃𝐶𝑅 =
1

𝑟𝑜𝑤 × 𝑐𝑜𝑙
∑  

𝑖,𝑗

𝑥(𝑖, 𝑗) 

 

where, rows and cols are the dimensions (height and width) of 

the images. The function 𝑥(𝑖, 𝑗) equals 0 if the pixel values at 

position (𝑖, 𝑗) in both encrypted images are identical, and 1 if 

they differ, specifically defined as 0 if 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗) and 

1 if 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗). A higher NPCR value means that a 

significant number of pixels have changed between the two 

encrypted images, indicating that the encryption algorithm is 

highly sensitive to minor modifications in the input image. 

Essentially, NPCR evaluates the robustness of the encryption 

scheme against differential attacks by analyzing how the 

encrypted image responds to small changes in the original 

image. 

 

Table 8. Difference analysis of pixels between plain image 

and cipher image 

 
Image 

Name 

Our Proposed  Ref. [27] 

MAE MSE MAE MSE 

Pepper 85.52 9159.72 85.48 8992.82 

Lena 81.34 9737.35 79.88 8765.76 

Baboon 82.11 9578.2 81.53 8619.66 

Jellybeans 73.24 9489.11 66.83 8566.12 

Tree 84.96 941.10 78.99 7436.10 

 

5.3 Unified Average Intensity Change Intensity (UACI) 

 

The UACl  is a metric evaluating encryption algorithm 

sensitivity by measuring the average intensity difference 

between two encrypted images. It is defined as; 

 

UACI =
1

𝑟𝑜𝑤 × 𝑐𝑜𝑙
∑  

𝑟𝑜𝑤−1

𝑖=0

∑  

𝑐𝑜𝑙−1

𝑗=0

|
𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)

255
| 

 

The biggest values of UACl refer to significant intensity 

differences, which means the encryption scheme introduces 

substantial changes even with minor alterations to the input 

image. To assess the encryption scheme's sensitivity through 

NPCR or UACl, begin by encrypting the original image (𝑃) 

to create C1. Introduce a random alteration to a single pixel in 

𝑃, and subsequently encrypt this modified image to generate 

𝐶2. Calculate NPCR or UACl using the specified formulas, 

and then compare the resulting cipher images, 𝐶1 and 𝐶2. The 

experimental findings of these evaluations are presented in 

Table 9 and Table 10.  

 

Table 9. Analysis of NPCR test between plain and cipher images in comparison to Ref. [27] 

 
Image 

Name 

NPCR Ref. [27] 

Gray 𝐑 G B Gray R G B 

Pepper 99.84 99.89 99.89 99.99 99.92 99.72 99.82 99.61 

Lena 99.83 99.87 99.86 99.83 99.86 99.86 99.81 99.89 

Baboon 99.70 99.89 99.89 99.89 99.88 99.85 99.72 99.87 

Jellybeans 99.83 99.81 99.82 99.71 99.81 99.82 99.83 99.77 

Tree 99.88 99.89 99.98 99.89 99.82 99.76 99.67 99.87 

 

 

Table 10. Analysis of UACI test between plain and cipher images in comparison to Ref. [27] 

 
Image 

Name 

UACI Ref. [27] 

Gray 𝐑 G B Gray 𝐑 G B 

Pepper 33.51 33.84 33.89 33.81 33.58 36.39 33.14 35.26 

Lena 33.86 34.93 34.81 34.80 33.68 34.97 33.06 33.81 

Baboon 33.47 34.81 34.82 34.86 33.64 35.48 33.06 34.81 

Jellybeans 33.89 34.89 34.84 34.89 33.21 32.94 31.85 33.18 

Tree 33.87 33.45 33.86 33.72 33.47 32.56 34.11 32.25 
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Table 11. GLCM analysis 

 
Plain Image ID E Cots 𝐌𝐚𝐱𝐃  Hog 

 

85302 0.025671 4851.43 6.4510 × 105 0.261361 

 

83745 0.025171 4836.14 6.427 × 105 0.260281 

 

83256 0.025035 4843.54 6.4206 × 105 0.261711 

 

83254 0.026032 4842.54 6.9420 × 104 0.261651 

 

5.4 Analysis of Gray-Level Co-Occurrence Matrix 

 

In this test, we will highlight the performance of the 

proposed encryption algorithm based on the Gray Level Co-

occurrence Matrix (GLCM) test, which is a description of 

some characteristics such as Irregular deviation (ID) contrast 

(Cots), energy (E), and uniformity [9]. Each one of them can 

be defined as the following:  

 

5.4.1 Irregular deviation 

The Irregular Deviation (ID) quantifies the precise 

difference between each pixel in the plain image (I) and its 

corresponding pixel in the encrypted image (C). ID is then 

calculated by taking the average of the absolute differences 

between the histogram 𝑀𝐻 and its mean value 𝑚𝐷𝐻 [27]. 

 

{

𝐻𝐺(𝑖) = |𝐼(𝑖) − 𝐶(𝑖)|

𝐼𝐷 =
∑1

256  |𝑀𝐻(𝑖) − 𝑚𝐷𝐻|

𝑀 × 𝑁

 (11) 

 

where, 𝐼 refer to plain image, while 𝐶 refer to cipher image. 

Also, 𝑀𝐻 refer to the frequency distribution of pixel intensity 

values that is mean histogram of 𝐻𝐺 , and 𝑚𝐷𝐻  refer to the 

mean value of the 𝐼𝐷. 

 

5.4.2 Maximum deviation 

The Maximum Deviation ( 𝑀𝑎𝑥𝐷 ) metric measures the 

highest possible difference within the histogram when 

comparing the I and C images. It takes into account the 

amplitude values of the histogram at the extreme ends (1 and 

256) and sums up the values from 2 to 255, can be defined by 

the 𝑀𝑎𝑥𝐷  [27]. 

 

𝑀𝑎𝑥𝐷 =
𝐴𝑀𝑣(𝑖) + 𝐴𝑀𝑣(256)

2
+ ∑𝑖=2

255  𝐻(𝑖) (12) 

 

where, 𝐴𝑀𝑣(𝑖) is the amplitude value of the 𝐻𝐺 mentioned in 

the above Section. 

 

5.4.3 Contrast 

Contrast (Cots) is used to measure the difference in 

brightness or colour that allows an object within an image to 

be distinguished. In the context of GLCM, it evaluates the 

degree of variation between pairs of pixels in the image. Cots 

is then calculated by [27]:  

 

𝐶𝑜𝑡𝑠 = ∑  |𝑖 − 𝑗|2𝐺(𝑖, 𝑗)
𝑖,𝑗

 (13) 

 

5.4.4 Energy 

Energy (E) in general is a measure of the uniformity or 

orderliness of an image. where the low value of E refers to the 

C, which means a high randomness. The formula for 

calculating energy is [27]: 

 

𝐸 = ∑𝑖,𝑗  𝐺(𝑖, 𝑗)2 (14) 

 

5.4.5 Homogeneity 

Homogeneity (𝐻𝑜𝑔)  is used to measure the similarity 

between pixel pairs in an image, typically yielding a result 

between 0 and 1. where the low value of this measurement 

refers to the C, which exhibits significant variation between 

pixel pairs, and this tends to robust encryption and effective 

concealment of the P. The 𝐻𝑜𝑔 can be calculated as [27]: 

 

𝐻𝑜𝑔 = ∑𝑖,𝑗  
𝐺(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
 (15) 

 

Table 11 presents some results of the GLCM analysis for 

several enciphered images. 

 

5.5 Analysis of resistance to classical attacks 

 

To maintain basic security requirements for any encryption 

algorithms, four classical attacks should be discussed. In the 

chosen plaintext attack, an unauthorized individual introduces 
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forged text without knowing the key but somehow obtains the 

corresponding ciphertext. Another technique is the chosen-

ciphertext attack, in which the attacker creates fake ciphertext 

and plaintext in order to obtain the relevant data illegally. The 

difference between ciphertext-only and known-plaintext 

attacks is that the former only includes obtaining the ciphertext, 

while the latter only involves obtaining the plaintext. 

Nonetheless, our cryptosystem is firmly grounded in a very 

sensitive and stochastic chaotic system, in which even minute 

modifications to the initial conditions yield completely distinct 

chaotic sequences. Consequently, we use the pixel average 

values from the original image to disturb the initial values 

while setting them. This guarantees that our approach is robust 

to traditional attacks and has good plaintext sensitivity. Since 

the selected plaintext assault is thought to be the most 

aggressive, the other three forms of attacks usually pose little 

harm to an image encryption system that can withstand it. In 

this study, the high dependency on the plaintext means that 

any attempt by the attackers to reconstruct the original 

messages, after they have obtained the ciphertext through 

phoney messages, will be unsuccessful. Additionally, the 

NPCR and UACI values obtained in Section 4.8 further 

demonstrate that our algorithm is fully resistant to chosen-

plaintext attacks. Also, we can see our system efficiency 

against the entropy-based cryptanalysis because the values of 

our explement are near 8 (see section 4.3). Therefore, based on 

our experiment and cryptosystem analysis we can conclude 

that our scheme of cryptosystem is capable of resisting all four 

classical attacks. 

 

 

6. CONCLUSIONS 

 

In this research, we have introduced a novel method for 

image encryption that combines a 7-dimensional hyperchaotic 

system with advanced microfluidic technology for generating 

Dynamic S-Boxes. Our approach addresses the limitations of 

conventional encryption methods by offering enhanced 

complexity, unpredictability, and resilience against various 

cryptographic attacks. The dynamic nature of microfluidic 

technology in generating robust S-boxes, combined with the 

complexity of the 7D hyperchaotic system, ensures a high 

level of security by making the encryption process resistant to 

both differential and linear cryptanalysis. Additionally, the 

permutation entropy is introduced to further enhance the 

chaotic analysis, providing deeper insights into the system's 

unpredictability. The statistical analyses, including correlation 

coefficient analysis, information entropy, NPCR, UACI tests, 

and the Gray Level Co-occurrence Matrix (GLCM) analysis—

assessing metrics like irregular deviation, contrast, energy, and 

uniformity—clearly demonstrate the superiority of our 

technique in terms of security and reliability. Furthermore, our 

encryption method has shown strong resistance to classical 

attacks, as evidenced by the comprehensive security 

evaluations conducted. When compared to existing encryption 

techniques, our method exhibits notable advantages in terms 

of scalability, efficiency, and security. The integration of 

microfluidic technology with chaotic systems in encryption 

represents a significant advancement in cryptographic 

research, offering a new paradigm for secure communication 

systems. This approach opens up several paths for future 

research. To have a cryptographic system with higher 

complexity by optimization of microfluidic technology is 

through integrating AI-driven fluid dynamics. Moreover, the 

proposed Dynamic S-Box can be applied in other 

cryptographic systems, for example; quantum-resistant 

algorithms, and digital communication systems. 
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