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Potato leaf diseases like Late Blight and Early Blight significantly challenge potato 

cultivation, impacting crop yield and quality worldwide. Potatoes are a staple for over a 

billion people and crucial for food security, especially in developing countries. The 

economic impact is substantial, with Late Blight alone causing annual damages over $6 

billion globally. Effective detection and management are essential to mitigate these effects 

on agricultural productivity and economic stability. This paper presents a novel approach 

to potato leaf disease detection using advanced deep learning and optimization techniques. 

Key components include data normalization to eliminate noise, feature extraction using 

GoogLeNet, and hyperparameter tuning through the Elk Herd Optimizer (EHO). 

Additionally, a Spatial Attention Mechanism and Convolutional Neural Network (SAM-

CNNet) are employed for robust classification. The method is validated using the Plant 

Village dataset, yielding an accuracy of 98.58%, with precision of 97.68%, recall of 

98.42%, and F1-Score of 98.21%, demonstrating exceptional performance and reliability. 

This study highlights the proposed approach's efficacy in accurately identifying and 

classifying potato leaf diseases, offering a promising solution for precision agriculture and 

crop management. 
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1. INTRODUCTION

The United Nations reports that 157 nations use potatoes in 

their crop rotations. The total planting area for potatoes is 

19.46 million hectares, and the crop yields 370 million tons 

each year [1]. Potatoes are a staple food for over a billion 

people globally and play a crucial role in food security, 

particularly in developing countries. Growing potatoes has 

never been easier than in China, which now ranks top in both 

planting area and yield globally [2]. One of the major causes 

reducing its output level is potato Late Blight, which causes 

annual damages estimated at over $6 billion globally. Manual 

feature extraction has its limits; thus, constructing a model for 

identifying potato Late Blight would be beneficial. This would 

allow for early disease monitoring and prevention. Improving 

potato yields, decreasing production costs, and boosting 

income are all attainable goals with this strategy [3]. 

Alternaria solani Sorauer causes Early Blight, a prevalent 

potato pathogen in North America [4]. Its normal progression 

across the plant canopy, causing leaves to senesce, is similar 

to that of other plant leaf diseases: it begins by attacking older 

and less productive foliage [5]. Early stages of this illness 

manifest as tiny, 1-2 mm black or brown lesions; as the disease 

progresses and favourable environmental conditions are met, 

these lesions transform into dark pigmented concentric rings 

[6]. Current methods for controlling early blight include 

spraying fungicides indiscriminately, which negatively affects 

both the environment and production costs. Consequently, 

economic and environmental sustainability may be enhanced 

with the use of an intelligent classification system that can 

distinguish between healthy and sick plants, allowing for the 

targeted administration of fungicides [7, 8]. 

There has been extensive research on plant disease 

identification [9, 10]. A real-time disease detection system that 

is both accurate and efficient might aid in the development of 

mitigation measures to guarantee both large-scale food 

security and small-scale, economically viable crop protection. 

Proper illness categorization using deep learning (DL) and 

machine vision can provide the groundwork for applying 

agrochemicals at precise locations. In response to the 

shortcomings of machine learning (ML) algorithms, DL 

methods are gaining traction. Many DL methods are becoming 
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well-known in the field of food security, such as convolutional 

neural networks (CNNs) [11], and recurrent neural networks 

(RNNs) [12-14]. DL algorithms can efficiently calculate 

useful sample feature characteristics even in the absence of 

domain experts. These approaches mimic the learning and 

object recognition processes that the human brain employs 

when presented with examples. When compared to 

multispectral evaluation, DL approaches provide more 

trustworthy findings for a variety of agricultural research 

activities. Grain volume measurement, plant head recognition, 

fruit quantification, crop condition diagnosis, and 

classification are some of the many agricultural production 

tasks that have been thoroughly researched using DL methods 

[15-18] such as ResidualNet, GoogLeNet, DenseNet, and 

visual geometry group (VGG). By using the structural and 

morphological data from the examined pictures, these methods 

show accurate identification with little computing demands 

[19, 20]. 

 

1.1 Motivation 

 

Detecting potato leaf diseases through deep learning offers 

a transformative solution to agricultural challenges. Potatoes 

are a critical crop, contributing to both food security and the 

economies of many countries. By harnessing advanced 

algorithms, this research empowers farmers to swiftly identify 

diseases, enabling timely intervention and preventing 

significant crop loss. This technology not only enhances yield 

but also promotes sustainable farming practices by minimizing 

the indiscriminate use of chemical treatments. Furthermore, it 

fosters economic stability for farmers by reducing crop losses 

and production costs, ultimately ensuring food security and 

improving livelihoods. The potential to save billions of dollars 

in losses annually highlights the economic significance of 

implementing such advanced disease detection systems. 

Through the synergy of technology and agriculture, it paves 

the way for a resilient and prosperous farming future, where 

innovation safeguards crops, sustains communities, and 

cultivates a healthier planet. 
 

1.2 Main contributions 
 

(1) Integration of data normalization enhances 

preprocessing, reducing noise and improving the quality of 

input data for analysis. (2) Utilization of GoogLeNet for 

feature extraction enables robust representation of potato leaf 

disease characteristics. (3) Elk Herd Optimizer (EHO) 

optimizes hyperparameters, enhancing the performance and 

efficiency of the GoogLeNet model. (4) Introduction of Spatial 

Attention Mechanism and Convolutional Neural Network 

(SAM-CNNet) improves classification accuracy and 

reliability significantly. 

What follows is the outline for the rest of the paper. In 

Section 2, you will find a selection of the most pertinent and 

pertinently linked books. In Section 3, the proposed approach 

is detailed. Experiment description and results are presented in 

Section 4. In Section 5, we review the study's findings and 

provide our opinions. 
 
 

2. RELATED WORK 
 

In their article, Mahum et al. [21] suggested a method that 

relies on an enhanced deep learning algorithm. This method 

makes use of visual features of potato leaves to categorize 

them into five groups: PLB, PEB, PLR, PVw, Late Blight (LB) 

photos, as well as a Healthy class for potato leaves, made up 

the preexisting dataset "The Plant Village," which was used to 

train the model. Furthermore, information for the Potato 

Verticillium Wilt (PVw) class, Potato Healthy (PH) class, and 

Potato Leaf Roll (PLR) class was collected by hand. For 

efficient disease classification of potato leaves, a pre-trained 

Efficient DenseNet model was used, using DenseNet-201's 

additional transition layer. In addition, the suggested approach 

was made more robust by using the reweighted cross-entropy 

loss function, which was necessary since the training data was 

very unbalanced. Even though the training sets of potato leaf 

samples were modest, the regularization power of the dense 

connections helped keep overfitting to a minimum. After a 

successful trial, the suggested algorithm was the first of its 

kind to identify and categorize four illnesses in potato leaves. 

When tested on the testing set, the algorithm had a 97.2% 

success rate. 

With the goal of improving accuracy, decreasing 

information loss, and decreasing the number of trainable 

parameters and computation time required, Al-Adhaileh et al. 

[22] modified a convolutional neural network (CNN). A 

variety of deep learning and machine learning techniques were 

used to assess the effectiveness of the proposed model in 

potato blight classification. The proposed model accomplished 

more than its competitors in only 183 seconds of training time, 

thanks to its 839,203 trainable parameters and 99% overall 

accuracy. 

In order to detect and forecast potato leaf diseases, Ghosh et 

al. [23] compared and evaluated ResNet50. A huge collection 

of pictures of potato leaves, including both healthy and sick 

specimens, was used to train and assess the chosen CNN 

models. Extensive data augmentation methods were used to 

boost the dataset's variety and generalizability. Models were 

evaluated according to computational efficiency, accuracy, 

precision, recall, and F1-score in order to identify the most 

suitable model for real-world applications. The results 

demonstrated that all three convolutional neural network 

(CNN) models detected and predicted potato leaf illnesses 

well; however, VGG19 outperformed DenseNet121 and 

ResNet50. In addition to providing useful information on the 

efficacy of DL methods for detecting potato leaf diseases, the 

findings provide a foundation for future research and the 

integration of these models into precision agricultural systems. 

To identify potato leaf diseases, the researchers Lanjewar et 

al. [24] tweaked three pre-trained transfer learning (TL) 

models: VGG19, NASNetMobile, and DensNet169. The 

selection of these models was based on their consistently 

strong performance across a range of computer vision tasks. 

By adding more layers to the fundamental architecture of these 

pre-trained models, we were able to reduce the sum of 

trainable parameters and increase their performance. On the 

test set, the adjusted DenseNet attained a 99% accuracy, 

98.5% MCC, 98.5% CKC, and 0.990 AUC-ROC score; on the 

validation set, it earned a 100% accuracy, 99.5% MCC, 99.5% 

CKC, and 0.997 AUC-ROC score. 

By combining advanced "Deep Learning" models such as 

Convolution Neural Networks (CNNs) and Support Vector 

Machines (SVMs), Acharjee et al. [25] presented a method for 

autonomous plant disease identification. These models 

achieved an accuracy of up to 98% on a dataset that was 

trained using pictures of "healthy and unhealthy" plant leaves. 

Arshaghi et al. [26] investigated five categories of potato 

diseases—Healthy, Black Scurf, Common Scab, Black Leg, 
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and Pink Rot—using convolution neural network (CNN) 

techniques. Their database included pictures of five thousand 

potatoes. The results demonstrated that the suggested deep 

learning approach had superior accuracy. They were spot-on 

in a few courses (99% and 100%, respectively). 

A convolutional neural network (CNN) was modified by 

Astani et al. [27] to increase accuracy while decreasing 

computation time, information loss, and the number of 

trainable parameters. With an overall accuracy of 99% and 

839,203 trainable parameters, the suggested model achieved 

superior performance in only 183 seconds of training time. 

After training the dataset on three distinct deep network 

architectures, Arafath et al. [28] determined which model was 

most suited for detecting illnesses in tomato leaves. An 

additional layer for batch normalization and a layer with 

dropout were included to forestall mode overfitting. After 

testing out several dropout levels during training, the 

suggested Deep CNN was found to have an optimal 

regularization value. With no preprocessing measures, such as 

noise reduction, the experimental technique demonstrated a 

96% improvement in accuracy on the Plant Village dataset. 

With the addition of a dropout layer and batch normalization, 

the training accuracy reached 99%, while the validation and 

testing accuracy reached 98%. 

 

2.1 Missing experiments 

 

Taken as a whole, these sources demonstrate how far we've 

come in using deep learning to identify potato and plant 

diseases. Nevertheless, significant knowledge gaps remain. To 

begin, while many deep learning models have been 

investigated, the identification of the best model for varied 

datasets has been impeded by the absence of established 

benchmarking and comparison procedures. Secondly, the 

whole range of possible crop illnesses is often ignored since 

studies only look at certain diseases or classes. Further study 

is needed to close the gap between laboratory validation and 

actual field deployment, since the scalability and applicability 

of these models in real-world agricultural contexts have not 

been thoroughly investigated. Better and more widely used 

solutions for precision farming and crop disease control may 

result from filling these gaps. 

 

 

3. PROPOSED METHODOLOGY 

 

Figure 1 shows the proposed work flow of the potato leaf 

disease detection. 

 

 
 

Figure 1. Block Diagram 

 
 

Figure 2. Picture examples of PLDDs 

 

3.1 Dataset description 

 

The dataset used in this study, the Potato Leaf Disease 

Dataset (PLDD), was developed to address the challenge of 

differentiating among various stages of potato leaf diseases 

[29]. The PLDD includes a comprehensive collection of 

images representing healthy leaves and leaves affected by 

diseases such as Late Blight and Early Blight. The dataset 

consists of a total of 7,500 images, carefully curated to ensure 

high quality and relevance for the task of disease classification. 

Distribution of Images: 

• Healthy Leaves: 2,500 images 

• Late Blight (early stage): 1,500 images 

• Late Blight (advanced stage): 1,500 images 

• Early Blight (early stage): 1,500 images 

• Early Blight (advanced stage): 500 images 

This distribution ensures a balanced representation of each 

disease category, facilitating robust model training and 

evaluation. 

It included pictures of healthy and sick leaves. The Plant 

Village dataset was used for photos of late blight and early 

blight, whereas the AI Challenger-2018 dataset 

(https://challenger.ai/dataset/pdd2018, retrieved on 19 May 

2023) was used for healthy leaves. All of these photos were 

taken using the identical settings, including the same distance 
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from the subject, lighting, and backdrop. This made sure that 

the diseased leaves would stand out from the rest. More potato 

disease photographs with natural backdrops were obtained 

from the Kaggle website 

(https://ww.kaggle.com/datasets/hassanikram/my-dataset, 

viewed on 19 May 2023) to increase the dataset's variety and 

dependability. Photos that were too fuzzy or had too obvious 

watermarks been hand-picked to guarantee excellent quality. 

Images with more than one leaf were also trimmed so that the 

dataset could only include information about individual leaves 

and diseases. Figure 2 displays an instance of the PLDD leaf 

pictures: (a) A singular setting exhibiting the initial phases of 

late blight leaf. (b) Late blight leaf in its last stages in a specific 

setting. (c) One setting exhibiting early blight leaf stages. (d) 

The latter stages of early light on a single species of leaf. (e) 

A green leaf in a specific setting. (f) A leaf affected by late 

blight in its natural environment at an early stage. (g) Late 

blight leaf in its natural setting, at its final stages. (h) A natural 

setting exhibiting the initial stages of early blight on a leaf. (i) 

Effected leaves of an early blight plant in their native 

environment. (j) A fit leaf in its native environment. 

 

3.2 Data preprocessing 

 

To ensure the dataset's suitability for deep learning model 

training, several preprocessing steps were applied: 

• Image Normalization: The dataset was normalized to 

ensure consistent lighting and color conditions across all 

images. This step involved adjusting the brightness and 

contrast of the images to a standard range. 

•  Noise Reduction: A noise reduction algorithm was 

applied to eliminate any extraneous artifacts that could 

interfere with the model's ability to accurately classify the 

images. This step helps in improving the signal-to-noise ratio 

in the images. 

• Image Resizing: All images were resized to a uniform 

dimension of 256×256 pixels. This resizing ensures that the 

images are compatible with the input requirements of the deep 

learning models used in the study. 

•  Data Augmentation: To increase the diversity of the 

training data and improve the model's generalization 

capabilities, several data augmentation techniques were 

applied. These included: 

-Rotation: Random rotations between -15 to 15 degrees. 

-Flipping: Horizontal and vertical flipping. 

-Scaling: Random scaling within a range of 0.9 to 1.1. 

-Translation: Random shifts within a range of -10 to 10 

pixels in both horizontal and vertical directions. 

• Splitting: The dataset was split into training, validation, 

and test sets in a ratio of 70:20:10, ensuring that each set 

contained a representative distribution of images from each 

category. 

 

These preprocessing steps were crucial in preparing the 

dataset for effective training and evaluation of the proposed 

SAM-CNNet model. 

 

3.3 Data normalization 
 

The normalization technique, which ensures zero mean and 

unit variance, was chosen to stabilize the training process, 

improve learning efficiency, and enhance model 

generalization. Normalizing the data helps prevent issues like 

exploding or vanishing gradients, allows equal contribution of 

all features, and reduces overfitting risks. 

A wide range of eigenvalues will lead to unstable model 

training for the SAM-CNNet since it is highly sensitive range 

[30]. Normalizing the dataset helps the CNN understand small 

differences between images and improves its convergence 

speed. Eq. (1) is used to normalize the data for each image 

channel. 

 

𝑍𝑖 =
𝑥𝑖 − 𝑥‾

𝛿𝑥

 (1) 

 

where, 𝑥𝑖 , 𝛿𝑥  and 𝑥‾  as well as the mean, standard deviation, 

and sample values for the channel, respectively. All picture 

pixel standards reduction within the variety of [-1, 1] after the 

data has been normalized to zero-mean values. 

 
3.4 GoogLeNet feature extraction 

 

Before Christian Szegedy's 2014 proposal of GoogLeNet, 

all previous deep learning structures improved training 

consequences by increasing the layers. However, there are 

many negative effects associated with increasing the number 

of layers, including overfitting, gradient explosion [31]. When 

it comes to extracting deep features, GoogLeNet's approach 

enhances training results by expanding the convolutional 

network's network width. To fuse feature information at 

different sizes, the Inception structure is presented. The model 

parameters are significantly reduced by using a 1×1 layer. 

Compared to other deep learning architectures, GoogLeNet 

has better training outcomes because it uses efficiently and 

extracts more features with the same amount of processing. 

One of them is the neural network module's stride (s1), which 

is 2, and the other is the module's stride (s2), which is 1. There 

are three main components to the network: pre-processing, 

feature extraction, and the classifier. There are several steps 

involved in feature extraction, including pre-processing to 

convert the test data to the format required by Inception, 

feature extraction itself is made up of multiple Inceptions, and 

the extractor itself is made up of a fully connected layer and a 

dropout. The sigmoid function is used as the activation 

function of Linear. When it comes to image processing and 

recognition, GoogLeNet is where it's at. In this paper, the 

sound recognition model is trained analysis. Then, in order to 

recognize and alert for a coal mine gas or coal dust explosion, 

the trained recognition model is fed the coefficient map. 

 
3.4.1 Hyper parameter tuning using EHO 

The Elk Herd Optimizer (EHO) algorithm is inspired by the 

natural behaviors of elk herds, mimicking their strategies for 

survival and mate selection to solve optimization problems 

[32]. The process begins by initializing a population of 

solutions, akin to a herd of elks, with each elk representing a 

possible solution. The fitness of each elk is evaluated to 

determine its quality. During the rutting season, the best 

solutions are selected to mate, analogous to the strongest elks 

mating in nature. This generates new solutions, or offspring, 

introducing variation and exploring different areas of the 

solution space. The best solutions from both parents and 

offspring are then selected to form the new herd, ensuring only 

the most promising solutions are retained. This iterative 

process continues until a stopping criterion is met, such as a 

maximum number of generations or achieving a satisfactory 
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fitness level. EHO optimizes the hyperparameters of the 

GoogLeNet feature extraction model, enhancing performance 

by efficiently searching for the best settings. This leads to 

improved accuracy, faster convergence, and greater robustness 

of the SAM-CNNet model in classifying potato leaf diseases. 

Mathematical model of EHO: Mathematical models of the 

Elk Herd optimizer (EHO) within an optimization framework 

are referred from the study [32]. Table 1 shows the notations 

used for EHO algorithm. 

 

Table 1. Notations used in EHO Algorithms 

 

Notation Description 

(P) population size 

𝑓(𝒙) fitness 

𝑥𝑖 ∈ [𝑙𝑏𝑖 , 𝑢𝑏𝑖] 𝑙𝑏𝑖 is the 𝑢𝑏𝑖is the upper limit for the 

attribute 𝑥𝑖. 

𝑝𝑗 probability 

Br Bull rate 

B=|Br×EHS| total number of families 

f(xi) complete fitness value 

H Total vector  

i identical index  

𝒙ℎ𝑗  father bull 

𝑥𝑖
𝑗
 Mother bull 

𝒙𝑗  Child bull 

α  arbitrary number between 0 and 1 

𝑥𝑘(𝑡) Group of herd 

𝛾 and 𝛽 Ranges between [0.2] 

𝜇  parental populace 

𝜆 populace progeny 

EHtemp  Climbing values of calves 

 

Step 1: Reset Parameters of EHO besides optimization 

problematic. 

The goal function can be expressed generally in the manner 

of Eq. (2). 
 

min
𝑥

 𝑓(𝑥)𝑥 ∈ [𝑙𝑏, 𝑢𝑏] (2) 

 

Phase 2: Make the initial elk herd. 

Eq. (3) express the matrix of the EH with its sizes. 
 

EH =

[
 
 
 

𝑥1
1 𝑥2

1 ⋯ 𝑥𝑛
1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑛
2

⋮ ⋮ ⋯ ⋮
𝑥1

𝐸𝐻𝑆 𝑥2
𝐸𝐻𝑆 ⋯ 𝑥𝑛

𝐸𝐻𝑆]
 
 
 
# (3) 

 

Finally, according to their fitness values, the elks in EH are 

arranged in climbing order, including 𝑓(𝒙1) ≤ 𝑓(𝒙2) ≤ ⋯ ≤
𝑓(𝒙𝐸𝐻𝑆). 

Step 3: Rutting season. 

By considering the fitness morals, the bulls are chosen from 

EH that is given in Eq. (4). 
 

ℬ = arg⁡ min
𝑗∈(1,2,…,𝐵)

 𝑓(𝒙𝑗) (4) 

 

Eq. (5) shows the complete fitness function of the proposed 

optimization. 

 

𝑝𝑗 =
𝑓(𝒙𝑗)

∑  𝐵
𝑘=1  𝑓(𝒙𝑘)

 (5) 

Step 4: Calving period. 

Eq. (6) is used to reproduce the calf value with its identical 

index, where Eq. (7) express the characteristics of harem and 

father bull as referred in [32].  

 

𝑥𝑖
𝑗
(𝑡 + 1) = 𝑥𝑖

𝑗
(𝑡) + 𝛼 ⋅ (𝑥𝑖

𝑘(𝑡) − 𝑥𝑖
𝑗
(𝑡)) (6) 

 

𝑥𝑖
𝑗
(𝑡 + 1) = 𝑥𝑖

𝑗
(𝑡) + 𝛽 (𝑥

𝑖

ℎ𝑗
(𝑡) − 𝑥𝑖

𝑗
(𝑡))

+ 𝛾(𝑥𝑖
𝑟(𝑡) − 𝑥𝑖

𝑗
(𝑡)) 

(7) 

 

Step 5: Selection season. 

The solutions for the harems and bulls are stored in the 

climbing value of calves and production of calves will be 

carried out to the selected generations as mentioned in the 

study [32].  

Step 6: Criteria for termination. 

If the termination requirement is not satisfied, the process 

will loop back to steps 3, 4, and 5. 

 

3.5 SAM-CNNet classification 

 

3.5.1 Convolutional neural networks 

One kind of model that takes cues from the way the human 

visual brain functions is convolutional neural networks 

(CNNs). Among other applications, its feed-forward neural 

network type has achieved remarkable success in picture and 

digital signal processing. Ideal for image processing and 

classification tasks, these models were the first to have 

parameter sharing. The rectified linear unit (ReLU) is an ideal 

non-linearity for convolutional neural networks; it has a track 

record of superior performance and is resistant to a wide range 

of issues. Nevertheless, the CNN design is flawed. CNNs 

include an internal max-pooling layer. Down sampling an 

image is how max pooling works. It takes a picture and, using 

a window of a predetermined size, converts entire frames to 

their individual values. Importantly, unlike convolution, this 

reduction does not combine the values to produce an output 

but rather disregards them. Due to the potential loss of crucial 

information resulting from pooling, this discarding of 

information poses a significant problem to CNNs. 
 

3.5.2 Spatial attention mechanism 

For neural machine translation systems that rely on encoder-

decoders, the attention mechanism initially gained traction as 

a useful improvement. They achieved state-of-the-art results 

using what they dubbed "soft alignment" in this work. 

The results can be improved using very basic models by 

using either local attention. A major step forward in deep 

learning has been the attention mechanisms since then. These 

developments proved that such easily constructed methods can 

be utilized to improve the outcome of representations. 

Attention was based on a straightforward principle. According 

to it, when doing jobs like machine translation, it's crucial to 

absolute and relative value of each word in the input and 

convert them to context vectors accordingly. There are several 

distinct kinds of attention. Worldwide and regional focus are 

two main categories. One name for global attention is soft 

attention. This is the part of a sequence or picture where each 

patch is considered. Contrarily, hard attention, sometimes 

called local attention, focuses solely on one area of concern. 

From this vantage point, it expands on the prior conversation 

by elucidating the functions of attention in contexts other than 

sequential models. In only a short amount of time, a wide 
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variety of attentional tools have emerged, each catering to a 

different kind of user with varying degrees of complexity. In 

addition, there are spatial transformer networks that combine 

image sampling and parameterized grid sampling with 

localization networks. When it comes to image processing, 

this kind of processing is a major focus. For jobs in this sector, 

more recent applications use designs with residual connections.  

Because it can aid in overcoming the information 

bottlenecks in deep learning models, attentiveness becomes 

both important and necessary. When an excessive amount of 

data is processed or sent via a very small aperture, the network 

experiences an information bottleneck because it becomes 

more and harder to store relevant data. 

The motivation behind combining the Spatial Attention 

Mechanism (SAM) with Convolutional Neural Networks 

(CNNs) is to enhance the model’s ability to focus on the most 

relevant parts of the input data, improving image classification 

performance. SAM allows the network to dynamically 

highlight important regions while downplaying less relevant 

areas, thereby emphasizing crucial patterns specific to potato 

leaf diseases. This leads to more discriminative feature 

representations and improved classification accuracy. SAM 

also helps reduce the influence of noise and irrelevant 

background information, resulting in cleaner feature maps. By 

directing computational resources to the most informative 

parts of the image, this combination improves training 

efficiency and processing speed. Additionally, the enhanced 

focus on relevant features aids in better generalization, 

reducing overfitting and increasing robustness. Overall, 

integrating SAM with CNNs is expected to yield higher 

accuracy, robust disease detection, and efficient performance, 

making it suitable for real-time applications in precision 

agriculture. 

 

3.5.3 The proposed architecture 

More information on the model's architecture has been 

provided. In this case, it just utilized the VGG19 

representation's base and omitted its upper portion. There are 

approximately 20,025,920 weights in the base model. The 

decision was made to freeze altogether the layers in the 

underlying VGG19 model to highlight the superiority of 

attention over other techniques. With all of its layers frozen, 

the basic VGG19 model could only do one thing: use 

convolution layers with pre-trained weights to operate as a 

feature extractor. We are holding off on using this architecture 

to fine-tune and improve the model's accuracy because our 

goal is to demonstrate how the model's attention is improved 

and how it outperforms other models with a very basic 

attention mechanism. It has just compared VGG19 findings for 

the sake of comparison. Comparing the models, we find that 

VGG19 does better on the PLDD dataset. Hence, VGG19 is 

included in the suggested framework for disease detection in 

potato leaves in this article. 

The CNN model that has been improved by attention is the 

following component of the model. To achieve this goal, it has 

employed a really basic method of focus. The model it 

introduces demonstrates how a simplified version of the 

attention process may gather a great deal of information, as 

previously stated. Dynamic spatial convolution is the method 

that has been employed to elicit attention in this case. It is a 

spatial attention method that excels in vision and image 

processing jobs. Since not every area in a picture is of equal 

importance, dynamic convolution employs a globally average 

pooling process, which is intuitive. In terms of utility and 

suitability, certain areas are far superior to others. 

The use of these normalized vectors in conjunction with 2D 

convolutional layers allows them to produce spatial attention. 

Finally, a lambda layer is used to merge them. In this case, the 

GAP is rescaled using the lambda layer. This layer is 

responsible for producing the attention-enhanced feature maps, 

which are then passed via a 256-unit dense layer that is linked 

to a rate. After that, it goes through a regularization layer with 

a 25% and with 25 components. In this layer, SoftMax is 

utilized for activation. Lastly, the neural network design is 

shown in Figure 3. 

 

 
 

Figure 3. Model architecture and attention generation 

mechanism proposed
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4. RESULTS AND DISCUSSION 

 

4.1 Experimental setup 

 

A 12-gigabyte (11.439 gigabytes useable) GDDR5 VRAM 

NVIDIA Tesla K80 GPU was used to train all the models on 

Google Colab. All models in this research were trained, 

evaluated, and predicted using TensorFlow 2.0 with a Keras 

API. 

 

4.2 Performance metrics 

 

Output metrics presented in Eqs. (8)-(11) include recall, 

precision, accuracy, and the F1-score. Using these variables, 

the following table compares actual outcomes with predictions: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃⁡ + ⁡𝑇𝑁)

𝑇𝑃⁡ + ⁡𝐹𝑃⁡ + ⁡𝑇𝑁⁡ + ⁡𝐹𝑁⁡
⁡% (8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁
 (11) 

 

TP: the true positive value, FP: the false positive value, TN: 

the true negative value, TN: the true negative value. 

 

4.3 Training validation of the proposed model 

 

Table 2 shows the assessment of training validation of the 

projected SAM-CNNet perfect with other representations. 

From Table 2 and Figure 4 the training analysis of the 

proposed SAM-CNNet model, along with comparative 

metrics from other models, reveals its impressive performance. 

The Deep Belief Network (DBN) achieved an accuracy of 

85.51%, with precision, recall, F1-Score, and specificity 

ranging from 86.25% to 87.32%. The Deep Neural Network 

(DNN) exhibited improvement with an accuracy of 87.73% 

and specificity between 87.54% and 91.25%. The Artificial 

Neural Network (ANN) further elevated the performance 

metrics, achieving an accuracy of 91.55% with precision, 

recall, F1-Score, and specificity surpassing 91%. The 

Convolutional Neural Network (CNN) notably increased 

accuracy to 93.34%, accompanied by precision, recall, F1-

Score, and specificity values exceeding 93%. However, the 

proposed SAM-CNNet model outperformed all preceding 

models, achieving an impressive accuracy of 95.83% and 

demonstrating superior precision, recall, F1-Score, and 

specificity values, indicating its efficacy in the task at hand. 

 

4.4 Testing validation of the projected model 

 

Table 3 shows the comparison of testing validation of the 

projected SAM-CNNet perfect with other models. 

From Table 3 and Figure 5 the testing validation of the 

proposed SAM-CNNet model, its superior performance is 

once again evident when compared to other models. The Deep 

Belief Network (DBN) achieved an accuracy of 91.36%, with 

precision, recall, F1-Score, and specificity ranging from 

90.32% to 91.52%. The Deep Neural Network (DNN) 

exhibited further improvement with standards between 

91.35% and 93.45%. The Artificial Neural Network (ANN) 

continued the trend of enhancement, achieving an accuracy of 

93.33% with precision, recall, F1-Score, and specificity values 

surpassing 92%. The Convolutional Neural Network (CNN) 

notably increased accuracy to 95.35%, accompanied by 

precision, recall, F1-Score, and specificity values exceeding 

95%. However, the proposed SAM-CNNet model 

outperformed all previous models by a significant margin, 

achieving an exceptional accuracy of 98.58%, along with 

superior precision, recall, F1-Score, and specificity values, 

underscoring its efficacy and robustness in the task of testing 

validation. 

 

 
 

Figure 4. Training validation 

 

 
 

Figure 5. Testing validation 

 

 
 

Figure 6. Feature extraction validation with EHO 
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4.5 Feature extraction analysis 

 

Table 4 shows the analysis of feature extraction without and 

with EHO. 

Table 4 and Figure 6 presents the analysis of feature 

extraction both without and with Elk Herd Optimizer (EHO). 

The models evaluated include AlexNet, ResNet, EfficientNet, 

MobileNet, and GoogLeNet. Without EHO, AlexNet achieved 

an accuracy (ACC) of 89.29%, hovering around 89%. ResNet 

exhibited slightly improved performance with an ACC of 

90.29% and PR, REC, and F1 values ranging from 89% to 

90%. EfficientNet surpassed both previous models, attaining 

an ACC of 91.76% and PR, REC, besides F1 values exceeding 

91%. MobileNet further elevated the metrics with an ACC of 

92.23% and PR, REC, and F1 values surpassing 92%. 

GoogLeNet demonstrated the highest performance without 

EHO, achieving an impressive ACC of 94.76% with PR, REC, 

and F1 values exceeding 94%. With EHO integration, all 

models experienced performance enhancements. AlexNet saw 

an ACC increase to 91.57%, with PR, REC, and F1 values 

surpassing 91%. ResNet similarly improved, reaching an ACC 

of 92.94% and PR, REC, and F1 values exceeding 92%. 

EfficientNet demonstrated notable enhancement, achieving an 

ACC of 94.37% and PR, REC, and F1 values surpassing 93%. 

MobileNet exhibited substantial improvement, with an ACC  

of 96.01% and PR, REC, and F1 values exceeding 95%. 

Finally, GoogLeNet continued to excel with an ACC of 

98.22% and PR, REC, and F1 values surpassing 98%. These 

results underscore the efficacy of EHO in enhancing feature 

extraction across various convolutional neural network 

architectures. 

The proposed SAM-CNNet approach offers significant 

practical implications for farmers and agricultural 

practitioners. By providing an accurate and efficient method 

for early disease detection, it enables timely interventions, 

reducing crop losses and improving yield quality. Early 

identification of diseases such as Late Blight and Early Blight 

allows for targeted application of treatments, minimizing the 

use of chemical fungicides and reducing environmental impact. 

This precision in disease management helps lower production 

costs and enhances the sustainability of farming practices. The 

high accuracy and robustness of the SAM-CNNet model 

ensure reliable detection even in complex and noisy field 

conditions, aiding in better decision-making and resource 

allocation. Ultimately, this approach supports improved crop 

management, enhances food security, and promotes economic 

stability for farmers by safeguarding their livelihoods against 

the devastating effects of potato leaf diseases. 

 

Table 2. Training analysis of the projected SAM-CNNet model 

 
Models Accuracy Precision Recall F1-Score Specificity 

DBN 85.51 87.32 86.62 86.42 86.25 
DNN 87.73 91.25 87.67 88.53 87.54 
ANN 91.55 91.56 91.58 91.62 92.32 
CNN 93.34 93.54 93.26 93.45 93.13 

Proposed SAM-CNNet model 95.83 95.48 95.32 95.18 95.24 

 

 

Table 3. Testing validation of the projected SAM-CNNet model 

 
Models Accuracy Precision Recall F1-Score Specificity 

DBN 91.36 90.32 90.57 90.53 91.52 

DNN 92.62 93.45 91.66 91.35 92.64 

ANN 93.33 95.73 94.75 92.33 96.26 

CNN 95.35 95.64 95.44 95.25 95.58 

Proposed SAM-CNNet model 98.58 97.68 98.42 98.21 98.39 

 

Table 4. Feature extraction validation 

 
Without EHO With EHO 

Model ACC PR REC F1 ACC PR REC F1 

AlexNet 89.29 89.21 87.13 89.14 91.57 92.12 91.22 91.19 

ResNet 90.29 89.23 89.42 90.34 92.94 93.43 93.52 93.49 

EfficientNet 91.76 91.78 90.23 91.35 94.37 93.98 95.37 94.22 

MobileNet 92.23 92.32 92.21 93.32 96.01 95.46 96.28 95.56 

GoogLeNet 94.76 94.87 94.21 94.23 98.22 98.13 98.19 98.15 

 

 

5. CONCLUSION 

 

This study introduces an advanced approach for potato leaf 

disease detection using the SAM-CNNet model, which 

integrates data normalization, GoogLeNet for feature 

extraction, and the Elk Herd Optimizer (EHO) for 

hyperparameter tuning. The inclusion of a Spatial Attention 

Mechanism significantly enhances the model's ability to focus 

on disease-specific patterns, leading to an impressive 

classification accuracy of 98.58%. This research offers a 

robust and efficient solution for early disease detection, which 

is crucial for timely intervention and effective crop 

management. The proposed method excels in precision, recall, 

and F1-score, ensuring reliable performance in real-world 

agricultural settings. By enabling accurate and early 

identification of diseases like Late Blight and Early Blight, the 

SAM-CNNet model helps in reducing the excessive use of 

chemical treatments, promoting sustainable farming practices, 

and lowering production costs. This contributes to improved 

crop yields and economic stability for farmers, enhancing food 

security. 

Future research could focus on real-time implementation of 
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the SAM-CNNet model in the field, utilizing drone or satellite 

imagery for large-scale monitoring. Expanding the model to 

detect multiple types of crop diseases and integrating it with 

IoT devices for automated intervention systems could further 

enhance its utility. Additionally, investigating the model’s 

performance under diverse environmental conditions and with 

different potato varieties will help refine its accuracy and 

generalizability. 
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