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The paper showcases a consistent diagnostic process that fully automates the categorization 

of ECG images for cardiac diseases, including potential COVID-19-related complications. 

We propose a CNN-based model as the central component of this system. It has a 

customized attention mechanism and also uses advanced data augmentation and pre-

processing techniques such as adaptive brightness, accurate resizing, and selective 

cropping. In this approach, we were concerned about the great variability in clinical ECG 

images, which can have adverse effects on data classification. This led us to design 

augmentation methods for this problem. We demonstrated the validity of the model by 

applying it with the help of the dataset, which has 1937 ECG images showing different heart 

abnormalities and a satisfactory classification score of 98.73%. Putting cardiovascular 

conditions at the core of AI applications demonstrates its ability to provide accurate 

treatment decisions. A well-proven automated system would be a milestone in the 

cardiovascular diagnostics community that would improve the efficiency and accuracy of 

disease diagnosis. 
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1. INTRODUCTION

An ECG, short for electrocardiogram, is a recording of the 

electrical activity of the heart [1]. ECG is a graphical 

representation of the heart's electrical activity during the 

depolarization and repolarization of its atrial and ventricular 

chambers. Depolarization refers to the abrupt entry of 

positively charged ions when the membrane becomes 

permeable. At the same time, repolarization is the subsequent 

phase in which the ion concentrations return to their usual 

levels [2]. Electrocardiography graphic districting has helped 

physicians tremendously diagnose and manage heart 

conditions before invasive procedures. The role of ECG 

analysis in cardiology is pivotal; it plays a significant role in 

both the detection and management of any heart-related 

problems. Ad Covid-19 disease represented difficulties for the 

physician because the virus can pathologically harm the 

cardiac muscle, as some ECG examinations show. The nature 

of the ECG report presents challenges for both manual and 

automated reading approaches. This can lead to less-perfect 

results from the ECG data analysis. To raise the accuracy of 

ECG images, especially in the COVID-19 situations that are 

standing in the way of other illnesses, we suggest using a 

system architecture that is based on the concept of 

convolutional neural networks (CNN). The model that we 

have chosen involves the application of a custom attention 

mechanism with a focus on the features of the ECG data and 

incorporates methods of data augmentation and preprocessing 

to address the problems of varying image quality. These 

techniques mostly comprise adaptive brightness, accurate 

resizing, and selective cropping. The goal is to achieve high 

accuracy and reliability in ECG image analysis, enabling 

applications in cardiology research and enhancing the quality 

of clinical practice decision-making. 

Using state-of-the-art machine learning tools, this system 

builds on the work from the aforementioned investigations [3-

5] to address the issues discussed in these earlier works [6].

This system brings several noticeable changes in the precision

of the ECG image classification, thus using them for COVID-

19 diagnosing purposes. We were able to partially preprocess

and improve ECG data by using a fully connected network's

condition-focused attention mechanism and better training

methods to help people learn. Upon careful assessment, our

model demonstrates a significant advantage in accuracy,

thereby significantly enhancing its practical application.

2. RELATED WORK

The success of up-and-coming diagnostics due to the deep 

learning approach improves the efficiency of 

electrocardiography analysis. The study uses CNN models 

with data augmentation and transfer learning, which is the 

newest technology from previous years. The objective is to 

find solutions for issues related to ECG signal classification 

and COVID-19 cardiac disease diagnosis. 

Nonaka and Seita’s [7] study, as well as research done by 

Gajendran et al. [8] explored the effectiveness of learning 

models when combined with transfer learning, and they came 

to the point that they can produce results close to those of 
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medical experts. These research works demonstrate the 

potential of using pre-trained models for ECG data, thereby 

addressing the issue of limited labeled sets. 

Nonaka and Seita [7] carried out a study and produced an 

ECG signal classifier with the introduction of "ECG 

Augment." This method aims to expand the training data sets 

of the model, thereby enhancing its robustness. They applied 

the CinC/Challenge 2017 dataset, which contains ECG 

readings that devices have taken. They pointed out that the 

CNN of 15 ConvBlocks used in ECG analysis worked better 

with the ResNet method for feature propagation. As a result of 

their experiments, the researchers from the corresponding 

study demonstrated that the process of data augmentation 

helped to obtain higher classification accuracy. They also had 

a baseline F1 score improvement rate of up to 3.47 percent. 

Therefore, their method showed strong superiority. This 

implies that the learning model could perform better for the 

ECG classification tasks under investigation with the addition 

of more data. 

Gajendran et al. [8], who performed a study, found that deep 

transfer learning could process ECG signals into different 

types of rhythm signals like sinus, cardiac failure, and 

arrhythmia with a good level of accuracy. Using 162 ECG 

records from the PhysioNet databases, the system transformed 

the acquired tridimensional ECG signals into two-dimensional 

scalogram images. This enables networks within the CNN 

family to perform classification tasks when trained using 

ImageNet. They experimented with CNN architectures and 

found that ResNet 50 trained to an accuracy rate of 94.12%, 

demonstrating good transfer learning capabilities for 

simplifying and automating medical diagnosis.  

The research by Attallah [9] exhibits an automated tool that 

uses electrical cardiogram data as a clue to detect COVID-19. 

By considering ECG images from COVID-19 patients in 

addition to other health issues such as heart attacks, irregular 

heart rhythms, and normal cases, the tool can run ten different 

deep-learning models with different structures to get the 

important findings. The research validated the significance of 

deep learning algorithms as essential tools for precision, 

resulting in a high accuracy rate of 98.2% in binary 

classification and 91.6% in multiclass classifications. 

Moreover, the use of various convolutional neural networks 

(CNNs) for medical diagnosis presents the possibility for 

further AI research throughout the disease detection process.  

Recent research has gone further and better than earlier 

studies that looked at ECG data by creating new models. For 

example, Fatema et al. [10] created a hybrid CNN and LSTM 

model for finding arrhythmias. The study used InceptionV3, 

ResNet50, MobileNetV2, VGG19, DenseNet201, and a 

combination model constructively known as InRes106. The 

dataset included 1932 paper-based ECG images. Among all 

the models presented, the InRes-106 has shown the highest 

performance, which is 98.34% in testing accuracy. The 

InceptionV3 model gave the highest test accuracy, i.e., 90.56%, 

ResNet50-89.63%, followed by DensNet201-88.94%, 

VGG19-87.87%, and MobileNetV2-80.56.  

More recently, Ahmed et al. [11] applied a 1D CNN model 

for arrhythmia classification, achieving an accuracy of 97.15% 

on the PhysioNet MIT-BIH Arrhythmia dataset. Elmir et al. 

[12] used Gramian Angular Fields (GAF) with CNNs for ECG 

classification, achieving 97.47% accuracy on the Arrhythmia 

dataset. 

While these previous studies achieved impressive results, 

they focused primarily on standard CNN architectures and 

conventional data augmentation techniques. Our approach 

builds on these advancements by introducing novel data 

augmentation techniques, such as adaptive brightness 

adjustment and selective cropping, which help address the 

significant variability observed in clinical ECG data, 

particularly in cases related to COVID-19 complications. 

Additionally, the attention mechanism plays a crucial role 

in enhancing the model’s stability and its ability to focus on 

key regions of the ECG signals. This focus helps the model 

better handle variability in clinical ECG data, ensuring 

consistent and reliable predictions in challenging scenarios. 

Our model’s classification accuracy of 98.73% surpasses 

the accuracy reported by Ahmed et al. [11] (97.15%), Elmir et 

al. [12] (97.47%), and earlier studies. This improvement is 

largely driven by our custom data preprocessing methods, 

which enhance the model’s ability to handle complex clinical 

ECG data and improve diagnostic performance across diverse 

scenarios. 

 

 

3. METHODOLOGY 

 

3.1 Dataset  

 

The dataset used in this study, which consists of 1937 ECG 

images, was sourced from the openly available "ECG Images 

Dataset of Cardiac and COVID-19 Patients" by Khan et al. 

[13], published on Mendeley Data. This dataset contains ECG 

images of patients from different demographic backgrounds 

and is divided into five distinct classes, which are described 

below: 

COVID-19: Most affected individuals experience certain 

shortness of breath and respiratory illness, and they can 

recover naturally or with medical help [14]. 

Healthy: A healthy person is one whose physiological 

activities and functions are not abnormally intercepted, and 

who does not suffer from any apparent weaknesses or 

deficiencies. 

Myocardial Infarction: MI, also referred to as a heart attack 

is a form of acute coronary syndrome that results from a 

sudden or brief interception of the supply of blood to the heart, 

which makes the person feel many symptoms including chest 

pains and shortness of breath [15-17]. 

History of Myocardial Infarction (HMI): This class 

represents patients who have already suffered an MI and may 

be in the recovery or management phase of post-MI conditions. 

Abnormal Heartbeats (AHB): This class includes ECG 

images from patients who have just recovered either from 

COVID-19 or from a myocardial infarction, showing 

symptoms of shortness of breath and respiratory illness. 

The dataset spans ECG images between dimensions of 952 

× 1232 pixels and 2213 × 1572 pixels. Being both small and 

imbalanced, some classes may be underrepresented, which 

would thus be conducive to biased model performance. 

Therefore, balancing and augmentation of the dataset were 

performed using appropriate techniques that could improve the 

accuracy of the classification results for better generalization. 

 

3.2 Validation strategy  

 

In this work, an 80-20 train-test split was employed, with 

60% of the data allocated for training, 20% for validation, and 

20% for testing. This split was considered necessary to ensure 

that a good enough-sized dataset was available for training, 
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and at the same time, there was a dedicated test set used for 

independent testing. 

K-fold cross-validation was not necessary in this respect 

because the fixed train-validation-test split is enough for a 

clear and consistent evaluation of the performance of the 

model. The dataset is augmented first by the brightness 

variation technique so that it increases variability in training 

effectively, hence reducing the possibility of network 

overfitting. Early stopping was used, stopping the training in 

the case of a non-improving validation loss for more than 5 

consecutive epochs. 

This indeed provided the right balance between training 

efficiency and robust model validation; therefore, this study 

did not require k-fold cross-validation. 

 

3.3 Preprocessing and augmentation 

 

As for our model, it was very important to spend enough 

time on the data preprocessing and enhancement procedures. 

We aimed to identify the most suitable procedures for our 

classifier to achieve the highest accuracy and reliability values. 

Table 1 gives a clear and detailed discussion of how 

preprocessing and augmentation affect the data. For more 

insight into the particular procedures involved, see Algorithm 

2, which contains the different steps involved in the 

preprocessing and the data augmentation procedures. The first 

step of the preparation procedure was cropping the ECG 

images, which progressed from dimensions of 6% to 97% 

horizontally and 19% to 96% vertically to enhance the data 

points. Next, we made all images of the same size: 224x224 

pixels, which is essential for the CNN structure.  

 

Table 1. Overview of data preprocessing and augmentation 

techniques 

 
Technique Description Purpose 

Strategic 

Cropping 

Cropping images 

within 6-97% of the 

horizontal range and 

19-96% of the 

vertical range. 

Focus on the most 

informative regions of 

ECG images, improving 

model training on 

relevant features. 

Image 

Resizing 

Resizing all images 

to 224×224 pixels. 

Standardize input size for 

CNN. ensuring 

uniformity across the 

dataset. 

Brightness 

Adjustment 

Adjusting image 

brightness by + / - 5 

units. 

Simulate variations in 

recording conditions and 

enhance feature visibility. 

 

3.4 Class imbalance mitigation techniques 

 

To handle the class imbalance, oversampling and under 

sampling techniques were used such that all classes, other than 

the MI class, were equal in 400 images. The MI class was 

oversampled to 368 images. These numbers were chosen in 

order not to make the model overfit for each class. However, 

this prevents one class from dominating the model's learning 

due to overrepresentation [18], while underrepresented classes 

are oversampled to make sure such categories are not left out. 

The balanced approach ensures that the model does not take 

any biased turn toward majority classes and hence results in a 

more accurate classification outcome. 

 

3.5 Data augmentation method 
 

Class balancing was followed by augmentation of the data: 

from 400 images per class to 800 and, for the MI class, from 

368 to 736 augmented images. This included a ±5% variation 

in brightness/darkness; this is an important augmentation in 

ECG image analysis, as it would simulate the natural 

variations occurring in the real world due to different 

equipment and environmental lighting. These slight variations 

provided by the augmentation method would help in much 

better generalization across different input conditions, 

preventing overfitting by providing a diverse range of 

examples to train upon. 

 

Algorithm 1: Data Preprocessing and Augmentation 

Input: A set of raw ECG images 

Output: pre-processed and augmented dataset 

Start 

Step 1: For each image in the dataset, perform the 

preprocessing operations: 

1.1. Static Crop: 6–96% horizontal region, 21–

93% vertical region 

1.2. Resize the image to 224 x 224 pixels. 

            End for 

Step 2: For each image in the dataset, perform image 

augmentation: 

Adjust the brightness between -5% and +5%. 

            End for 

Return the pre-processed and augmented dataset. 

End. 

 

We carefully crafted the methods before running the ECG 

image classification model to address the challenges it faces in 

enhancing its ability to identify patterns in heart conditions, 

including those associated with COVID-19. The thoughtful 

implementation of these approaches highlights the 

thoroughness of our strategy to improve our CNN model's 

abilities. 

 

3.6 CNN architecture 
 

CNN is a multistage trainable neural network architecture 

sophisticated for classification tasks, and it is chosen for 

classification tasks [19, 20]. When developing our network 

(CNN) for classifying ECG images, we integrate the VGG16, 

which is a lightweight and straightforward model [21], which 

includes only 13 convolutional layers as a key component [22], 

using its pre-trained weights to extract advanced features. 

Known for its depth and consistent performance in image 

recognition tasks, VGG16 offers a set of features for 

identifying patterns in ECG images. 

To customize VGG16 for our purpose, we start by locking 

all layers of the trained model. This method maintains the 

integrity of the features learned from the ImageNet dataset, 

ensuring that these generalized representations remain 

unchanged during our layer training. By keeping these layers 

fixed, we effectively employ VGG16 as a feature extractor, 

where the initial layers capture image traits crucial for our 

focused analysis. 

After integrating VGG16, our design expands with 

customized layers designed to enhance and interpret the 

extracted features within the ECG classification. Below, we 

outline these unique layers, as depicted in Figure 1: CNN 

Architecture and Custom Layers. For a detailed breakdown of 

each layer’s type, configuration, and specific purpose within 

our architecture, refer to Table 2. 

• Following the VGG16 model, we add layers tailored to 
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detect subtle patterns specific to ECG images. These new 

layers consist of 512 filters, and the dimensions of the 

receptive field—the region from which information is taken—

are directly determined by the diameters of the convolution 

kernels in CNNs, which are 3×3 [23], aligning with VGG16's 

structure while honing in on the intricacies for cardiac analysis.

 

 
 

Figure 1. CNN architecture and custom layers 

 

Table 2. CNN architecture and custom layers 

 
Layer Type Configuration  Purpose 

Input Shape: 

224x224x3 

Receive standardized 

ECG images as input. 

VGG16  

Base  

(Frozen) 

Pre-trained on 

ImageNet 

Extract foundational 

features from ECG 

images. 

Conv2D 

custom 

512 filters, 3x3, 

ReLU activation 

Further, refine features 

specific to cardiac 

conditions. 

Batch 

Normalization 

- Normalize the 

activations from Conv2D 

layers. 

Attention 

Mechanism 

- Weight feature 

importance, focusing on 

salient parts of the 

image. 

Global Average 

Pooling 

- Reduce feature maps to a 

vector, summarizing 

important features. 

Dense 256 units, ReLU 

activation 

Interpret the summarized 

features for 

classification. 

Dropout Rate: 0.4 Prevent overfitting by 

randomly omitting units 

from the dense layer 

during training. 

Output 5 units, SoftMax 

activation 

Classify the ECG image 

into one of five 

categories. 

 

• Following each custom layer is a batch normalization step 

that standardizes the activations from the layer, enhancing 

training stability and speed. 

•  Using the ReLU activation function on batch 

normalization to add non-linearities that help the model see 

complex patterns in ECG data. 

• Adding an attention mechanism to help the model focus 

on features by giving them weighted importance based on 

earlier layer extractions. This lets us look at the parts of the 

ECG that are most likely to show heart problems or COVID-

19 effects. 

• Before reaching the classification stage, a global average 

pooling layer is used to streamline feature map dimensions and 

distill information into a format conducive to classification. 

The architectural design wraps up with layers that are 

responsible for interpreting the aggregated features and 

carrying out the final classification task, where the model 

distinguishes among five distinct classes. These layers 

incorporate L2 regularization to prevent overfitting and are 

then complemented by dropouts for regularization. 

By keeping the VGG16 layers unchanged and incorporating 

our customized layers, the model benefits from a mix of 

general and specific feature extraction. This strategy ensures a 

foundation for recognizing patterns thanks to VGG16, while 

our enhancements fine-tune the models to focus on the unique 

characteristics of cardiac conditions seen in ECG images. 

 

Algorithm 2: CNN with Attention Mechanism 

Input: The pre-processed and augmented dataset 

Output: Classification predictions 

Start 

Step 1: Load the VGG16 pre-trained model, excluding 

the top layer. 

Step 2: Freeze the layers of the VGG16 model to prevent 

weights from being updated. 

Step 3: Append custom convolutional layers on top of 

VGG16 for further feature extraction. 

Step 4: Implement the attention mechanism: 

4.1. Apply Global Average Pooling (GAP) to the 

feature maps from the last convolutional layer. 

4.2. Use a dense layer to predict attention scores 

from the GAP output. 

4.3. Multiply the original feature maps by the 

attention scores to focus on important features. 

Step 5: Flatten the output and pass-through dense layers 

for classification. 

Step 6: Compile the model with Categorical Cross-

Entropy as the loss function and Adam as the optimizer. 

Step 7: Train the model on the ECG dataset using defined 

training protocols. 

Return: Model capable of classifying ECG images into 5 

classes with an attention mechanism 

End. 

 

3.7 Incorporation of the attention mechanism 

 

The attention mechanism shown in Figure 2 is included in 

the model, allowing the network to concentrate on the most 

important aspects of the ECG images. This mechanism 

functions by assigning weights to sections of the feature maps 

created by the layers, thereby highlighting areas that are more 

pertinent to the classification task. To implement this 

mechanism, we start with a pooling layer, then move on to 

dense layers that generate a context vector, which we then 

multiply to adjust the feature maps. The decision to 

incorporate this attention mechanism serves two purposes: 

firstly, to enhance the model's interpretability by defining its 

focal points, and secondly, to boost classification accuracy by 
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minimizing the impact of uninformative or noisy regions 

within the ECG images. 

 

 
 

Figure 2. Attention mechanism component 

 

3.8 Improved training method 

 

When it comes to training, we utilize improved training 

methods to enhance the effectiveness of learning, hence we opt 

for the Adam optimizer due to its ability to adjust the learning 

rate dynamically, making it easier to navigate the optimization 

landscape of neural networks. We set the starting learning rate 

to 0.001. Every 10 epochs, the step decay function decreases 

by 0.1. This gradual decline enables the model to make weight 

updates for quicker convergence, followed by smaller, more 

precise updates in later phases. 

The concept of stopping involves monitoring the validation 

loss with a patience setting of 5 epochs. This implies that if 

there is no improvement in the validation loss for five epochs, 

the training process stops and reverts to the model weights 

from the epoch with the validation loss. To prevent overfitting, 

we ensure that the model does not continue learning from data 

noise beyond a point where it is beneficial. For a detailed 

overview of the specific training parameters employed, 

including their values and a description of each parameter's 

role in the training process, refer to Table 3. 

This detailed explanation aims to offer insight into the CNN 

architecture, how we implement the attention mechanism 

specifically, and why we've chosen these training strategies. It 

demonstrates how all these elements come together seamlessly 

to enhance our model for ECG image classification. 

 

Table 3. Training protocols 

 
Parameter Value Description 

Initial 

Learning Rate 

0.001 Starting learning rate for the Adam 

optimizer. 

Learning Rate 

Schedule 

Step 

Decay 

Reduce the learning rate by a factor 

of 0.1every 10 epochs. 

Early 

Stopping 

Patience 

5 

epochs 

Stop training if validation loss does 

not improve for 5 consecutive 

epochs. 

Batch Size 32 Number of samples per gradient 

update. 

Epochs 200 

(max) 

Maximum number of epochs to run if 

early stopping criterion is not met. 

 

 

4. RESULTS 

 

On the test set, the CNN model demonstrated an accuracy 

of 98.73%. It's worth mentioning that the model's precision, 

recall, and F1 score consistently outperformed the standards in 

all categories as outlined in Table 4. 

 

Table 4. Precision, recall, and F1-score of the CNN model 

across classes 

 
 F1-score Recall Precision 

COVID-19 

AHB 

Normal 

MI 

HMI 

100% 

97.44% 

98.19% 

99.24% 

98.68% 

100% 

95.60% 

98.19% 

100% 

100% 

100% 

99.35% 

98.19% 

98.48% 

97.40% 

 

Evaluation for different categories of ECG data was 

performed, and it turned out that most classes had pretty 

consistent accuracy. However, a deeper analysis of each 

category’s unique characteristics and the model's handling of 

those differences is as follows: 

COVID-19 Complications: With 100% precision and recall, 

COVID-19 complications were identified. The abnormalities 

of COVID-19 complications can easily be highlighted due to 

their pronounced nature in the ECG. Adaptive brightness 

augmentation and attention mechanism allowed the model to 

effectively highlight the critical features that distinguished 

COVID-19 complications from the rest. 

MI: The model is very accurate in detecting MI, with an 

accuracy of about 99.24%, due to its good feature capture for 

well-defined features such as ST-elevations marking the 

presence of MI. Application of tuned image preprocessing, 

especially resizing and selective cropping, made this model 

concentrate on critical regions of the ECG; hence, it was 

highly reliable in identifying this life-threatening condition. 

AHB: Although the model did very well (97.44%) in this 

category, the subtlety of waveform variations that characterize 

AHB made this class a little more difficult to classify correctly. 

With a somewhat lower recall of 95.60%, it would appear the 

model at times missed these subtler abnormalities. This could 

be further improved by refinement of feature extraction or the 

addition of more nuanced examples to make the model 

sensitive at a higher degree toward such less obvious patterns. 

Healthy cases: It is observed that the model performed very 

well in classifying healthy subjects with 100% for both 

precision and recall. This may always affirm that the model 

really is much more robust and sure in separating normal from 

abnormal patterns for ECG; thus, this will be of high 

applicability in clinical decision-making. 

HMI: The model performed quite well in tracing the history 

of myocardial infarction by detecting 98.68% precision. 

Myocardial infarction patients usually have residual signs in 

their ECGs, and the attention mechanism of the model was 

very helpful to identify these post-event, somewhat subtle 

variations. 

Visual aids provide a picture of how the model is doing. 

Figure 3, illustrates the trends in loss and accuracy over time, 

showing how the model is learning. Also, Figure 4 shows a 

chart that helps us understand how well the model can predict 

outcomes in spotting COVID-19 cases. Together, these visuals 

highlight just how effective the CNN model is when it comes 

to classifying ECG images. 
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Figure 3. Loss and accuracy curves over epochs 

 

 
 

Figure 4. Confusion Matrix for CNN model predictions 

 

Table 5. Precision, recall, and F1-score of the traditional 

CNN model across classes 
 

 F1-Score Recall Precision 

COVID-19 

AHB 

Normal 

MI 

HMI 

100% 

95.53% 

96.51% 

100% 

98.67% 

100% 

95.00% 

96.51% 

100% 

99.33% 

100% 

96.07% 

96.51% 

100% 

98.01% 
 

The attentional CNN model proposed was compared with 

the traditional CNN without an attention mechanism in these 

experiments to show its effectiveness in improving the 

performance by the mechanism of attention. These 

experiments involved using identical architectural settings, 

identical datasets, and identical conditions but varying in the 

presence of an attention mechanism. 

The performance metrics of a traditional CNN model, 

devoid of attention, against the five classes are presented in the 

Table 5. 

Although the attention mechanism yields only a modest 

improvement in numerical values between the CNN model 

with and without the attention mechanism for some classes, 

precisely COVID-19 and MI, where the performance for both 

models is perfect, what really plays a very important role is the 

attention mechanism’s improved recall and F1-score for the 

more ambiguous classes like AHB and Normal. 

2016



 

Table 6. Precision, recall, and F1-score of the proposed CNN 

model without data augmentation 

 
 F1-Score Recall Precision 

COVID-19 

AHB 

Normal 

MI 

HMI 

98.78% 

75.50% 

81.66% 

91.43% 

78.05% 

100% 

67.06% 

86.25% 

96.97% 

78.05% 

97.59% 

86.36% 

77.53% 

86.49% 

78.05% 

 

For instance, the recall for the Normal class increased from 

96.51% to 99.35%, and the F1-score for AHB was enhanced 

from 95.53% to 97.44%. This is significant in the medical 

context, where accurately detecting the presence of abnormal 

heartbeats—AHB—ensuring a minimum number of false 

negatives in normal cases is critical for patient safety and 

diagnosis accuracy. 

Attention mechanisms will force the model to focus more 

on the salient features of an ECG image in a manner that it 

handles noisy or less-informative parts much better. This 

results in enhanced robustness for situations where data could 

be ambiguous or of varying quality, which usually holds with 

real-world clinical data. 

To expand the results analysis part, an analysis was 

performed with respect to the model's performance without the 

application of augmentation methodologies. The results for 

this are underlined within Table 6, which sketches out the 

variance in precision, recall, and F1-scores of models with no 

augmentation applied. 

Comparing the results, it is clear that most performance 

classes have increased significantly by augmentation among 

the CNN model. When no augmentation technique has been 

used, there is a sharp drop in recall for the classes AHB and 

HMI, indicating the remarkable loss in the model's ability to 

identify cases correctly for these classes. Thus, with no 

augmentation, precision and F1-scores also drop substantially 

for most of the classes, especially for the classes AHB, HMI, 

and Normal. By contrast, the COVID-19 class still maintains 

high recall without augmentation, although with a slight gain 

in precision when using augmentation. These findings 

highlight that augmentation improves the generalization of the 

model, especially those classes for which detection is more 

challenging, like AHB and HMI. 

 

 

5. COMPLEXITY AND COMPUTATIONAL COST 

ANALYSIS 

 

The proposed CNN model combines several state-of-the-art 

techniques, including a customized attention mechanism and 

data augmentation strategies, which are the probable reasons 

for its high classification accuracy. Nevertheless, there are 

other issues, such as the complexity of this model and its 

computational cost in practical application, especially in real-

time or resource-constrained environments. 

A. Model complexity: 

The complexity of the model can be understood from 

several perspectives: the number of layers, parameters, and 

operations involved. Our proposed model has an architecture 

comprising a total of 14 layers, of which 2 are convolutional 

backbone layers, followed by a custom-designed attention 

mechanism with dense layers. In all, it comprises 5.38 million 

trainable parameters. These layers help in providing fine 

details from ECG images for better classification of multiple 

cardiac conditions.  

B. Computational cost (Training and inference): 

The training of this model on this dataset, which contained 

3935 ECG images, required 696.86 seconds with the T4 GPU 

used for the training, or approximately 11.6 minutes. This 

model occupied a maximum of up to 8.3 GB of 15 GB GPU 

memory and system RAM of approximately 6.3 GB out of 

12.7 GB at any moment in time during its training. This model 

is suitable for use in clinical real-time applications because the 

inference time was approximately 0.16 seconds (159.87 

milliseconds) for an ECG image. 

C. Memory usage: 

The model consumes about 8.3 GB of GPU RAM and about 

6.3 GB of system RAM during training; this suggests that the 

model is quite well-optimized to run with, such as the T4 GPU 

with 15 GB of memory. For storage, a trained model occupies 

76.57 MB on disk. These levels of memory usage are at 

manageable levels in modern clinical systems. 

D. Comparisons to existing models: 

Compared to the existing state-of-the-art models, such as 

VGG16 or ResNet50, which are used for ECG classification, 

our model introduces a moderate increase in computational 

cost due to the attention mechanism and enhanced data 

augmentation. However, this addition boosts accuracy as high 

as 98.73% and robustness—which is critical in clinical 

decision-making. This trade-off between increased complexity 

and improved diagnostic performance justifies itself in high-

accuracy applications such as cardiac health diagnostics. 

 

 

6. DISCUSSION 

 

This study demonstrates how a combination of 

preprocessing and data augmentation methods with a 

convolutional neural network that has an attention mechanism 

leads to effectiveness gains. As a result, the integration of 

modern methods has improved the precision and 

categorization of ECG images, which is an important 

diagnostic criterion for heart health. Furthermore, we aim to 

explore the significance of these findings and identify 

potential avenues for improving this model. 

The proposed CNN model demonstrates high performance 

in classifying ECG images, particularly its strong capability in 

detecting MI with an accuracy of 99.24%. The model's 

robustness is further exemplified by its consistent performance 

across other conditions, including COVID-19-related 

complications and abnormal heartbeats. However, the slightly 

lower recall for certain conditions, such as AHB, suggests that 

while the model excels at identifying severe conditions, 

improvements are needed for recognizing subtle ECG 

abnormalities. These variations could be attributed to the 

inherent complexity of ECG patterns in those cases. 

Below are discussed the strengths and weaknesses of the 

model, and how performance improvement may be achieved 

to enhance its applicability in the clinical setting. 

Strengths of the model: 

A. Enhancing Model Accuracy via Customized Data 

Processing and Focused Image Enhancement: Cropping and 

resizing play a role in refining ECG image processing and 

aiding in feature extraction. Our method has notably boosted 

the model's capacity to detect patterns linked to heart 

conditions, including COVID-19, through fine-tuning image 

dimensions. This ensures that all data is precise, leading to 

accuracy across scenarios. 

B. Moreover, by adjusting the brightness levels in our data 
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augmentation approach, we have equipped the model to handle 

the range of variations seen in clinical ECG recordings. 

Focusing on tweaking image brightness within a ±5% range 

replicates real-world recording conditions, pushing the model 

to identify and grasp essential, consistent features linked to 

heart conditions. Proves effectiveness in improving the 

model's adaptability and ability to accurately classify cardiac 

problems across different patient groups. 

C. When we add the attention mechanism to the CNN model, 

it can focus on specific regions of the ECG image for 

differentiation, potentially gaining attention: In addition, the 

narrow-focus model can boost its accuracy. Between 

removing the noise and filtering out the unnecessary features, 

the attention mechanism has remarkably increased the 

accuracy of the model's performance. This narrow practice 

enables the determination of the primary pathological factors 

and the identification of potential heart-related conditions that 

the COVID-19 infection may trigger. 

D. Important features from ECG images are automatically 

extracted by the CNN model architecture with greater 

efficiency. It greatly simplifies the process of extracting 

critical features without manually engineered features, thereby 

enhancing scalability and boosting generalization across a 

wide range of datasets. It focuses on the most relevant aspects 

of the ECG data to give an accurate classification, and the 

capturing of key patterns independently of the mechanisms for 

external interpretability underlines its robustness and 

reliability in clinical settings. 

 

6.1 Weaknesses of the model 

 

(1) Detection of Subtle Conditions: Regarding the more 

subtle cardiac conditions, such as abnormal heartbeats, the 

model performed slightly poorer. This is probably due to the 

subtlety of the waveform that could only be fully expressed 

after further refinement among the feature extraction processes 

or core training on more nuanced examples. 

(2) Evaluation on a Single Dataset: Although the 

performance of the proposed approach has been quite good, it 

has been evaluated on this single dataset. The study may thus 

be less generalizable regarding different ECG data or clinical 

settings. Additional validation of more datasets could be done 

to give a better picture of the robustness of the model. 

 

 

7. COMPARISON WITH STATE-OF-THE-ART 

METHODS 

 

In the following, we compare our approach against state-of-

the-art approaches that have benefited from the ECG Images 

dataset of cardiac and COVID-19 patients for ECG 

classification. Several recent works, based on CNN-based 

architectures on this dataset, have focused on the classification 

of COVID-19, myocardial infarction, and other cardiac 

conditions. As such, they provide a good basis for the 

performance evaluation of our proposed model. 

Shahin et al. [23] presented the results of different CNN 

architectures: VGG16, VGG19, InceptionResNetV2, and 

DenseNet201. Their study resource was directed at classifying 

multiple types of ECG images, including COVID-19, and 

other cardiac conditions. Among them, VGG16 yielded the 

best performance in the COVID-19 classification task with an 

accuracy of 85.92%. While this provides a reasonable 

benchmark, the model performs much lower than the even 

higher accuracies achieved by more advanced models and 

approaches. The rather poor accuracy reflects the limitation of 

the CNN models, which have not been further optimized with 

state-of-the-art augmentation techniques or attention 

mechanisms. 

In this regard, Hassan et al. [24] proposed a deep learning-

based diagnosis model in 2023 by incorporating transfer 

learning along with ensemble learning for the classification of 

COVID-19 cases specifically among heart patients. After 

increasing the dataset to give a better balance of classes, this 

model yielded very good results in classifying heart patients 

with or without COVID-19. The proposed heart patient-based 

model presented the power of data augmentation and transfer 

learning techniques for improving model performance. Still, it 

was narrowly tuned to the discrimination between COVID-19 

and non-COVID heart patients; thus, its generalization over 

the broad multi-class classification task is not possible. 

Irmak [25] also performed classification of COVID-19 and 

myocardial infarction cases, using a CNN model, and reported 

remarkable accuracy in diagnosing COVID-19 equal to 

98.57%. The high value of accuracy underlined the good 

perspective of how CNN models can perform on this data. 

However, the paper focused primarily on binary classification 

tasks rather than more general multi-class classification 

problems including several cardiac conditions. 

In contrast, our proposed model leveraged attention 

mechanisms and advanced data augmentation techniques, 

driving superior performance for various cardiac conditions. 

Concretely, our model achieved 99.24% in terms of MI and 

100% in COVID-19, outperforming the model proposed by 

Shahin et al. and showing very competitive performance 

compared to the model proposed by Irmak. Moreover, our 

approach has yielded more balanced performances between 

multiple classes, assuring much more suitability for diverse 

classification tasks. In the following Table 7, we summarize 

our model's performance and the performance of other state-

of-the-art approaches. 

This performance comparison underlines the robustness of 

our approach for handling multi-class classification tasks, in 

particular with MI and COVID-19, while offering state-of-the-

art performance across all classes. 
 

Table 7. Comparison with state-of-the-art methods 
 

Study Best Model 

Accuracy 

(COVID-

19) 

Accuracy 

(MI) 
Key Strengths 

Shahin et 

al. [23] 
VGG16 85.92% N/A 

Application of 

various CNN 

architectures 

Hassan et 

al. [24] 

Ensemble 

Learning 

(VGG19) 

99.1% N/A 

Transfer 

learning and 

ensemble for 

heart patients 

Irmak 

[25] 
CNN model 98.57% N/A 

Focus on 

binary 

classification 

for COVID-19 

Our 

Method 

Attention-

Based CNN 
100% 99.24% 

Superior 

accuracy with 

multi-class 

classification 

  

2018



 

8. CONCLUSION  
 

Overall, the research demonstrates the power of CNN for the 

classification of ECG images, which in turn has improved 

accuracy in condition diagnosis and COVID-19 detection as 

well. We used VGG16, whose function is to introduce hidden 

features that generate medical picture concepts. This 

fundamental system serves as the foundation for constructing 

custom layers based on specific ECG image classifications. 

The attention mechanism we come up with is targeted 

feature analysis. This mechanism condenses the information 

while accentuating aspects that are informative while at the 

same time leaving out less related ones, enabling the model to 

focus more on the more evident sections of the heartbeat 

rhythm. 

Moreover, our proposed training technique utilizes a 

learning rate schedule associated with step decay, which 

linearly reduces the learning rate by 0.1 every 10 epochs. A 

key role in this technique is that it corrects the convergence of 

the model, which, on its way, enhances learning efficiency. 

Another important aspect to consider is the early stopping 

process and the patience level, which allows the model to stop 

training when the validation loss does not decrease further, 

thereby preventing overfitting and accelerating its process. 

The research recognizes constraints. Wants to make sure all 

experiments are carried out effectively and proposes ways to 

improve this, such as widening the dataset scope, and training 

in a real-world clinical environment to verify the practical 

usefulness of the enhanced CNN. 

 

 

9. FUTURE WORK 

 

The proposed CNN model has been developed to improve 

its applicability for ECG analysis. Several avenues exist for 

further improvements and adaptations in the future, 

particularly optimizing the model for real-time use in the 

clinics and integrating it into the existing healthcare systems. 

(1) Expanding the dataset to include a wider range of 

categories. 

(2) Validation: Using ECG data from a variety of real-life 

situations for validation is necessary to give the model the 

empirical corrections that make it work much better and prove 

that it works in clinical settings. 

(3) Improving interpretability: Developing the model`s 

interpretability with graphs and other relevant information 

increases doctors' comfort zone around its diagnosis results. 

(4) Enhanced Feature Extraction for the Subtle Conditions: 

The process of feature extraction in improving subtle cardiac 

condition detection can be refined. The inclusion of different 

preprocessing techniques in this regard, like advanced filtering 

might help the model catch minor variations in ECG 

waveforms. 

(5) Tuning the Model for Real-Time ECG Analysis: Real-

time ECG monitoring is vitally important clinically, in 

scenarios where immediate diagnosis is necessary, such as 

during surgery or in any critical care unit. In these real-time 

uses of the model, optimization for speed may be necessary. 

Techniques such as quantization and model pruning can be 

used to ensure faster processing time with not too much 

sacrifice of accuracy. 

(6) Integration with Current Medical Systems: The model 

can be altered to be incorporated easily into a wide variety of 

hospitals and clinical environments by utilizing pre-existing 

healthcare information systems and electronic health record 

platforms. 

• Interoperability Standards: By adhering to the standard of 

communication in healthcare such as HL7 or FHIR, the model 

will easily be able to send and receive ECG data with hospital 

systems. This would then allow the model to be used as a plug-

and-play diagnostic tool with other devices. 

• API Development: Creating APIs that would enable other 

medical software systems to request ECG analysis with the 

availability of predictions could make the model more 

applicable in healthcare environments. 
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NOMENCLATURE 

 

AHB 

CNN 

abnormal heartbeats 

convolutional neural network 

ECG 

GAP 

HMI 

Electrocardiogram 

Global Average Pooling 

history of myocardial infarction 

 MI myocardial infarction 
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