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Driver fatigue is still a principal cause of traffic accidents. While many ways allowing 

fatigue detection, a diversity of obstacles such as head position, luminosity, and facial 

expressions make it a very challenging problem. In this paper, we propose a hybrid approach 

using deep learning techniques to detect driver drowsiness by combining between structural 

and global classification methods. The structural method tracks eyes, eyebrows, and mouth 

movements to assess blink and yawning, for this purpose we calculate eye-opening and 

mouth-opening ratios relative to their width. Five parameters are extracted LEM (left eye 

movement), REM (right eye movement), LEB M (left eyebrow movement), REBM (right 

eyebrow movement), and MM (mouth movement), whereas the global method is based on 

Convolutional Neural Network (CNN) to describe the whole face. Eight-layer pre-trained 

Alexnet network is used to extract features and make classification of each frame. To do 

video classification, the five structural parameters, along with the global classification 

decision, are combined into a single vector to be input into Long-Short-Term Memory 

(LSTM) networks that is an improved version of Recurrent Networks. LSTM decision score 

is determined after running 150 steps, providing information about driver state Extensive 

Experiments are performed on a Driver Drowsiness Detection Dataset that contains subjects 

of different ethnicities. The experimental results show that the proposed method with the 

combined features improves drowsiness detection significantly as well as outperforms the 

state-of-the-art models in terms of drowsiness scores. 
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1. INTRODUCTION

There are approximately 1.2 billion vehicles around the 

world and the rate of road accidents continues to increase [1]. 

Statistics show that 1.25 million persons die each year [2], and 

20-30% of road accidents are due to drowsiness. According to

the World Health Organization [3], the fatality rate linked to

road accidents stands at 26.60 deaths per 100,000 people.

Excessive sleepiness or driver fatigue which may be mental or

physical are crucial problems occurred during the long trips.

Recently, the evolution of new technologies allowed 

vehicles manufacturers to fit out cars by technology-based 

safety systems. The latter could detect the driver drowsiness in 

order to reduce the number of accidents by intervening 

automatically at the right time (warn the driver, slow down a 

car speed, etc.). Many technologies are proposed in which 

some systems are designed to operate as monitor for driver 

attention, and others are based on the evaluation of steering 

movements. All of them have to alert drivers rapidly and with 

high reliability when the latter are tired while avoiding as 

much as possible the false alerts. In the literature, the fatigue 

detection methods are divided into three classes: vehicle 

driving parameters based method [4], driver physiological 

signal-based method [5], and facial features-based method [6-

8]. Figure 1 gives more clarification about the different fatigue 

detection methods. 

Driving parameters-based methods take parameters from 

vehicle travel path, speed, lateral acceleration, etc. They are a 

non-contact and can give a high accuracy, but results can be 

affected by external factors like bad weather and road 

conditions. On the other hand, physiological signal-based 

methods are simple to carry out and to operate, but the driver 

could be disturbed because of direct contact of the sensors. 

Finally, driver facial features-based detection methods are 

more suitable because they are simple, reliable, and 

characterized by their low cost. The most promising among 

them are based on blink frequency and yawning detection. The 

blink frequency-based methods are real-time and give high 

accuracy, but non-effective when the driver wears glasses. 

Otherwise, yawning methods are accurate, but return a false 

positive result, that is the driver can open his or her mouth for 

laugh or when he or she is surprised. 

In the Table 1, we give summaries of the three methods and 

show the advantages and inconvenient of each one: 

This table shows that methods based on facial features are 

more appropriate due to their cost-effectiveness and non-

intrusive nature. However, these methods can be further 

classified into two categories: those based on global features 

and those based on local features. 

All non-intrusive methods rely on the tracking of eye and 

mouth movements. The variations among these methods lie in 

minor details, specifically in terms of eye and mouth 

configuration or the material used for classification. The 

challenge arises from the fact that the mouth and eyes may not 
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consistently convey the true state, often due to issues such as 

insufficient detection caused by variations in luminosity, 

unexpected obstacles, or driver-related tics. Therefore, in this 

paper, we suggest a hybrid approach that merges both global 

and local features. Specifically, we extract CNN features from 

the entire face, and concurrently compute certain dimensions 

derived from the movements of the eyes and mouth. LSTM 

recurrent algorithm is employed to precisely determine the 

moment of drowsiness. The rest of this paper is organized as 

follows: in Section 2, we present some important related work. 

Then, we explain in detail both used features extraction 

methods and classification process in Section 3. In Section 5, 

we discuss the experiment results. Finally, we conclude the 

paper in Section 6. 

 

 
 

Figure 1. Different fatigue detection methods 

 

Table 1. Comparative table between methods 

 
Method Advantages Limitations 

driving parameters-based 
- high accuracy 

- parameters obtained from vehicle behavior (non-contact) 

-sensitive to external factors (road, 

weather, …etc.) 

-need of expensive material 

physiological signal-based 
-high accuracy 

-related to conductor behavior 

-need of expensive material 

- direct contact of the sensors disturb the conductor 

driver facial features-based 

(global features) 

-Simple and reliable 

- characterized by their low cost 

- non-intrusive 

-sensitive to illumination variation  

driver facial features-based 

(structural features) 

-characterized by their low cost 

-non-Sensitive to illumination variation 

-non-intrusive 

-non-effective when the driver wears glasses. 

-Sensitive to orientation 

-yawning methods are accurate, but return a false 

positive 

 

 

2. RELATED WORK 

 

In this section, we introduce some promising methods from 

fatigue detection classes by making a short comparison 

between them. 

 

2.1 Vehicle driving-based methods 

 

One of the solutions proposed to reduce the road accidents 

is the design of smart vehicle that can alert driver when a 

danger will happen, contact other vehicles in its neighborhood, 

and in extreme case take over driving [2, 9] proposed a method, 

which processes front view road images to evaluate the vehicle 

position and then advises drivers when they will across road 

side. The system used a 3D model of the road sides and all 

information about vehicle position, speed, and direction. The 

study [4] proposed a system that detects driver drowsiness and 

controls a vehicle speed. Practically, the vehicle control 

position detection requires expensive materials and hard 

computing. In addition, it is sensitive to the weather conditions 

and road state. To remedy, [1, 10] proposed a steering angle 

analysis method that uses an artificial neural network to 

classify driver states. 

2.2 Physiological signal-based methods 

 

Systems based-physiological parameters are more accurate 

and reliable. Numerous parameters are used among them are 

the following: 

 

2.2.1 System using electro cardiogram (ECG) 

ECG are based on heart rate variability, most of them need 

a very expensive material [11]. ECG methods use the electrode 

and attach them to the left leg and both arms to measure the 

voltage and produce an electro cardiogram [12]. The study [2] 

combined ECG with facial expression to improve results. 

Otherwise, the study [13] combined between the ECG and 

PPG (Photoplethysmogram), the latter uses lights to capture 

heart motion. Also, the study [14] fused ECG features, time 

domain, and frequency domain to detect driver fatigue. 

 

2.2.2 System using electro encephalogram (EEG) 

EEG signal is also reliable and trustworthy. It is associated 

with both brain and physical activities, that is, for each activity 

EEG recording changes in terms of frequency and magnitude. 

In the literature, several methods have used EEG to detect 

drowsiness. The study [15] used five types of entropies with 
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EEG signal to estimate fatigue level. The study [16] improved 

detection accuracy by analyzing EEG signal in a clustering 

brain network in order to extract more sensitive features from 

spatial and temporal dimension. Otherwise, the study [17] 

developed a detection indicators based on EEG signal and 

tested the system in low-voltage. The study [18] used a deep 

convolutional network to detect driver’s states from EEG 

signal. The study [19] used a convolutional auto-encoder to 

combine Electro Encephalogram EEG and electrooculography 

EOG. 

 

2.2.3 System using electromyograph (EMG) 

EMG signal is also used to detect fatigue because it contains 

many transient components and it is related to muscle activity. 

For example, in the driving case we can capture both triceps 

and biceps movements. Many works have used EMG signal 

[20, 21]. The study [22] proposed a method based on time 

domain and frequency domain. First, they removed noise by 

using Butterworth filter and then they used amplitude, phase, 

and frequency to evaluate the muscle fatigue. The study [23] 

proposed a non-contact method by installing recording 

electrodes into car seat. They combined EMG signal, ECG 

signal, and performed analysis with Fast Independent 

Component Analysis (ICA) and digital filter [24]. The 

problem encountered with EMG signal is related to the noisy 

signal, all methods that use it must go first through a 

refinement phase. 

 

2.3 Facial features-based methods 

 

Facial expressions are used in emotion detection 

applications [25-28]. To predict the driver state, facial features 

methods typically rely on the detection and monitoring of 

movements in facial features. 

While all non-intrusive methods utilize eye and mouth 

movement data [29], the distinguishing factors lie in the 

granularities of analysis, such as eye/mouth feature extraction 

or classification algorithms. 

The study [6] presents a prominent approach utilizing three 

parameters. It partitions the driver's face into regions from 

which they extract descriptors such as HOG (Histogram of 

Oriented Gradients), covariance, and LBP (Local Binary 

Pattern). Subsequently, the extracted features undergo 

reduction through PCA (Principal Component Analysis) and 

Fisher score. To accomplish classification, it employs Support 

Vector Machines (SVM). Otherwise, the study [30] employs a 

deep learning approach for facial region detection, 

subsequently tracking eye closure (PERCLOS) and mouth 

aspect ratio (MAR). Driver fatigue is estimated by leveraging 

the selected features from the eyes and mouth. Also, the study 

[31] presents a system designed to identify drowsiness in 

drivers by employing Convolutional Neural Networks (CNNs) 

to extract features from the eyes and mouth. Its objective is to 

enhance existing systems that struggle to detect alcohol-

consumed drivers, even when equipped with sensors. Another 

methodology adheres to a similar principle for driver state 

detection [32], focusing on features related to the mouth and 

eyes. The concept introduced in this study involves 

preprocessing all frames to enhance their quality. 

Subsequently, pixels' gradient orientation, along with CNN 

features, are extracted and integrated to form a feature space. 

Experiments conducted on the CELEB and YAW datasets 

yielded an accuracy score of 95%, achieved at a processing 

speed of 25 frames per second. 

Deep learning methods frequently rise to the top due to their 

robust performance and ability to achieve high accuracy. A 

study presents a comparison between machine learning and 

deep learning approaches [33]. During the machine learning 

phase, they utilized EEG signals with various classifiers, 

including SVM, KNN, Gaussian NB, MLP, QDA, RF, and LR. 

Their comprehensive experiments revealed that SVM 

achieved the highest accuracy score. In the deep learning 

phase, three models were employed: CNN, 2D recurrent 

network, and a hybrid model combining both. The results 

indicated that CNN yielded the most effective solution. In their 

work [34], the authors introduced an innovative fatigue 

detection algorithm that utilizes integrated facial features and 

a Gate Recurrent Unit (GRU) judgment neural network. This 

algorithm was designed to effectively analyze contextual 

information spanning multiple image frames arranged 

chronologically. The extraction of features from facial feature 

points was employed, and a judgment network was developed 

by inputting change curves of six features over 20 consecutive 

frames. This approach enables real-time detection and 

provides output indicating the driver's fatigue status. Recently, 

the study [35] employs a shallow CNN architecture with a 

reduced number of layers to detect driver fatigue. Eye regions 

are first identified using a 68-point detection method, followed 

by the extraction of CNN features from these regions. Also, 

the study [30] examines the effectiveness of CNNs for 

yawning detection, they use five architectures DenseNet201, 

AlexNet, MobileNetv2, ResNet50, and VGG16 trained with 

yaw-DD dataset and they achieve that DenseNet201 and 

ResNet50 give the highest accuracy. 

Facial features systems are non-contact and allow more 

comfort to the driver. Also, they are less expensive and easy 

to be implemented. However, these systems are not credible in 

real applications due to occlusion (driver wearing glasses), 

illumination, and head position. To remedy, the study [23] 

proposed 3D head motion estimation method that combines 

RGB data and depth data to decide on drive state. In the same 

way, the study [36] provided a review of recent investigations 

of the impact of occlusion for performance in facial expression 

analysis. 

 

 

3. PROPOSED ARCHITECTURE 

 

Several symptoms indicate fatigue, including the face 

becomes pale and looks tired, eyes almost closed, mouth often 

very open for yawning, and head is tilted. In this approach, we 

begin by face detection and facial parts extraction using Dlib 

library [37]. Next, to make a robust and reliable system, we 

combine two types of features. First, we use Alexnet for global 

features extraction and classification. Second, we extract 

structural features from face parts. The local features, 

combined with the AlexNet [38] network decision, are 

integrated into a unified vector. This vector is then input into 

the LSTM networks to predict the driver's state. The overview 

of the proposed architecture is shown in Figure 2. All 

execution steps and choice justifications are illustrated below. 

Then, we obtain 68 landmarks coordinates delimiting the face, 

eyes, eyebrows, and mouth. From these lasts, we can frame the 

face and track mouth, eyes, and eyebrows movements. We do 

not use all landmarks points, but only we use those that can 

help us to frame the face, detect the head pose, and track parts 

movements. 
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Figure 2. System architecture 

 

 
 

Figure 3. Facial expression and head position indicating 

fatigue or drowsiness 

 

3.1 Face detection and facial parts tracking 

 

Figure 3 shows the different head positions and facial 

expressions that indicate fatigue situation examples. Face 

detection is the first step in which we use the Dlib library, 

which is based on Support Vector Machine (SVM) and 

Histograms of Oriented Gradients. Dlib is widely utilized for 

detecting and tracking facial features, as well as for face 

detection and recognition. It is renowned for its robustness in 

handling variations in lighting conditions. Then, we obtain 68 

landmarks coordinates delimiting the face, eyes, eyebrows, 

and mouth. From these lasts, we can frame the face and track 

mouth, eyes, and eyebrows movements. We do not use all 

landmarks points, but only we use those that can help us to 

frame the face, detect the head pose, and track parts 

movements. We can detect the face by drawing a two-

dimensional rectangle, where the width spans from the 

leftmost to the rightmost point of the face, and the height 

extends from the lowest point to the upper point (eyebrow 

level). Additionally, 20% is added to the top to include the 

forehead in the frame (Figure 4). 

In fact, we have to cover all situations that may arise when 

a driver is tired. The driver is considered tired when eyes are 

almost closed, frequent yawning occurs, strong tilt of head. 

Figure 5 shows facial landmarks points detected using Dlib 

library and those chosen for the next step. 

 

 
 

Figure 4. Face detection and global features extraction (a) 

detecting benchmark points, D1 is the distance between upper 

and bottom points D2=D1+20% (b) cropped face and Alexnet 

architecture 

 

 
 

Figure 5. Fiducial points used to extract Structural features 

from facial parts 
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We crop the image located between the rightmost, leftmost, 

the undermost, and the uppermost (by adding 20% to include 

the forehead and eyebrows) points. 

 

3.2 Features extraction 

 

When a human is being tired, this is easily noticed on the 

features of his or her face (overall appearance). In addition, a 

weary person often opens the mouth (yawning), closes eyes, 

shrinks eyebrows and cannot keep his or her head straight. To 

take all this into account, we use features extracted from facial 

parts dimension and we combine them with global features to 

overcome luck of information due to occlusion wearing 

glasses, and so on. 

Actually, features extraction is performed in two stages. We 

focus on contextual information, which makes the global 

features, and parts movement information, which makes the 

structural features. Then, the combination of both features 

provides a refined and more precise class prediction. We 

should also take into consideration the timing to avoid the false 

positive detection. For example, a laughing person also opens 

his or her mouth, while others do a frequent wink without 

being tired. To remedy it, we use the LSTM network for 

classification. 

 

3.2.1 Global features extraction 

After detecting the face, we extract the global features using 

CNN. CNNs are amply involved in the most recent computer 

vision applications [39-43]. The deep learning mimics human 

brain process, in such networks an image is directly used 

without passing by feature extraction step. 

Training CNNs needs a huge amount of data. The reuse of 

pre-trained models makes the job easier. In fact, in transfer 

learning we benefit of knowledge obtained from learning 

massive datasets such as ImageNet [13, 15], Alexnet. 

To extract the first features vector, we use Alexnet 

architecture, which is commonly employed in intricate 

situations. The AlexNet model consists of a total of eight 

layers, comprising five convolutional layers and three fully 

connected layers. 

As shown in Figure 5, we use some landmarks point to 

estimate the face location and then we crop the face between 

the bottom point and the upper, by adding 20% to include 

forehead and eyebrows, and the lateral points. The captured 

facial image is resized to dimensions of 224×224×3 and then 

inputted into the initial layer, undergoing filtration by 96 

kernels sized 11×11×3 with a stride of 4 pixels each. In the 

second layer we use 256 kernels of size 5×5×48. The outputs 

of the first and second layers are passed through max pooling 

layers. The third and fourth layers are equipped with 384 

kernels each, and the fifth layer is characterized by 256 kernels. 

The following three layers, each with a size of 4096, are fully 

connected. Next, the SoftMax classifier is employed to 

generate the intended one output. Figure 4(b) provides 

additional clarification. 
 

3.2.2 Structural features extraction 

Second promising features must also be used, they represent 

facial parts movements. Human emotional state is expressed 

by facial part state: eyes and mouth (opened, closed, wink, 

agape), eyebrows (raised, tight). For example, yawning 

induces mouth opening and eyes closing, also when a person 

laughs his or her mouth is opened and his or her eyes are closed 

but in a different manner. 

In this work, we track the eyes, mouth, and eyebrows 

movement as well as head position. We are motivated by those 

movements because they well express the fatigue state i.e. a 

tired person same time opens often his or her mouth for 

yawning, he or she can also close his or her eyes and in the he 

or she cannot keep his or her head straight, thereby he or she 

tilts it forward or back. Figure 5 shows all structural features 

extracted from the face. 

As shown in Figure 5, we use twenty-eight points to 

calculate structural features that capture eyes, eyebrows, 

mouth movements, and head position. All features are grouped 

in a vector to be fed to classifier based on LSTM network. 

In the following, we give in detail all steps used to extract 

six features i.e., left/right eyebrow movement LEBM/REBM, 

left/right eye movement LEM/REM, mouth opening MO, and 

head position angle. 

Closed eye is a first promising factor to detect drowsiness, 

and by tracking eye movement we can decide if eye is closed 

or not. We use points, P7..P12 to set up the right eye and P13 to 

P18 to set up the left eye. LEM and REM are given as follows: 

 

𝐿𝐸𝑀 =
|𝑃8 − 𝑃12| + |𝑃9 − 𝑃11|

|𝑃7 − 𝑃10|
 (1) 

 

𝑅𝐸𝑀 =
|𝑃14 − 𝑃18| + |𝑃15 − 𝑃17|

|𝑃16 − 𝑃13|
 (2) 

 

Eyebrow movement is also a basic factor to describe 

emotional state. Drowsy and laughing person both open their 

mouths, but the first one shrinks his eyebrows and the last one 

stretch them. In this work we propose a metric based on 

distances between eyebrow detected points and the horizontal 

line passing through head point P19. REBM (Right Eyebrow 

Movement) and LEBM (Left Eyebrow Movement) are 

calculated as follows: 

 

𝐿𝐸𝐵𝑀 =
|𝑃1 − 𝑃19| + |𝑃2 − 𝑃19| + |𝑃3 − 𝑃19|

|𝑃1 − 𝑃3|
 (3) 

 

𝑅𝐸𝐵𝑀 =
|𝑃4 − 𝑃19| + |𝑃5 − 𝑃19| + |𝑃6 − 𝑃19|

|𝑃4 − 𝑃6|
 (4) 

 

Generally, a drowsy person opens his mouth to breath 

oxygen. He is in yawning state. To track mouth movement, we 

use eight points P21..P28 and the mouth movement is given as 

follows: 

 

𝑀𝑀 =
|𝑃22 − 𝑃18| + |𝑃23 − 𝑃27| + |𝑃24 − 𝑃26|

|𝑃21 − 𝑃25|
 (5) 

 

The last parameter is the angle between the horizontal line 

and a line passing through P19 and P20 points. A high tilt 

angle means that a person is drowsy, for that, we choose tilt 

angle as the sixth and last parameters to make the features 

vector. 

 

3.3 Video classification using LSTM network 

 

Classification using recurrent neural network are widely 

used in machine translation, speech recognition and video 

sequences processing [44]. LSTM network is an improved 

version of them [45] in the fact that it fills the vanishing 

problem that occurs when treating long sequences. A hidden 
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layer unit in the LSTM network is a bloc of memory cells and 

three gating units: input gate, output gate, and forget gate. 

Each block receives as input the state of the previous frame 

St-1 and the input at time t, Xt. Also, each gate receives the same 

features as the block input. 

 

( )( )g(t) X _ t S_(t 1) W _(g) b _ g= + −  +  (6) 

 

( )( )Y_ (t) X_ t S_(t 1) W_(i) b _ iin = + −  +  (7) 

 

( )( )Y_ f(t) X_ t S_(t 1) W_(f ) b _ f= + −  +  (8) 

 

(t (t 1) _(t) g Y_ )C C f in
− −= − +  (9) 

 

( )( )Y_ o(t) X_ t S_(t 1) W_(o) b_ o= + −  +  (10) 

 

( ) )S_ t tanh C t Y _ (t)in−=  (11) 

 

For the classification purpose, a single LSTM network with 

forget gates is utilized to discard irrelevant features. To train 

the LSTM network for determining the driver's drowsiness 

state, the initial step involves extracting structural features and 

the CNN classification result for each frame. Subsequently, 

the features and decision score are consolidated into a unified 

vector, which is then input into the LSTM to predict the 

drowsiness or non-drowsiness of the entire video sequence. 

The feature vector comprises seven parameters extracted 

from frames, namely (LEM, REM, LEBM, REBM, MM, 

HeadposeAngle, CNN_decision). We run 150 steps to 

generate a driver state decision in the output. If the output 

value is equal to or greater than 0.5, it indicates that the driver 

is in a drowsy state (refer to Figure 6). 

 

 
 

Figure 6. Samples of drowsy and normal frames showing 

different possible expressions, head positions, mouth and 

eyes opening (a) day time sequences (b) night-time 

sequences 

 

 

4. EXPERIMENTS 

 

4.1 Dataset 

 

To perform experiments, we use Driver drowsiness 

detection dataset [9]. Video dataset is collected by NTHU 

Computer Vision Lab. It includes training, evaluation, and 

testing sets, features recordings of 36 subjects from diverse 

ethnic backgrounds, both with and without glasses/sunglasses, 

in various simulated driving scenarios. These scenarios range 

from normal driving to yawning, slow blinking, falling asleep, 

and laughing, under both day and night lighting conditions. 

Subjects were recorded while seated, playing a simple driving 

game using a simulated steering wheel and pedals, and were 

guided by an experimenter to perform specific facial 

expressions. The total duration of the dataset is approximately 

9.5 hours. 

The training set includes 18 subjects across five scenarios 

(BareFace, Glasses, Night_BareFace, Night_Glasses, 

Sunglasses). For each subject, sequences featuring yawning 

and slow blinking with nodding were recorded for about 1 

minute each, while key scenarios involving drowsiness-related 

behaviors (yawning, nodding, slow blinking) and non-

drowsiness-related actions (talking, laughing, looking to the 

sides) were recorded for 1.5 minutes each. The evaluation and 

testing sets consist of 90 driving videos from the remaining 18 

subjects, with mixed drowsy and non-drowsy states across 

different scenarios. 

An active infrared (IR) illumination was used to capture IR 

videos. The video resolution is 640x480 in AVI format. 

Videos in the Night_BareFace and Night_Glasses scenarios 

were recorded at 15 frames per second, while those in the 

BareFace, Glasses, and Sunglasses scenarios were recorded at 

30 frames per second. The dataset is divided into training, 

evaluation, and testing sets, with testing videos comprising a 

mixture of different driving scenarios. 

 

4.2 Proposed LSTM parameters 

 

The experiments are conducted on a machine equipped with 

an i7 processor and an 8GB NVIDIA RTX GPU. Each video 

is decomposed into frames, with an average of 300 frames per 

video. We apply frame skipping, selecting one frame out of 

every 10. To achieve optimal classification performance, the 

LSTM network is configured as follows: 

• The first LSTM layer consists of 128 units, designed to 

capture dependencies across time frames. 

• The second, third, and fourth LSTM layers each have 64 

units, focusing on identifying high-level patterns. 

•  Dropout is applied to all LSTM layers to prevent 

overfitting. 

• A dense layer with 128 units follows the LSTM layers for 

further processing. 

• A final SoftMax layer with one unit is used for binary 

classification: a value close to 1 indicates a drowsy driver, 

while a value close to 0 indicates an alert state. 

• We put batch size=32, learning rate=0.001, and we run 

150 epochs. 

 

4.3 Evaluation measures 

 

System performance evaluation is not only based on single 

frame accuracy, because it is not admissible in real application 

to decide about driver state 30 times per second. In our system, 

we propose a new routine, which helps us to improve the score 

by eliminating irrelevant detections. To do that, we consider a 

new state only when it appears at least in 30 frames. The 

following algorithm reads score vectors of thirty frames and 

makes a predominant decision. 
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Let “M” be the video size, “T” be a vector collecting real 

scores, and “State” contain the decision score. 

 

𝑆 ← ′𝐷𝑟𝑜𝑤𝑠𝑦′; 𝑐𝑝𝑡 ← 0; 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑓𝑟𝑎𝑚𝑒 = 1 

𝑟𝑒𝑝𝑒𝑎𝑡 

 

while (𝑇[𝑖] ==′ 𝐷𝑟𝑜𝑤𝑠𝑦′) 

𝑐𝑝𝑡 ← 𝑐𝑝𝑡 + 1; 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑓𝑟𝑎𝑚𝑒 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑓𝑟𝑎𝑚𝑒 + 1; 

𝑖𝑓 (𝑐𝑝𝑡 ≥ 15) 𝑆𝑡𝑎𝑡𝑒 = ′𝐷𝑟𝑜𝑤𝑠𝑦′; 𝑐𝑝𝑡 ← 0; 
𝑒𝑙𝑠𝑒 𝑆𝑡𝑎𝑡𝑒 =′ 𝑁𝑜𝐷𝑟𝑜𝑤𝑠𝑦′; 

𝑢𝑛𝑡𝑖𝑙 𝑒𝑛𝑑 𝑜𝑓 𝑇 

 

After performing refinement of score vector obtained, we 

calculate the global quadratic error estimated on all the frames. 

It is given in Eq. (7). 

 

𝐸𝑅𝑅 =
∑ (𝑂𝑢𝑡𝑖 − 𝑇𝑖)

𝑀
𝑖=1

2

𝑀
 (12) 

 

Tests are performed on the mentioned dataset. To show the 

usefulness of our approach, we conduct tests as follows: 

(1) We prepare both structural and CNN-decision score of 

all frames. 

(2) First, we train LSTM network with only structural 

features. 

(3) Second, we add CNN-decision to the structural features, 

then we train again the LSTM network. 

(4) Finally, we compare the obtained results with other 

works that used the same dataset. 

 

4.4 Structural features 

 

First, we test with structural features and use the LSTM 

network to classify the frames. Table 2 shows the obtained 

results. 
 

Table 2. Drowsiness detection using structural features 
 

Scenario Drowsiness Score 
No Glasses 93.25% 

Glasses 90.47% 
Sunglasses 93.33% 

Night-No-Glasses 80.00% 
Night-Glasses 38.18% 

Overall 79.05% 

 

4.5 CNN-features classification 

 

Table 3 presents the drowsiness detection scores achieved 

using global features. 
 

Table 3. Drowsiness detection using global features 
 

Scenario Drowsiness Score 
No Glasses 63.63% 

Glasses 88.89% 
Sunglasses 89.38% 

Night-No-Glasses 75.00% 
Night-Glasses 71.51% 

Overall 77.68% 
 

4.6 Merged features 
 

In the third step, we merge both scores of CNN-networks, 

which get features from the hole face, and the structural 

obtained futures. Then we train the LSTM network to get a 

final decision. Results are shown in Table 4. 
 

Table 4. Drowsiness detection using merged structural 

features with CNN decision 

 
Scenario Drowsiness Score 

No Glasses 96.77% 
Glasses 90.57% 

Sunglasses 95.74% 
Night-No-Glasses 85.71% 

Night-Glasses 81.81% 
Overall 90.12% 

 

4.7 Result analysis 

 

Structural features alone are not sufficient and give an 

overall accuracy of 79.05%. We can see in Table 2 that 

drowsiness detection accuracy with diurnal videos is best than 

accuracy of nocturnal ones. This is explainable because 

structural features are extracted by tracking eyes, eyebrow and 

mouth movements, and in infrared image the poor quality of 

images hinders this process. We can see clearly in Figure 7 the 

series of sequences showing a person in drowsiness state, 

images from 1 to 6 reflect a person in normal state but really it 

is in drowsiness situation. Here, we deduce that structural 

features used alone are not efficient. 

 

 
 

Figure 7. Sequence of infrared images chowing a drowsiness 

state 

 

Secondly, the global features give different scores between 

63.63% and 89.38%, which are satisfactory, except in night 

glasses case they give a score between 70% and 75%. CNN 

features have a good ability of expression, even for nocturne 

videos, and are less computationally expensive. 

Finally, by combining both CNN-scores and structural 

features we obtain considerable results improvement as shown 

in Table 4. Also, the graph in Figure 8 summarizes all results 

and allows us to make a reasonable comparison. 

The results above indicate that structural features provide a 

weak classification rate during nighttime, primarily due to the 

difficulty in accurately detecting features, making it 

challenging to determine the driver's state. Similarly, during 

the daytime, the system experiences a few misclassification 

instances. This is understandable because only a few video 

frames clearly display expressions associated with the driver’s 

state, i.e., many frames capture a drowsy person without overt 

signs such as yawning or closed eyes. The error stems from the 

algorithm used to determine the driver's state, which classifies 

the driver as drowsy after detecting 15 instances of drowsiness, 

i.e., after processing 150 frames. A potential solution could be 

to make this threshold dynamic, allowing it to adjust based on 

the situation. 

By combining structural features with a global classification 

approach, we improved the night-time performance and 

addressed some misclassifications caused by drowsy states 

without clear facial expressions. See Figure 7. 
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Figure 8. Graph summarizing the three steps results obtained 

 

4.8 Comparison with other works 

 

The proposed approach is compared with models used in 

[46] experiments. The authors propose a hierarchical temporal 

Deep Belief Network (HTDBN) that uses three deep networks 

to extract features from mouth, head, and eyes. Following that, 

the features vectors are grouped in a single one which, in turn, 

is regarded as observation vector for two HMMs i.e., 

drowsiness HMM and non-drowsiness HMM. Then in their 

experiment, they propose four different scenarios to evaluate 

their system: 

(1) SVM+SVM: in that event, they use one SVM to extract 

features and other one to do classification 

(2) SVM+HMM: here SVM is used to extract features and 

HMM to classify a sequence 

(3) DBN + SVM Deep Belief Network (DBN) is used to 

extract deep features and a binary class SVM to detect 

drowsiness state 

(4) HTDBN 

Table 5 summarizes all results and the graph in Figure 9 

allows us to make a comparison between all models. 

 

 
 

Figure 9. Comparison between our model and other solutions 

 

Table 5. Comparison between our model and other solutions 

 
Model Drowsiness Score 

SVM+SVM 81.16% 

SVM+HMM 81.30% 

DBN+SVM 84.26% 

HTDBN 85.39% 

Our model 90.12% 

The global accuracy of our model exceeds that of other 

approaches. The goal of this research is to guide a driver of 

vehicle based on his or her state, then we have to improve our 

features detection process that shows weakness with nighttime 

videos. 

 

 

5. CONCLUSION 

 

In this work, we proposed a method to guide vehicle drivers 

throughout of their journey. We developed a hybrid approach 

based on deep learning and recurrent network that combined 

structural and global features. We employed an LSTM 

network that takes structural features, delineating parts 

movements, as input, and integrated it with a CNN network 

decision. Combining structural features with CNN decisions 

can mitigate nighttime misclassification and ensure accurate 

detection, even when facial expressions do not fully reflect the 

true state of drowsiness. Our study demonstrates that structural 

features are robust but not sufficient to decide about driver 

state. Additionally, the proposed classification algorithm 

requires further improvements to enhance the accuracy rate. 

The findings offer a new idea in driver drowsiness that 

allow combination between two light systems. The 

experiments were conducted using each type of feature 

independently, as well as with both feature types combined. 

Results showed that combined results give considerable 

improvements. Also, tests performed on driver drowsiness 

detection dataset showed satisfactory results compared to 

other methods.  

Although the results are promising, our approach remains 

inefficient and requires improvements when handling 

nighttime videos and certain unexpressed situations. 

Additionally, further research with larger sample sizes is 

necessary to validate these findings across a broader range of 

populations. 
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