
Optimizing Urban Mobility: A Comparative Analysis of Taxi Demand Prediction Models 

Ragil Saputra1,2 , Suprapto2* , Agus Sihabuddin2

1 Department of Computer Science, Universitas Diponegoro, Semarang 50275, Indonesia 
2 Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia 

Corresponding Author Email: sprapto@ugm.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290522 ABSTRACT 

Received: 15 January 2024 

Revised: 10 September 2024 

Accepted: 21 September 2024 

Available online: 24 October 2024 

Urban mobility optimization is crucial in managing transportation systems efficiently. This 

study addresses a broad research area of urban mobility by focusing on taxi demand 

prediction, a key component of the transportation ecosystem. The specific problem 

addressed in this research is the need for accurate and efficient taxi demand prediction, 

especially in large, dynamic urban environments. Existing solutions, including basic time 

series approaches like simple moving averages and exponential weighted moving averages, 

while valuable, have limitations in handling the intricacies of urban taxi demand patterns. 

In this study, we employed a combination of data preprocessing techniques, advanced 

regression models, and Fourier features to predict taxi demand in dynamic urban 

environments. The data preprocessing techniques included data cleaning, normalization, 

and feature engineering. The advanced regression models used in this study were Random 

Forest and XGBoost, which were trained and tested using NYC taxi datasets. The Fourier 

features were used to capture the periodicity of the taxi demand patterns. These models are 

demonstrated to outperform standard solutions, effectively achieving the targeted mean 

absolute percentage error (MAPE) of less than 12%. Evaluation of the solution revealed its 

effectiveness in reducing the prediction error by more than 1%, thus highlighting the 

positive results of this research. 
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1. INTRODUCTION

Enhancing urban mobility is crucial in the continuously 

developing realm of transportation systems. As urban 

populations grow rapidly, the ability to predict taxi demand 

accurately and efficiently has become a key element in 

managing urban mobility. Improvements in predictive models 

and techniques are poised to substantially improve 

transportation services in urban centers. 

In recent years, a substantial body of studies has been aimed 

at taxi demand prediction. Notably, studies by Rodrigues et al. 

[1] have explored various approaches encompassing machine

learning and time series analysis to forecast taxi demand.

Chou et al. [2], Liu et al. [3], and further research conducted 

using Random Forest [4-6] and XGBoost [7, 8] have shown 

considerable advancements in the precision of predictions. 

These models have enhanced the predictive accuracy but still 

often rely heavily on large quantities of historical data, which 

may not always be available or reflect future conditions 

accurately. 

Research conducted by Liu et al. [4] using Random Forest 

and Stadler et al. [9] using XGBoost regressor to predicts 

passenger demand for taxi drivers based on trip fare, distance 

between each region, and area of the region. Random Forest 

model is an algorithm for ensemble learning that builds upon 

bagging [10]. XGBoost, or eXtreme Gradient Boosting, is an 

open-source project in machine learning developed by Tianqi 

Chen that enhances the boosting technique originally based on 

GBDT [11]. 

Xu et al. [12] investigated the application of Recurrent 

Neural Networks (RNNs) for predicting taxi demand, attaining 

an accuracy rate close to 83%. In a similar vein, Kuang et al. 

[13] utilized data augmentation alongside convolutional neural

networks (CNNs) to forecast short-term demands for taxis.

Despite considerable advancements in predictive accuracy 

by studies such as those by Rodrigues et al. [1] and Kuang et 

al. [13], existing models often rely heavily on large quantities 

of historical data and struggle to adapt to rapid changes in 

urban dynamics. Such models typically do not account for 

non-linear fluctuations in taxi demand influenced by 

unpredictable factors like weather or special events. 

Furthermore, while sophisticated deep learning models like 

those introduced by Zhang et al. [14] and Ye et al. [15] offer 

in-depth analysis of spatiotemporal patterns, they require 

extensive computational resources, limiting their practical 

application in real-time urban settings. To overcome these 

limitations, our research integrates Fourier features with 

advanced regression models, particularly Random Forest and 

XGBoost, enhancing our model's ability to adapt to both 

regular and irregular patterns in taxi demand. This approach 

allows for a more robust prediction system that is responsive 

to real-time changes and less dependent on historical data, 

thereby filling a critical gap in current urban mobility 

management strategies. 
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Despite these advancements, significant challenges persist. 

Previous studies often focus on isolated aspects of demand 

prediction without a comprehensive comparison of different 

approaches. This has left a gap in understanding which 

methods are most effective under varying conditions. 

Additionally, while basic time series models such as Simple 

Moving Averages (SMA) and Exponential Weighted Moving 

Averages (EWMA) are effective in some scenarios, their 

limitations in handling the dynamic and complex nature of 

urban taxi demand patterns are well-noted [16]. 

To address these gaps, this study incorporates Fourier 

features and advanced regression models, particularly 

Random Forest and XGBoost, to enhance prediction accuracy. 

Fourier transform, a basic mathematical tool, proves 

instrumental in analyzing periodic patterns within datasets and 

discerning recurring temporal patterns such as daily or weekly 

cycles in historical taxi demand data [7, 17]. 

In this study, we selected Random Forest and XGBoost due 

to their robustness in managing large, complex datasets typical 

of urban mobility contexts. Random Forest is effective in 

preventing overfitting through its ensemble approach, which 

is crucial for modeling non-linear data influenced by 

unpredictable variables such as weather and special events. 

However, the reference provided [18] does not support this 

claim as it focuses on drought modeling rather than the 

specific strengths of Random Forest in urban mobility 

contexts. 

Our methodology involved collecting and cleansing a large 

dataset of taxi demand records [19], followed by preprocessing 

and feature engineering to extract important spatial and 

temporal features. We then compared the performance of 

various regression models, including traditional time series 

models and advanced models, providing a comparative 

analysis to optimize urban mobility. 

The rest of this article is organized as follows: section 2 

details the methodology, section 3 presents the experiment 

results and discusses the findings, and suggests future 

directions. Section 4 concludes by providing a summary of the 

main findings. 

 

 

2. METHODOLOGY 

 

In this section we will present a research stages that is 

conducted sequentially. The research begins with data 

collection,  preprocessing, feature engineering, modelling and 

ends with evaluation model. Figure 1 displays all stage of the 

proposed method. Our contributions is improve prediction of 

taxi demand by using feature engineering after preprocessing 

step by Fourier transform. Fourier Transform to identify 

repeating patterns and periodic components in taxi demand 

data. 

In Figure 1, the modeling stage is divided into two parts. 

part 1 uses SMA, WMA, and EWMA models, while part 2 uses 

Linear Regression, Random Forest, and XGBoost models. 

Both part 1 and part 2 receive input from the preprocessing 

stage, while part 2 also receives additional input from feature 

engineering, which is performed after preprocessing. The 

evaluation stage involves calculating the MAPE. 

 

 
 

Figure 1. Proposed method 

 

2.1 Data collection 

 

The research makes use a comprehensive dataset from New 

York City, encompassing taxi demand records from January 

to March 2015, and January to March 2016. This data is 

released by the Taxi and Limousine Commission from [19]. 

This dataset is a valuable source of information regarding the 

latitude, longitude, and timestamp of each taxi pickup. 

Description of dataset is presented in Table 1. The resulting 

dataset forms the foundation for our taxi demand prediction 

models, offering insights into historical pickup patterns across 

different locations within the city. 

 

Table 1. Dataset structure [19] 

 
Field Name Description 

vendorID 

A code that identifies the record's TPEP provider. 

1: CMT / Creative Mobile Tech 

2: VeriFone Systems Inc 

tpepPickupDatetime The specific date and time while the timer activated. 

tpepDropOffDatetime The specific date and time while the timer was disconnected. 

passengerCount The amount of passenger in the taxi. The amount was entered by the driver. 

tripDistance The taximeter's recorded elapsed trip distance in miles. 

pickup_longitude Longitude where the timer activated. 

pickup_latitude Latitude where the timer activated. 

Rate_Code 
The last amount symbol in impact at the finish at the trip. 1: Standard rate; 2: JFK; 3: Newark; 4: Nassau or 

Westchester; 5: Negotiated fare; 6: Shared ride 

Store_and_forward_flag 

This indicator specifies if the trip record was "stored and forward," or stored in the vehicle's memory prior to 

being transmitted to the vendor, in the event that the car was not connected to the server. 

Y: trip stored and forwarded. 

N: trip not stored or forwarded. 
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(a) Distribution of trip times in dataset (b) Trip times after removing outlier 

 

Figure 2. Trip times 

 

2.2 Data cleaning 

 

The data were cleaned by performing univariate analysis 

and dropping outlier values that could have been made due to 

an error. To ensure the quality and reliability of the data, 

preprocessing steps were undertaken. Outliers and missing 

values were addressed through appropriate techniques, and the 

data was cleaned to remove any inconsistencies. 

In our preprocessing workflow, outliers were systematically 

identified and managed using robust statistical methods. We 

utilized the Interquartile Range (IQR) approach to detect 

outliers, where values falling more than 1.5 IQRs below the 

first quartile or above the third quartile were flagged for 

review. Depending on their impact on the model's predictive 

power and the likelihood of them representing true anomalies 

versus data errors, outliers were either adjusted or removed. 

For data normalization, we employed the Min-Max scaling 

technique which adjusts the data to a common scale by 

transforming each feature to a range between 0 and 1. This 

normalization is crucial for maintaining consistency across 

input features and enhances the efficiency of the learning 

algorithm, especially when combining features with differing 

units and ranges. 

 

2.2.1 Coordinate 

New York city is bounded by the latitude and longitude 

coordinates (40.5774, -74.1500) and (40.9176, -73.7004) [20]. 

As a result, we only take into account pickups that originate in 

New York city, and we do not consider any coordinates that 

are outside of these ranges. 

 

2.2.2 Trip duration 

NYC Taxi & Limousine Commission regulations state that 

a trip may last no more than 12 hours in a 24-hour period [19]. 

Thus, those data points with trip duration more than 720 

minutes were removed. 

 

2.2.3 Trip time 

We calculate the trip time by subtracting the pickup 

timestamp of the dropoff timestamp and divide the result by 

60 to express it in minutes. The skewed box plotted visually in 

Figure 2(a) represents the distribution of trip times in the 

dataset. We systematically removed outliers from the taxi trip 

time dataset with univariate analysis. Percentiles of trip_times 

were used to identify extreme values. The range between 1 and 

720 minutes was considered, following compliance with TLC 

regulations, to eliminate potential outliers. So the box plotted 

after removing outliers is presents in Figure 2(b). 

 

2.2.4 Trip distance 

To identify any aberrations in the dataset, a box plotted was 

employed to provide a visual representation of the distribution 

of trip distances. The primary objective is to pinpoint data 

points that deviate notably from the typical range of trip 

distances, which could be indicative of outliers. Figure 3(a) 

represents the distribution of trip distance in the dataset.  

Figure 3(b) presents box plotted after removing outlier. We 

use interpercentile range (IPR) to calculate the percentile value 

of trip distance in the dataset, and find that the 99.9 percentile 

has a value of 22.57 miles. Any value beyond this point is 

considered an outlier and may significantly affect the quality 

and accuracy of the dataset. Therefore, we consider only the 

values between 0 and 23 miles. 

 

2.2.5 Speed 

After removal of outliers in trip duration, we proceed to 

examine the distribution of the speed feature. This feature 

characterizes the speed of a taxi trip, calculated as the ratio of 

the distance traveled to the duration of the trip, with the result 

multiplied by 60 to express the speed in miles per hour. Box 

plots in Figure 4 allow identification of outliers or any extreme 

values in the Speed feature, this may significantly affect the 

data set's quality and accuracy. 

We use the IPR to remove speeds with outliers, thus we 

adopt the percentile method. In this method, we find 0–100th 

percentile values to detect beyond what point the outliers 

occur. Finally, we filtered out records with speeds less than 0 

or greater than 45.31 miles per hour. 

 

2.2.6 Total fare 

An examination of the dataset's fare values concentrated on 

the last 50 data points, excluding the last two, revealed a 

significant surge in value at around the 1000 fare value. This 

focused analysis provides insights into potential anomalies or 

irregularities in the dataset, ensuring data consistency and 

reinforcing the research's overall accuracy and credibility. So, 

the fare is less than or equal to 0 or greater than or equal to 

1000. The distribution of fare in dataset is presented in Figure 

5. 
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(a) Distribution trip distance in dataset (b) Trip distance after removing outlier 

 

Figure 3. Trip distance 
 

  
  

Figure 4. Distribution of speed in dataset Figure 5. Distribution of fare in dataset 

 

2.3 Data preprocessing 

 

This stage begins with clustering, continued with organizing 

and aggregating the data using time-binding approach. 

 

2.3.1 Clustering 

In this study, a clustering process was carried out using the 

K-means algorithm, used to identify the optimal number of 

clusters (K), that contributes a significant component in spatial 

data analysis. The dataset used here consists of the GPS 

coordinates of taxi pick-up locations, and the goal is to group 

these coordinates into clusters for further analysis. The 

algorithm is designed to systematically evaluate different 

cluster sizes by performing iterations from 10 to 90 with 

increments of 10. 

Cluster evaluation to assess the quality of the clusters based 

on two key factors: (1) the average number of clusters inside 

the area where the inter-cluster the distance is less than 2 units. 

This indicates how tightly the clusters are formed, and (2) the 

average number of clusters outside the area where the inter-

cluster distance is greater than 2 units. This reflects the spread 

of clusters. 

Furthermore, the minimum inter-cluster distance is 

calculated. It represents the minimum spatial separation 

between any two clusters. This metric is essential to ensure 

that the clusters are well-separated. The clustering results are 

presented in Figure 6. 

Figure 6 illustrates an evaluation that was conducted for 

various cluster sizes (K) in cluster analysis. The graph 

demonstrates that as the cluster size (K) increases, the average 

number of clusters both within and outside a specific region 

also rises. However, on the flip side, the minimum distance 

between clusters decreases. This implies that larger K values 

lead to more complex and dispersed clusters. Therefore, the 

selection of the K value should consider a balance between the 

number of clusters and the distance between them, aiming to 

find a K value that yields sufficiently concentrated clusters 

within a certain region while maintaining reasonable inter-

cluster distances. Because the main goal is to choose the 

optimal minimum distance, so our optimal number of clusters 

is 30. The plotting results in map form are present in Figure 7. 
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Figure 6. Cluster analysis 

 

 
 

Figure 7. Clustering result plot 

 

2.3.2 Time binning 

In the context of our study for the month of January 2015, 

we employed a time-binning approach to organize and 

aggregate the data, specifically the number of taxi pickups that 

occurred within 10-minute intervals. The resulting dataset was 

structured with two key indices. The primary index pertained 

to the pickup cluster, indicating the specific cluster to which a 

pickup location was assigned. These clusters were derived 

using k-means clustering techniques based on the geographical 

coordinates of the pickup locations. The secondary index was 

known as pickup bins. For example, pickup bins data for each 

cluster are shown in Table 2. 

In the context of predicting taxi demand for the year 2016, 

our data preparation efforts extended to the early months of the 

year, encompassing January, February, and March. We 

meticulously executed a series of steps to ensure the datasets 

were optimized for in-depth analysis. Initially, we carefully 

selected and filtered the relevant columns from the raw data, 

subsequently enhancing the dataset by incorporating 

significant trip-related attributes such as trip durations, speeds, 

and Unix timestamps of pickup times. 

 

Table 2. Pickup bins each cluster 

 

 
Pickup_ 

Longitude 

Pickup_ 

Latitude 

Pickup_ 

Cluster 

Pickup_ 

Bins 

0 -73.993896 40.750111 14 2130 

1 -74.001648 40.724243 25 1419 

2 -73.963341 40.802788 8 1419 

3 -74.009087 40.713818 21 1419 

4 -73.971176 40.762428 28 1419 

 

Building on our prior work involving spatial clustering, we 

retained our approach to assign each trip to specific clusters 

based on their pickup locations. This clustering method 

effectively grouped trips that shared similar geographical 

characteristics, enabling the exploration of spatial patterns. We 

also introduced the concept of pickup_bins, which represented 

10-minute intervals within a day, aiding in the temporal 

segmentation of the data. Consequently, we derived two 

invaluable datasets for each of the target months in 2016, 

furnishing detailed trip-level information along with the 

clustered, time-segmented data. These datasets empowered us 

to uncover cluster-specific taxi demand patterns over time and 

enhance our predictions regarding urban mobility and taxi 

service demand throughout 2016. 

Given that there are 24 hours in a day, 31 days in January, 

and each hour consists of 60 minutes, there were a total of 

4,464 unique time bins created for this temporal segmentation. 

The visual representation of our findings provides a 

comprehensive insight into the temporal dynamics of taxi 

service demand, as presented in Figure 8. In Figure 8, we 

present cluster 1st representative plot among a collection of 30 

cluster. This illustrative plot offers a comprehensive insight 

into the temporal dynamics of taxi service demand within a 

specific geographic area. 
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Figure 8. Plot temporal dynamics for 1st cluster 

 

2.4 Modelling approaches 

 

Our methodology comprises a variety of prediction models, 

including baseline models and advanced regression 

techniques. The baseline models, which include SMA, WMA, 

and EWMA, serve as the foundational benchmarks for 

evaluating the performance of more sophisticated models. 

These basic models are inspired by traditional time series 

forecasting techniques. 

SMA model is the first one to be employed, it forecasts the 

next value by utilizing the n previous values. Ratio value using 

in Eq (1). 

 

𝑅𝑡 =
𝑅𝑡−𝑛 + 𝑅𝑡−𝑛+1 + ⋯ + 𝑅𝑡−2 + 𝑅𝑡−1

𝑛
 (1) 

 

Next, we use Eq. (2) to forecast the future value using the 

Moving Averages of the 2016 values itself. 

 

𝑃𝑡 =
𝑃𝑡−𝑛 + 𝑃𝑡−𝑛+1 + ⋯ + 𝑃𝑡−2 + 𝑃𝑡−1

𝑛
 (2) 

 

WMA are used in the second model. All of the data in the 

window were given equal weight by the Moving Averages 

Model, but we know deep down that the most recent values 

will probably be more comparable to the future than the earlier 

values. WMA with ratio values from Eq. (3). 

 

𝑅𝑡 =
∑ (𝑛 − 1)𝑛−1

𝑖=0 × 𝑅𝑡−𝑖−1

𝑛 × (
𝑛 + 1

2
)

 (3) 

 

Use Eq. (4) to calculate WMA based on prior 2016 data. 

 

𝑃𝑡 =
∑ (𝑛 − 1)𝑛−1

𝑖=0 × 𝑃𝑡−𝑖−1

𝑛 × (
𝑛 + 1

2
)

 (4) 

 

EWMA are employed in the third model. We have met the 

analogy of assigning greater weights to the most recent value 

and decreasing weights to the subsequent ones through 

weighted averages, but we are still unsure of the best 

weighting scheme due to the infinite number of ways we can 

adjust the hyperparameter window-size and assign weights in 

a non-increasing order. 

We utilize a single hyperparameter, α, for exponential 

moving averages. Its value ranges from 0 to 1, and the weights 

and window sizes are set up according to Eq. (5): 

 

𝑅𝑡
′ = 𝛼𝑅𝑡−1 + (1 − 𝛼)𝑅𝑡−1

′  (5) 

 

Next, we employ Eq. (6) to predict the future value using 

the EWMA of the 2016 values themselves. 
 

𝑃𝑡
′ = 𝛼𝑃𝑡−1 + (1 − 𝛼)𝑃𝑡−1

′   (6) 
 

The advanced regression models, namely Random Forest 

and XGBoost, are central to our prediction strategy. These 

models have proven effective in capturing the complex 

relationships within the data. They were chosen based on their 

documented success in taxi demand prediction tasks [9]. 

 

2.5 Proposed method 

 

The proposed method in our research is improve prediction 

of taxi demand by using feature engineering. In spite of the 

temporal and spatial characteristics inherent in the dataset, we 

incorporated Fourier features to capture periodic patterns and 

seasonality in taxi demand. This enhancement enables our 

models to better capture recurring trends, such as daily and 

weekly variations in demand. The incorporation of Fourier 

features was inspired by recent work in time series analysis by 

Xu [7], which demonstrated the effectiveness of this approach 

in capturing periodic patterns. 

In addition, we leverage Fourier Transforms to decompose 

the time series data into its constituent frequency components. 

The Fourier Transforms help us identify recurring patterns and 

underlying frequency signals within the time series [21]. One 

of the fundamental formulas of Fourier Transforms is as 

follows Eq. (7): 

 

𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−𝑖2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 (7) 

 

where: 

𝐻(𝑓) represents the frequency domain representation of the 

time series 𝐻. 

ℎ(𝑡) is the actual time series data at time . 

stands for frequency in the frequency domain. 

 represents the imaginary unit. 

By applying Fourier Transforms to our time series data, we 

gain insights into recurring patterns and the presence of 

periodic components in the taxi demand, allowing us to 
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capture and model the influence of various frequencies on 

demand. To characterize further the temporal patterns of taxi 

service demand in the selected regions, we conducted a 

comprehensive frequency analysis. The analysis involved 

computing the top 5 frequencies ( 𝐹1  to 𝐹5 ) and their 

corresponding amplitudes (𝐴1 to 𝐴5) for each region, which 

allowed us to identify the most prominent cyclic patterns in 

taxi pickups. The frequencies represent the temporal cycles at 

which the demand for taxi services exhibits substantial 

variations, while the amplitudes quantify the magnitude of 

these variations. 

Then, proceeded with predictive modeling to estimate the 

temporal patterns of taxi service demand. To achieve this, we 

prepared a dataframe that featured the 𝑥(𝑖)  values as the 

smoothed data from January 2015 and the 𝑦(𝑖) values as the 

corresponding data from January 2016. This dataframe 

enabled us to calculate the ratios between the observed 

demand in January 2016 (𝑃𝑡
2016) and that of January 2015 

(𝑃𝑡
2015) for each time bin as Eq. (8). These ratios served as 

essential indicators for assessing how the demand patterns had 

evolved over time, allowing us to make insightful predictions 

about future taxi service requirements. This predictive aspect 

of our research has significant implications for optimizing taxi 

fleet management and resource allocation to meet the dynamic 

demand patterns in different geographical regions. 

 

𝑅𝑡 =
𝑃𝑡

2016

𝑃𝑡
2015 (8) 

 

In addition to the existing features, we have introduced five 

new features, denoted as Ft1 to Ft5. Ft1 represents the number 

of pickups that occurred during the previous four 10-minute 

intervals, from t-2 to t-5. Table 3 presents feature Fourier in 

the data test, and Table 4 presents feature Fourier in the data 

test. These features capture the periodicity of taxi demand 

patterns and provide valuable information for our predictive 

models. Specifically, we combine the amplitudes 𝐴1  to 𝐴5 

and frequencies 𝐹1 to 𝐹5 into dataset. Meanwhile, Figure 9 

presents a frequency and amplitude graph, here we will see the 

difference in amplitude at a certain time. 

Figure 9 illustrates the amplitude versus frequency plot 

from the Fourier Transform applied to taxi demand data. On 

the x-axis, frequency is shown where lower frequencies 

correspond to daily patterns in taxi demand, while the y-axis 

represents amplitude, quantifying the strength of these 

patterns. The most significant peak, reaching an amplitude of 

approximately 350,000, occurs near the 0.01 frequency mark, 

highlighting the dominance of daily cycles in taxi usage. The 

sharp decrease in amplitude as the frequency approaches 0.5 

indicates that high-frequency, short-term fluctuations are 

considerably less impactful. This graph clearly demonstrates 

the periodic nature of taxi demand, which is pivotal for 

optimizing our prediction models. 

 

 
 

Figure 9. Plot of amplitude vs frequency 

 

2.6 Evaluation metrics 

 

Our methodology employs performance metrics with 

MAPE. MAPE evaluates the percentage variance between 

estimated and actual demand, providing an intuitive 

understanding of prediction accuracy. These metrics were 

chosen based on their widespread use in taxi demand 

prediction research by Zhang et al. [22]. The formula of 

MAPE is shown as in Eq. (9). 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

�̂�𝑖 − 𝑋𝑖

𝑋𝑖

|

𝑛

𝑖=1

× 100% (9) 

 

 

Table 3. Feature Fourier in data test 

 
 𝑭𝒕𝟓 𝑭𝒕𝟒 𝑭𝒕𝟑 𝑭𝒕𝟐 𝑭𝒕𝟏 Lat Lon Weekday exp_avg wei_avg 

0 240 213 243 222 234 40.777809 -73.954054 4 231 690 

1 213 243 222 234 291 40.777809 -73.954054 4 273 816 

2 243 222 234 291 256 40.777809 -73.954054 4 261 803 

3 222 234 291 256 266 40.777809 -73.954054 4 264 788 

4 234 291 256 266 268 40.777809 -73.954054 4 266 802 

 

Table 4. Feature Fourier in data train 

 

 𝑭𝒕𝟓 𝑭𝒕𝟒 𝑭𝒕𝟑 𝑭𝒕𝟐 𝑭𝒕𝟏 Lat Lon Weekday exp_avg wei_avg 

0 0 106 243 299 328 40.777809 -73.954054 4 309 955 

1 106 243 299 328 340 40.777809 -73.954054 4 330 1008 

2 243 299 328 340 316 40.777809 -73.954054 4 320 972 

3 299 328 340 316 327 40.777809 -73.954054 4 324 970 

4 328 340 316 327 323 40.777809 -73.954054 4 323 973 
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3. RESULT AND DISCUSSION 

 

The results of our taxi demand prediction study encompass 

the performance of both baseline models and advanced 

regression models, with a specific focus on 𝑀𝐴𝑃𝐸  as the 

primary evaluation metric. 

 

3.1 Baseline MODEL PERFORMANCE 

 

Table 5. Prediction baseline model 

 

Methods 
MAPE 

Ratios Values 

Simple moving averages 0.22785 0.15583 

Weighted moving averages 0.22707 0.14795 

Exponential weighted moving averages 0.22755 0.14754 

 

Our study began by evaluating the performance of basic 

time series models, namely SMA, WMA, and EWMA. These 

models served as essential benchmarks for our more complex 

approaches. The performance of the model is presented in 

Table 5. 

These baseline models, though straightforward, provide a 

crucial baseline for evaluating the effectiveness of advanced 

regression models. 

 

3.2 Impact of feature engineering 
 

The incorporation of Fourier features, which capture 

periodic patterns and seasonality, significantly enhanced the 

models' ability to capture recurring trends. This was especially 

important in urban transportation, where demand patterns 

exhibit strong temporal dependencies. 

For example, we used daily taxi demand data for three 

months and compared three models (i.e., Liner Regression, 

Random Forest and XGBoost). The model without Fourier 

feature is presented in Figure 10. Meanwhile, the model with 

fouririer feature is presented in Figure 11. 

 

  
(a) Without Fourier (b) With Fourier 

 

Figure 10. Plot demand prediction without Fourier feature 

 

  
(a) Without Fourier (b) Without Fourier 

 

Figure 11. Plot demand prediction with Fourier feature 

1910



Figure 11 presents the improved performance of Linear 

Regression, Random Forest, and XGBoost models in 

predicting taxi demand when enhanced with Fourier 

Transform features, in contrast to the predictions shown in 

Figure 10 without such enhancements. This figure illustrates 

that the integration of Fourier features significantly refines the 

models' accuracy: the predictions (orange line) closely mirror 

the actual demand (blue line) across various time periods. 

Specifically, Linear Regression, typically less adept at 

capturing complex patterns, shows marked improvement in 

aligning with the actual demand curves, suggesting effective 

capture of cyclic demand variations. Similarly, Random Forest 

and XGBoost models exhibit enhanced responsiveness to 

sudden demand changes, with XGBoost demonstrating 

particularly notable precision in tracking the intricacies of 

demand fluctuations. This visual comparison underscores the 

value of Fourier Transform features in augmenting predictive 

models to better understand and anticipate the dynamics of taxi 

demand, thereby offering a more robust tool for urban mobility 

planning and management. 

 

3.3 Model performance 

 

Moving beyond the baseline models, our study incorporated 

advanced regression models to improve prediction accuracy, 

Linear Regression, Random Forest Regression, and XGBoost 

Regression were among the models used. We take three 

months of intake data from 2016 and split it so that each region 

is 70% training and 30% testing. 

To ensure the reproducibility of our findings, detailed 

configurations of the Random Forest and XGBoost models are 

provided. The Random Forest model was configured with 100 

trees, each with a maximum depth of 10, using the Gini 

coefficient to measure split quality. For XGBoost, we set a 

learning rate of 0.1, maximum depth of 6, and ran 150 training 

rounds with a subsample ratio of 0.8 to prevent overfitting. 

The robustness of these models was validated using a k-fold 

cross-validation approach with k set to 5, ensuring the models 

were tested across diverse subsets of data. Parameter 

optimization was performed using grid search, focusing on 

minimizing the root mean square error to fine-tune the models 

for optimal performance. 

In Table 6 shows that the accuracy of the demand prediction 

model with Fourier feature is obviously improved. Linear 

Regression exhibited a MAPE of 0.1156, indicating a 

substantial improvement over the baseline models. Random 

Forest Regression and XGBoost Regression further enhanced 

the performance, with MAPE values of 0.1137 and 0.1161, 

respectively. These advanced models showcased their 

capability to capture complex patterns in urban taxi demand 

data, leading to more accurate predictions. 
 

Table 6. Prediction model 
 

Methods 

Without Fourier 

Feature 

With Fourier 

Feature 

Train Test Train Test 

Linear 

Regression 
0.1333 0.1290 0.1198 0.1156 

Random Forest 0.1281 0.1271 0.1142 0.1137 

XGBoost 

Regression 
0.1296 0.1267 0.1197 0.1161 

 

The integration of Fourier Transform features significantly 

improved the adaptability of the Random Forest and XGBoost 

models, making them more effective than traditional time 

series methods like SMA and EWMA in handling 

unpredictable changes in urban demand. This was particularly 

evident in scenarios with sudden shifts, such as weather 

changes, where the Fourier Transform helped to capture and 

adjust for high-frequency variability in the data. XGBoost, 

enhanced with these features, demonstrated a substantial 

reduction in MAPE, proving its efficacy over traditional 

models in accurately forecasting taxi demand under dynamic 

conditions. 

 

3.4 Implications 

 

The practical implications of our study's findings for urban 

mobility and taxi services are significant. The achievement of 

a MAPE of less than 12% in predicting taxi demand holds 

promise for optimizing the efficiency of transportation 

systems. 

The incorporation of Fourier features played a crucial role 

in enhancing these models' performance, allowing them to 

effectively model periodic demand patterns. This emphasizes 

the significance of feature engineering in improving the 

accuracy of taxi demand predictions, aligning with the 

findings of Xu [7]. These results align with prior research in 

urban computing by Faghih et al. [23], which emphasized the 

significance of machine learning models in urban mobility 

analysis. The comparison revealed that advanced regression 

models are well-suited for addressing the complexities of 

urban taxi demand prediction, showcasing their potential for 

optimizing transportation services in metropolitan areas. 

The success of Random Forest Regression and XGBoost 

Regression in outperforming baseline models can be attributed 

to their robustness in handling complex, nonlinear patterns in 

urban taxi demand data. Random Forest Regression leverages 

the power of ensemble learning, effectively combining several 

decision trees to improve accuracy in predictions. XGBoost 

Regression, on the other hand, employs gradient boosting to 

iteratively improve the model's performance. Our findings are 

in line with the work of Stadler et al. [9], which emphasized 

the significance of machine learning models in urban 

computing. 

 

3.5 Limitations of the study 

 

Despite the promising results, our study is not without 

limitations. One limitation lies in the dataset's temporal scope, 

which covers only the period from January to March. While 

this period provides insights into seasonal trends, a more 

extended dataset could offer a more comprehensive 

understanding of long-term demand patterns. 

Another limitation is the assumption that the historical data 

reflects future taxi demand patterns. External factors such as 

economic changes, special events, or unexpected incidents can 

significantly impact demand and were not considered in our 

models. Future research could explore methods for integrating 

real-time external data sources to enhance prediction accuracy. 

 

3.6 Future research directions 

 

Further research should delve into refining the signal 

processing techniques used in urban mobility prediction by 

integrating Fourier Transform features with wavelet 

transforms. This approach can enhance the models' capacity to 

analyze non-stationary data, improving adaptability to abrupt 
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changes in urban conditions. Exploring hybrid models that 

combine machine learning with econometric analyses can also 

provide a more holistic understanding of factors influencing 

taxi demand, integrating traffic data with socio-economic 

indicators. 

Additionally, enhancing the interpretability of complex 

models like Random Forest and XGBoost is crucial for their 

application in urban planning and policy-making. Developing 

methods for model decomposition and applying explainable 

AI frameworks could increase transparency and stakeholder 

trust. Comparative studies across diverse urban environments 

would also be valuable, testing the scalability and adaptability 

of predictive models to different urban layouts and mobility 

systems, ensuring their effectiveness and generalizability. 

 

 

4. CONCLUSION 

 

This study achieves the initial objectives by significantly 

enhancing the accuracy of taxi demand prediction models 

through the integration of Fourier Transform features with 

Linear Regression, Random Forest, and XGBoost. This 

approach has markedly improved model performance in 

capturing complex urban demand patterns, leading to practical 

applications in urban mobility management. 

Enhanced predictive capabilities enable transportation 

authorities and service providers to better align resources with 

demand fluctuations, improving operational efficiency and 

passenger satisfaction. This methodology can also be applied 

to other urban planning areas, such as public transportation 

and emergency services, where accurate predictions are 

essential. 

Furthermore, these advancements support sustainable urban 

development by enabling more efficient transportation 

systems that contribute to reduced congestion and lower 

emissions. Future research could focus on incorporating real-

time data to refine these predictions further, promoting 

smarter, more responsive urban growth. 
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