
Security Analysis of SQL Injection Attacks on Multimedia and Journal-Services Sites Using

Concatenated Input Validation and Parsing Method (CIVP)

Marvin Chandra Wijaya

Department of Computer Engineering, Maranatha Christian University, Bandung 40164, Indonesia

Corresponding Author Email: marvin.cw@eng.maranatha.edu

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290523 ABSTRACT

Received: 24 January 2024

Revised: 4 September 2024

Accepted: 10 September 2024

Available online: 24 October 2024

Web applications and databases continue to face grave danger from SQL injection attacks,

which can result in unauthorized access, data modification, and system compromise. This

report discusses the methods attackers use to exploit SQL injection vulnerabilities and

emphasizes the dangers of successful attacks, such as data leaks and system compromise.

This research proposes a comprehensive system for detecting SQL injection attacks using

concatenated Input Validation and Parsing Method (CIVP). The site used as experimental

material is the Multimedia and Journal Services Site. Based on the results of forensic

analysis on the Journal Services Site, there were several attacks in cyberspace, including

using SQLMAP and Python. The system created has successfully detected SQL injection

attacks. Based on the test results, it was found that the use of the method proposed in this

study succeeded in making processing time 15.2% more efficient. Experiments carried out

with the method proposed in this study succeeded in increasing the attack detection

accuracy from 96-97% to 99.5% with a p-value of 0.008446.

Keywords:

SQL injection, input validation, parsing

method, concatenated

1. INTRODUCTION

The official site is an identity of an institution which is the

identity or a mirror of the image of the institution. The official

website contains the institution's identity, institution profiles,

activities, internal news, and external news. Therefore, an

official site must be guarded in such a way against attacks in

cyberspace. The official site may be located and managed by

a third party that provides website hosting services. In addition,

an institution can manage its own official website. With self-

management, there will be a lot of freedom and facilities that

can be provided in the system. However, with self-

management, the challenge of maintaining the site and

information system becomes essential.

Apart from the official website, other websites are also very

important to protect, such as e-commerce websites. Systems

on e-commerce sites are also often attacked by irresponsible

people [1]. Even though e-commerce is now widely used

throughout the world, many are still vulnerable to attacks.

Many e-commerce websites in various countries are down due

to various attacks.

Websites, web applications, and web users have all been

subject to severe and ongoing risks from web assaults,

including SQL injection attack (SQLi), XSS, Operating

System Command injection (CMDi), and Path traversal [2].

Because of the widespread usage of websites and online

applications and the accessibility of web attack tools on the

internet, these kinds of attacks are frequent [3]. The SQLi,

XSS, CMDi, DDoS, and Path traversal (Path) web attack

family is referred to as the "common web attacks" [4]. It is

seen that now attacks via the “common web attacks” are

becoming more and more frequent nowadays [5]. Web attacks

are becoming more massive day by day, requiring fast

countermeasures [6]. To be able to deal with attacks quickly

on websites, it is necessary to detect attacks properly and

quickly.

There are various ways to attack a website, one of the most

popular ways is SQL Injection Attack (SQLi). Website

defacement is one of the biggest dangers for business,

corporate, and government websites and web services.

Defacement will have negative implications for website

owners, including disruption of various kinds and things that

website developers will experience [7]. After the first attack

step, the next step is to compromise the resources on the web

server that has been attacked [8]. Therefore, the database in a

web server needs strict security and resistance to attack [9].

One of the most frequent security risks to cloud-deployed

web-based services is SQL injection attacks as shown in Table

1 [10]. More than 40% of attacks on the web are in the form

of SQL injection, while the second largest attack is username

or password disclosure only at 7%. That means the web

protection against attacks is good to focus on protection

against SQL Injection. SQL injection attackers can run

dangerous and bad code on target databases to obtain or

corrupt sensitive data by taking advantage of online software

flaws.

SQL injection attacks are common online application

vulnerabilities that can have serious security repercussions.

SQL injection attacks can be especially harmful in the context

of journal-services sites, where databases are used to store and

retrieve information. By inserting malicious code into user-

supplied input, an attacker can alter a SQL query, resulting in

Ingénierie des Systèmes d’Information
Vol. 29, No. 5, October, 2024, pp. 1915-1924

Journal homepage: http://iieta.org/journals/isi

1915

https://orcid.org/0000-0001-5920-4348
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290523&domain=pdf

unwanted and potentially destructive database activities.

Table 1. Most frequent attacks

Vulnerability Types # Vuln #WS Percentage

SQL Injection 502 92 84.9%

Possible Username or

Password Disclosure
47 3 7.1%

Xpath Injection 20 2 3.1%

Possible Path Disclosure 17 5 3.1%

Possible Parameter Base

Buffer Overflow
4 3 1%

Code Execution 2 2 0.6%

Total 593 107 100%

Figure 1. Illustration of SQL injection attacks

Figure 1 illustrates an SQL injection attack, in which a

hacker identifies weaknesses in a website and injects SQL

queries with input data. The server will execute malicious SQL

queries to inject databases and hackers will gain access to the

website.

In Indonesia, SQL injection attacks have targeted various

sectors, including government websites, which are vulnerable

to exploitation of sensitive data; e-commerce platforms, where

attackers seek to expose customer information such as

personal and financial details; and financial institutions, where

banks and financial services face risks of data breaches.

Several notable SQL injection incidents in Indonesia include

the 2021 breach of government websites, where attackers

defaced sites and leaked sensitive citizen data. E-commerce

platforms have also been frequent targets, with hackers

exploiting poorly secured payment systems to steal customer

information, such as emails, passwords, and financial details.

In the education sector, SQL injection has been used to

compromise university databases, exposing student records

and academic information. While specific cases are not always

publicly detailed, these trends highlight the vulnerability of

various sectors to such attacks.

Current research on SQL injection (SQLi) is focused on

enhancing detection techniques, particularly through advanced

methods like deep neural networks. One effective approach is

the use of models such as recurrent neural networks (RNNs)

and autoencoders, which can accurately detect SQLi by

identifying patterns in database queries. These models

leverage large datasets to learn the structure of both legitimate

and malicious queries, significantly improving detection

accuracy compared to traditional methods. This evolving

research demonstrates the growing importance of machine

learning in combating SQL injection attacks.

2. LITERATURE REVIEW

SQL injection attacks can be classified based on intent:

extracting data, adding data, modifying data, and others

attacks. SQL injection attacks have several types: tautologies,

illegal, logically incorrect queries, piggyback queries, stored

procedures, and alternate encodings.

The system network has several security weaknesses

because of the computer network's size and volume of

information. In order to create an efficient and useful

simulation model of computer network security evaluation, a

system for network security evaluation must be built. Using

the simulation model, network security impact can be

increased. The simulation of global computer security

evaluation is a novel topic in our nation since the reform and

opening up. It has the ability to research network security

thoroughly. Also, it can be used to construct a system for

global security evaluation and study network security directly.

It may assess, investigate, develop, and plan different phases

in the computer network simulation system in order to play a

significant role [11]. In this study, a new algorithm was

implemented after analyzing the artificial network system

model and addressing the neural network's weaknesses in

convergence and search. Based on this analysis, a simulation

model for computer network security was developed, and its

performance was validated through appropriate testing. The

results of the simulation highlight the model's exceptional

performance and significant improvement potential.

Numerous websites access the World Wide Web using one

of the many web servers that exist in the world. These websites

are vulnerable to attacks, usually input validation-related ones.

These attacks make website hacking simple and let

anonymous users expose sensitive data. The open market is

currently in a very dangerous state. The analysis carried out as

previously said and on top of the computerized environment

prompts us to conduct a study on SQL injection attacks and

dangerous invasion approaches, that use runtime validation for

detecting such assaults and tracking their event [12]. A

technique for identifying and containing SQLIA issues is

presented in this paper. The method involves a one-time

offline process that employs stagnant application code analysis

to extract an application's planned SQL query behaviour,

which will take the form of a predetermined series of tokens.

In an effort to gain access to sensitive data, attackers are

considering web apps as a prime target. A company may be

vulnerable to different attacks if it does not implement

efficient data protection mechanisms. To ensure effective data

protection, government institutions in particular need to look

outside the box when it comes to security measures. Therefore,

it is crucial to do security testing and ensure that the system is

secure before an attack occurs. One of the oldest, most

common, and most dangerous online application

vulnerabilities is the SQL Injection flaw because it may harm

any website or web application that uses a SQL-based database.

Utilizing various security systems is necessary to solve the

SQL injection issues [13].

The main goal of conventional wireless application

firewalls is to stop erroneous SQL requests. Few of them can

rapidly assess the severity of an attack and precisely determine

1916

whether it is truly detrimental. to make the renters more

conscious of how severe a SQL injection attack is. In 2019, Gu

et al. and associates presented DIAVA, a novel traffic-based

SQL injection attack detection and vulnerability analysis

platform that may proactively and immediately alert tenants.

DIAVA can precisely identify successful SQL injection

attacks from every SQL query input from bidirectional

network traffic of SQL operations using the suggested

multilayer regular expression model. DIAVA, meanwhile, can

swiftly assess the seriousness of such SQL injection attacks

and the vulnerabilities of the associated spilled data using its

GPU-based dictionary attack analysis engine. According to

experimental findings, DIAVA not only exceeds cutting-edge

wireless application firewalls in terms of precision and recall

when it comes to identifying SQL attacks, but it also offers

real-time vulnerability evaluation of data leaks brought on by

SQL injection [14]. SQL injection attacks (SIA) have recently

grown to be a serious hazard to Web applications. Attackers

can expose or control a Web application's back-end database

through properly prepared user input.

Alkhathami and Alzahrani [15] in 2022 will detect SQL

injection attacks using machine learning. SQL injection

requests are divided into two groups by the model: attack and

valid. Four machine learning algorithms are being used to train

the model. After conducting data preprocessing and feature

extraction. Authors used various classification methods to

classify every SQL query. Figure 2 shows the steps of the

model used in Jamilah’s system.

In 2019, Tashenova et al. [16] conducted a study to look at

various ways of SQL injection attacks. Different strategies for

implementing SQL injection and techniques to prevent it were

taken into consideration and experimentally used in the

research effort. The author also comprehended the traits of

SQL injections and how they connect to their fundamental

structure. On the basis of this, it was experimentally put into

practice, launching an assault on two web apps that had a

similar interface but a different core structure. In other words,

the second web application was secure, whereas the first web

application was open to assault.

Volkova et al. [17] in 2019 studied the use of machine

learning in advanced SQL injection attacks. The main goal of

the research is to apply machine learning techniques for

identifying injection features in the HTTP query string.

Authors use various machine learning techniques. Deep

Sequential Models and a Neural Network with Dropout layers

were also used. The results demonstrated the benefits of using

a machine-learning approach to identify harmful patterns in

HTTP query strings. Figure 3 shows the steps of the SQL

injection attack detection research scheme researched by

Volkova et al.

Figure 2. Jamilah’s system model [15]

Figure 3. Marina Volkova's research scheme [17]

Bandhakavi et al. [18] studies to prevent SQL injection

attacks using a technique called CANDID (candidate

evaluations). The method proposed in this study for detecting

SQL injection attacks focuses on comparing the query

structure the programmer intended for any input with the

structure of the actual query that gets executed. The authors

introduce a simple and innovative approach to extract intended

queries by continuously evaluating runs using well-formed

candidate inputs. This theoretically robust technique operates

by interpreting the symbolic query generated during program

execution to infer the intended queries.

Research on SQL injection (SQLi) attacks on multimedia

websites highlights significant vulnerabilities in systems

handling media content, especially due to the complex nature

of multimedia data and dynamic content delivery. Many of

these sites rely heavily on databases to manage large volumes

of user-generated content, video, and other media files, which

makes them a prime target for SQLi attacks. Attackers can

exploit weaknesses in these sites by injecting malicious SQL

code through input fields, leading to unauthorized access, data

breaches, or defacement of media content [19].

Recent studies emphasize the use of machine learning (ML)

and hybrid techniques for detecting and preventing SQLi

attacks. Approaches such as pattern-matching algorithms and

the integration of deep learning methods like recurrent neural

networks (RNNs) have shown promise in identifying

malicious queries and preventing attacks in real-time.

Additionally, encryption techniques (such as AES-128) and

token-based authentication have been suggested to mitigate

SQLi risks by securing database access and input validation.

These methods aim to enhance detection accuracy while

minimizing false positives, crucial for sites with heavy traffic

and multimedia usage [20].

3. METHODOLOGY

A security analysis of SQL injection threats on websites

using journal services is provided below.

Dataset

Data Processing

Training Algorithm

Trained Model

Evaluation

1917

• Impact on Data Confidentiality

SQL injection attacks may threaten the confidentiality of

private data kept in the database. Attackers can create

malicious SQL queries to retrieve data that they are not

allowed to access. This situation could include user personal

information from journal-services websites, such as names,

email addresses, or research data.

• Impact on Data Integrity

Attacks using SQL injection can also change or manipulate

database data. Attackers have the ability to alter the database's

structure, add harmful data, or modify or delete records. This

could result in the unlawful change or deletion of published

papers, research data, or user accounts on sites that provide

journal services.

• Impact on Availability

By establishing the database or the entire application

unusable or crashing, SQL injection attacks can lead to denial-

of-service scenarios. Attackers may take advantage of SQL

query flaws to exhaust system resources or carry out laborious

tasks, disrupting service for authorized users.

• Privilege Escalation

Attackers may be able to increase their privileges within the

program through SQL injection attacks. Attackers can get

around access controls and obtain administrator or superuser

rights by inserting specially crafted SQL queries. As a result,

the application and underlying database may be entirely under

the control.

The procedures and steps proposed to mitigate SQL

injection attacks in this study are shown in Figure 4. These

procedures will be experimented on the Multimedia and

journal service site. This procedure is designed to ensure the

security of the application on the targeted website.

Before utilizing it in SQL queries, every user-supplied input

should be checked for accuracy and cleaned up. In order to

make sure that user input is regarded as data rather than

executable code, prepared statements or parameterized queries

should be utilized. By doing this, attackers are unable to inject

malicious SQL code. The application's database user accounts

should have the bare minimum of permissions. Avoid using

privileged accounts or giving application users unauthorized

access.

Figure 4. Proposed procedures to mitigate SQL injection

attacks

Developers should adhere to secure coding standards and

refrain from concatenating user input into SQL queries.

Instead, they ought to make use of the appropriate query-

creation techniques offered by the employed programming

language or framework. Update the application with the most

recent security patches, upgrades, and the underlying database

management system. This situation aids in defending against

weaknesses that attackers might use. Install a web application

firewall (WAF) to recognize and stop SQL injection threats. A

WAF can offer an extra layer of security by scrutinizing

incoming requests and denying those that display suspected

SQL injection patterns. Conduct regular security audits, such

as penetration tests, to find and fix the application's

weaknesses. Potential SQL injection vulnerabilities can be

found using automated tools and manual testing methods.

The theoretical analysis of SQL injection threats on

websites, particularly those providing multimedia and journal

services, highlights several critical impacts and mitigation

strategies. SQL injection attacks can severely compromise

data confidentiality by enabling unauthorized access to

sensitive information, such as personal user details and

research data. These attacks also pose a risk to data integrity,

as they can alter, add, or delete database records, potentially

tampering with published papers and user accounts.

Furthermore, SQL injection can impact availability by

disrupting the service through database crashes or resource

exhaustion, leading to denial-of-service scenarios. Attackers

might also exploit SQL injection to escalate privileges,

bypassing access controls and gaining administrative rights,

thereby gaining complete control over the application and

database.

To counter these threats, the proposed procedures include

validating and sanitizing all user-supplied input to ensure it is

treated as data rather than executable code, employing

prepared statements or parameterized queries to prevent code

injection, and limiting database user permissions to the

minimum required. Adherence to secure coding practices,

regular updates, and the use of a web application firewall

(WAF) are recommended to detect and block SQL injection

attempts. Additionally, conducting regular security audits,

including penetration tests, helps identify and address

potential vulnerabilities in the application.

3.1 Input validation

An attack known as SQL injection takes advantage of

websites' carelessness in allowing users to enter specific data

without filtering out dangerous characters. Typically, users

submit information into the search box or other areas of the

website that communicate with the site's SQL database. The

command that the attacker enters is typically a piece of

information containing a specific link that takes the victim to

a particular website that the attacker uses to retrieve the

victim's personal information.

Developers can use programs like NoScript, an add-on for

the Firefox web browser, to prevent dangerous links from

websites subjected to SQL injection attacks. With SQL

Injection, an attacker can access the database by sending

commands to the server via URIs or form fields. As an

example of a vulnerability in accessing a username:

statement="SELECT*FROM users WHERE

name='"+userName+';"

Input Validation and Parameterized
Queries

Principle of Least Privilege

Secure Coding Practices

Regular Patching and Updates

Web Application Firewalls

Security Testing

1918

The "userName" variable can be abused by careless users,

even if the SQL code is intended to get the user's table records

with a specific username. Setting the "userName" variable and

executing the altering SQL statement with:

SELECT*FROM users WHERE name='' OR '1'='1';

Input validation’s implementation for the Multimedia and

Journal Services site is as follows:

• Sanitize and Validate User Input:

Allowing only specific characters, formats, or values, also

known as whitelisting input, helps ensure that the input

adheres to the expected format, such as restricting an email

field to valid email formats. It's also crucial to perform type

checking to confirm that the input matches the required data

type, such as integers or dates.

• Use Prepared Statements and Parameterized Queries:

It is advisable to use prepared statements instead of inserting

raw user input into SQL queries, as this approach ensures that

the input is treated as data rather than part of the query itself.

query="SELECT * FROM users WHERE

username=%s AND password=%s"

cursor.execute(query, (username, password))

• Escape Special Characters

If parameterized queries are not possible, escape special

characters in user input before including them in SQL queries.

$username=mysqli_real_escape_string ($connection,

$username);

• Enforce Strong Input Validation Rules:

For numeric inputs, it is important to ensure that the input is

validated as numeric using appropriate language-specific

methods, such as is_numeric() in PHP. String inputs should

have any potentially harmful characters removed or encoded

to prevent misinterpretation by the database engine, including

characters like “ ; ” , “ - ” , “ ' ”, and “ " ”. Additionally, date

inputs should align with the required format, which can be

verified using regular expressions or built-in date parsing

libraries.

• Use ORM or Framework-Level Protections:

The risk of SQL injection is mitigated when frameworks

abstract query construction, as this approach reduces direct

interaction with raw SQL.

if (filter_var($email,

FILTER_VALIDATE_EMAIL) &&

preg_match("/^[a-zA-Z0-9]*$/", $username)) {

 $stmt = $conn->prepare("SELECT * FROM

users WHERE email = ? AND username = ?");

 $stmt->bind_param("ss", $email, $username);

 $stmt->execute();

} else {

 echo "Invalid input.";

}

3.2 Principle of least privilege

The Principle of Least Privilege (PoLP), a fundamental

concept in computer security, suggests that individuals,

processes, or systems should be granted only the minimum

level of access or permissions necessary to perform their

specific tasks or functions. Key elements of the least privilege

principle include:

• Access Control

• Privilege Separation

• Regular Review

• Principle of Fail-Safe Default

• Segmentation and Isolation

• Least Privilege

3.3 Secure coding practices

The technique of developing software code in a way that

minimizes vulnerabilities and lowers the risk of security

threats and attacks is known as secure coding. To create

applications that are resistant to common security concerns,

security considerations must be incorporated into the

development process. Several fundamental ideas and

recommended methods for secure coding:

• Input Validation

• Parameterized Queries

• Secure Authentication

• Avoid Hardcoding Sensitive Information

• Secure Error Handling

• Protect Against Cross-Siste Scripting

• Secure File Handling

• Regularly Update

• Secure Coding Frameworks

• Security Testing and Code Reviews

3.4 Regular patching and updates

Patching and updating often is essential for preserving the

security and reliability of software systems. Consider the

following best practices for managing patches and updates:

• Implement a Patch Management Process

• Prioritize Critical Update

• Automate Patch Deployment

• Maintain System Documentation

3.5 Multimedia and web applications and firewalls

A security tool called a Web Application Firewall (WAF) is

made to shield web applications against different kinds of

assaults. Between the web application and the internet, it

serves as a firewall, examining incoming and outgoing traffic

to spot and stop dangerous or suspicious activity. Key

characteristics and advantages of web application firewalls

include:

• Application Layer Protection

• Attack Detection and Prevention

• Web Application Hardening

• DDoS Mitigation

• Logging and Auditing

1919

3.6 Security testing

A crucial phase in the software development life cycle is

security testing, which aims to identify weaknesses,

vulnerabilities, and security issues within a system or

application. An initial test often involves inserting a single

quote or semicolon into the field or parameter being examined.

The single quote acts as a string terminator in SQL, and if not

properly filtered by the application, can lead to a faulty query.

Similarly, the semicolon is used to terminate an SQL statement,

and if not filtered, is likely to trigger an error. The output from

a vulnerable field may appear as follows on a Microsoft SQL

Server:

Microsoft OLE DB Provider for ODBC Drivers error

'8OO4OeO4'

{Microsoft}{ODBC SQL Server Driver][SQL Server}

Unclosed quotation mark before the

character string '_'.

/folder/file.php, line 254

To try to alter the query, use comment delimiters (/* */, --,

or others) as well as additional SQL keywords such as AND

and OR. A straightforward yet sometimes effective technique

is to input a string where a number is expected, which can

result in the following error:

Microsoft OLE DB Provider for ODBC Drivers error

'8OO4OeO8'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax

error converting the

varchar value 'book' to a column of data type float.

/folder/folder.asp, line 254

Monitor all web server responses and review the JavaScript

or HTML source code, as issues may be present but not visible

to the user. Detailed error messages, like those in the examples,

can provide attackers with valuable information to execute a

successful injection attack. However, applications often reveal

minimal information, such as a generic '500 Server Error' or a

custom error page, which may require the use of blind

injection techniques. Regardless, it is essential to test each

field individually, ensuring that only one variable is altered at

a time, to accurately identify which parameters are more

vulnerable than others.

3.7 Parsing PCAP implementations

Parsing PCAP (Packet Capture) files can be implemented

using various programming languages and libraries designed

to read and analyze network traffic data.

• Parse PCAP Files with Scapy

from scapy.all import rdpcap

packets = rd pcap('file.pcap')

for packet in packets:

print(packet.summary())

• Parse PCAP Files with PyShark

import pyshark

Load the PCAP file

cap = pyshark.FileCapture('example.pcap')

Iterate through packets and display information

for packet in cap:

 print(packet)

• Additional Steps

Effective handling of PCAP files involves filtering packets

with BPF (Berkeley Packet Filter) to focus on specific traffic

types, extracting and analyzing protocols such as TCP, UDP,

and HTTP along with their metadata, and using tools like

Wireshark for visual inspection of the traffic, or alternatively,

developing a custom tool for detailed analysis.

4. RESULTS

The experiment for this study was carried out on a

multimedia and journal service website. Firstly, need to know

the original query is always required to achieve union-based

injection. The object of this research is a multimedia website

and service journal that has been verified for accuracy [21].

The content of the multimedia and journal services site is as

follows:

• Research Papers and Articles

• Abstracts and Summaries

• Author Profiles

• Citations References

• Downloaded Content

• Video/Audio Content

• Images and Graphics

• Content Descriptions

• Metadata

Table 2 shows the steps to retrieve the original query using

the default DBMS tables.

Extracting and analyzing network traffic data that has been

recorded in the PCAP format is what is involved in parsing file

log PCAP (Packet Capture). Pcap files preserve captured

packets, payloads, and headers, enabling offline analysis or

post-event research. The developer can adhere to the general

methods listed below to parse a PACAP file:

• Select a tool for PCAP parsing.

• Open up the PCAP File.

• Extract Information from Packets.

• Analyze and Filter Packets.

• Examine the headers and payloads of packets.

• Conduct a protocol analysis.

• Extract Relevant Information.

• Produce reports or visuals.

Table 2. Default DBMS table

DBMS Table

My SQL information_schema. processlist

Postgres SQL pg. stat activity

Microsoft SQL Server sys.dm exec cached plans

Oracle V$ SQL

Reading log files is implemented on a network forensics

1920

server. The log file is examined, which helps observe the flow

of packet headers that move around the network.

My_data@my_data:~$perl parsing_pcap.pl

Time: 03-12 17:40:11.152692

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:

03134f601983 Port Numbers: 456O2

IP Address Destination: aaa.aaa.aaa.aaa Mac Address

Destination: OO3462758dda Port Numbers: 8O

Time: 03-11 19:16:31.123545

IP Address Source: aaa.aaa.aaa.aaa Mac Address Source:

OO124a41f375 Port Numbers: 123704

IP Address Destination: aaa.aaa.aaa.aaa Mac Address

Destination: OOO9dfd4343 Port Numbers: 8O

A tool to determine which ports are open or closed on a

server or host is a port scanning application. The developer can

use it by entering perl portscan.pl, followed by the required

port number and the IP address of the server or host they wish

to analyze.

root@my_data:/folder/my_data# perl port_scan.pl

aaa.aaa.aaa.aaa 2)-26

The Results are

Target aaa.aaa.aaa.aaa: Port_2O is closed

Target aaa.aaa.aaa.aaa: Port_21 is open

Target aaa.aaa.aaa.aaa: Port_22 is closed

Target aaa.aaa.aaa.aaa: Port_23 is closed

Target aaa.aaa.aaa.aaa: Port_24 is closed

Target aaa.aaa.aaa.aaa: Port_25 is closed

Target aaa.aaa.aaa.aaa: Port_26 is closed

In order to get the answers to forensic queries like what IP

address attacked a server, what port did the attacker use to

access a system, and other things, log files that have been

retrieved from IDS are analyzed using parsing logs and port

scans. In the third script, the log files are analyzed using

SQLite. They were calling the pkts2db.pl script, opening the

logfileall.pcap file, specifying the name of the new database

log file, and then typing-d (to create a database) completes the

process of converting a log file into a database.

My_data@my_data:~$ perl_log_kedb.pl-r data_log.pcap-d

data_log.db

sqlite>select s addr, d addr, count(*) as count

__>from ip

__>group by s addr, d addr

__>order by count desc; s addr d addr count

 - aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa

256

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 41

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 35

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 2O

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 19

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 13

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 18

aaa.aaa.aaa.aaa aaa.aaa.aaa.aaa 14

Only a small number of IP addresses will be examined by

the attacker's analysis tool. An attacker believed to be located

in Asia Pacific is identified by the IP address 125.201.71.aaa.

The website for Multimedia and Journal Services was attacked

using sqlmap.

My_data@my_data:~$ perl_logkedb.pl-r data_log.pcap-d

data_log.db

sqlite>select s addr, d addr, count(*) as count

__>from ip

__>group by s addr, d addr

__>order by count desc; s addr d addr count

Time s addr d addr

----------------- -------------- -----------

2022-08-10 11:18 8O.255.47.aaa aaa.aaa.aaa

2022-08-10 11:18 8O.255.47.aaa aaa.aaa.aaa

2022-08-10 11:18 8O.255.47.aaa aaa.aaa.aaa

8O.255.47.aaa 1O.13.254.42 Python_urllib/2.8

8O.255.47.aaa 1O.13.254.42 Python_urllib/2.8

An attacker who is known to be in Europe is identified by

the IP address 80.255.47.aaax. Python is used by the attacker

to target the Journal Services Site.

My_data@my_data:~$ perl_logkedb.pl-r data_log.pcap-d

data_log.db

sqlite>select s addr, d addr, count(*) as count

__>from ip

__>group by s addr, d addr

__>order by count desc; s addr d addr count

Time s addr d addr

----------------- -------------- -----------

2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa

2022-08-09 10:13 125.201.71.aaa aaa.aaa.aaa

2022-08-09 10:14 125.201.71.aaa aaa.aaa.aaa

125.201.71.aaa aaa.aaa.aaa.aaa sqlmap/1.O_dev (rNone)

(http://www.sqlmap.org)

The process of identifying SQL injection attacks using input

validation and parsing methods requires quite a long

processing time. Figure 5 is the result of measuring the time

required for the input validation process. It can be seen that in

the input validation process, the processing time starts to look

stable at around 2250 users.

Figure 6 shows the results of measuring the time required

for the parsing method process. As with input validation, it can

be seen that in the parsing method the processing time starts to

look stable at a number of users around 500 users.

The concatenated method process proposed in this study

1921

succeeded in making the processing time more efficient, as

shown in Table 3. The concatenated method processing time

succeeded in reducing the processing time to be 15.2% more

efficient than the sum of the processing times of the two

methods separately.

Figure 5. Input validation’s processing time graph

Figure 6. Parsing method’s processing time graph

Table 3. Processing time comparison

Users Time (ms) Efficiency

Input

validation

Parsing

method
Concatenated

10 6 10 14 12.50%

20 16 21 32 13.51%

30 32 41 63 13.70%

40 42 53 81 14.73%

50 55 64 101 15.12%

…

…

…

2230 986 1084 1749 15.51%

2240 997 1103 1772 15.62%

2250 999 1105 1775 15.64%

The next test is to measure the success rate of identification

if an attack occurs on the website. Testing will use a confusion

matrix. Testing is carried out by measuring the success of

attack identification using input validation, parsing methods

and concatenated methods. The formulas for the confusion

matrix are in Eqs. (1)-(3) and Table 4.

Table 4. Confusion matrix

Matrix
Actual Class

Attack Not Attack

Prediction

Class

Attack
TP (True

Positive)

FP (False

Positive)

Not Attack
FN (False

Negative)

TN (True

Negative)

Table 5. Confusion matrix for input validation

Matrix
Actual Class

Attack Not Attack

Prediction

Class

Attack TP=94 FP=0

Not Attack FN=6 TN=100

Table 6. Confusion matrix for parsing method

Matrix
Actual Class

Attack Not Attack

Prediction

Class

Attack TP=92 FP=0

Not Attack FN=8 TN=100

Table 7. Confusion matrix for concatenated method

Matrix
Actual Class

Attack Not Attack

Prediction

Class

Attack TP=99 FP=0

Not Attack FN=1 TN=100

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (1)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (2)

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% (3)

Based on the data in Table 5, the results of the attack

detection experiment with input validation are as follows:

Precision=(94)/(94)x100%=100%

Recall=(94)/(100)x100%=94%

Accuracy=(94+100)/(200)=97%

Based on the data in Table 6, the results of the attack

detection experiment with the parsing method are as follows:

Precision=(92)/(92)x100%=100%

Recall=(92)/(100)x100%=92%

Accuracy=(92+100)/(200)=96%

Based on the data in Table 7, the results of the attack

detection experiment with concatenated method are as follows:

Precision=(99)/(99)x100%=100%

Recall=(99)/(100)x100%=99%

Accuracy=(99+100)/(200)=99.5%

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

Ti
m

e
(m

s)

Number of users

Input Validation's Processing Time

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Ti
m

e
(m

s)

Number of users

Parsing Method's Time Processing

1922

In order to calculate the confidence interval of the efficiency

carried out, the formula used is

CI = X ±
𝑠

√𝑛
 (4)

Sample size (amount)=2250

Sample mean (average)=15.2%

Standard deviation=1.5%

Confidence Level=95%

CI=15.20.062

The statistical calculation of the Confidence Level of the

efficiency of using the concatenated method is 15.20.062.

The next statistic used is to calculate the p-value using an

analysis of variance (ANOVA).

Based on Table 8 and Table 9, The f-ratio value is 6.99968.

The p-value is 0.008446. The result is significant at p < 0.05.

Based on the ANOVA statistical results, it was found that the

proposed method significantly improved efficiency.

Table 8. Summary of ANOVA data

Treatment

1 2 Total

N 250 250 500

 X 377974 349241 727215

Mean 1718.06 1587.46 1652.76

 X2 712734536 608464667 1321199203

Std. Dev. 537.85 496.83 521.27

Table 9. Results

Source SS DF MS

Between-

treatments
1876330.20 1 1876330.20

Within-

treatments
117410017.75 448 268059.40

Total 119286347.94 449

Table 10. Comparative study with other methods

Method Strengths Weaknesses Best Used For

Concatenated

Input

Validation and

Parsing

(CIVP)

Batch

processing,

simplicity in

certain

scenarios

Parsing

complexity,

difficult error

isolation,

security risks

Systems where

inputs are

combined

before

validation

Regular

Expressions

(RegEx)

Granular

control,

efficient

pattern

matching

Hard to

maintain,

limited logic,

potential

security issues

Simple, well-

defined input

fields

Whitelisting

High security,

simple and

effective

Restrictive,

frequent updates

required

Systems with

strict input

rules

Blacklisting

Easy to

implement for

basic cases

Insecure,

complex to

maintain for

evolving threats

Blocking

specific

known

malicious

inputs

Structured

Validation

(JSON/XML)

Strong data

integrity, wide

validation

rules

Performance

overhead,

complexity

Structured

data formats,

such as APIs

and services

Table 10 is a comparison between the Concatenated Input

Validation and Parsing (CIVP) method and other methods.

Other methods used for comparison are Regular Expression

(RegEx), Whitelisting, Blacklisting, and Structured Validation

(JSON/XML).

Based on the results of statistical calculations, several

further analyses can be taken as follows:

• The narrow range of the confidence interval (CI) suggests

that the sample mean is a good estimate of the population mean,

indicating high precision in the study's estimate of efficiency.

• F-Ratio: The F-value of 6.99968 indicates that there is

variability between the treatment means that is larger than

what we would expect due to random chance. A higher F-value

indicates more substantial differences between group means.

• p-Value: The p-value is 0.008446, which is less than the

common significance level of 0.05. This indicates that the

differences between the two-treatment means are statistically

significant. In other words, there is strong evidence that

efficiency improvement is seen with the concatenated method.

• The Concatenated Input Validation and Parsing Method

offers efficiency in certain batch processing scenarios but may

introduce significant security risks and error-handling

challenges, particularly if parsing is not well-defined. Other

methods like RegEx, Whitelisting, and Structured Validation

provide more granular control, but each comes with trade-offs

in complexity, flexibility, and security. Whitelisting is usually

the most secure method, whereas Structured Validation excels

in complex data formats.

5. CONCLUSIONS

Network forensic investigations are carried out to trace the

traces of the attacker. The log files can be used to look for

evidence of unauthorized network activity. The information is

derived from IDS Snort, a network-based intruder detection

system. IDS Snort uses a number of rules (rules) to identify

network intruders, and enforcing these rules is crucial to

identifying attacks.

On the network forensic server, PERL scripts are used to

decipher log files according to the time of the attack, the IP

address, the Mac address, and the port. The script for log file

analysis using SQLite and the ports scanning script are then

used to discover open ports on a server. A port scan script aims

to determine which ports are open if an attacker successfully

breaches a system using SQL Injection or exploiting online

vulnerabilities with databases. Then the log file is examined

using the SQLite script. The three scripts and the employed

modules are uploaded to the forensic network server.

By having network forensic research available via the

Journal Services Site, people are believed to realize how

challenging it is to defend networks from intrusions. It is

possible to take steps to stop it from happening again or lessen

the harm the attack will do.

Based on the test results, it was found that the use of the

method proposed in this study succeeded in making processing

time 15.2% more efficient. Experiments carried out with the

method proposed in this study succeeded in increasing the

attack detection accuracy from 96-97% to 99.5%.

SQL attack prevention is very limited by the form of data to

be protected. The method in this study has limitations because

it is specifically for data contained in the Multimedia and

Journal Services Site which consists of research article data

1923

including multimedia files such as video and audio.

ACKNOWLEDGMENT

This research was supported and carried out in the computer

network laboratory at the Department of Computer Systems at

Maranatha Christian University.

REFERENCES

[1] Chala, O., Novikova, L., Chernyshova, L., Kalnitskaya,

A. (2020). Method for detecting shilling attacks based on

implicit feedback in recommender systems. EUREKA:

Physics and Engineering, 5: 21-30.

https://doi.org/10.21303/2461-4262.2020.001394

[2] Hoang, X.D., Nguyen, T.H. (2021). Detecting common

web attacks based on supervised machine learning using

web logs. Journal of Theoretical and Applied

Information Technology, 99(6): 1339-1350.

[3] Szczypiorski, K. (2020). Cyber (in) security.

International Journal of Electronics and

Telecommunications, 6(1): 243-248.

https://doi.org/10.24425/ijet.2020.131870

[4] Wiśniewski, P., Sosnowski, M., Burakowski, W. (2022).

On implementation of efficient inline DDoS detector

based on AATAC algorithm. International Journal of

Electronics and Telecommunications, 68(4): 889-898.

https://doi.org/10.24425/ijet.2022.143899

[5] Kumar, H.T.| R. (2021). Attack and anomaly detection in

IoT networks using supervised machine learning

approaches. Revue d’Intelligence Artificielle, 35(1): 11-

21. https://doi.org/10.18280/ria.350102

[6] Dasari, K.B., Devarakonda, N. (2022). TCP/UDP-Based

exploitation DDoS attacks detection using ai

classification algorithms with common uncorrelated

feature subset selected by pearson, spearman and kendall

correlation methods. Revue d’Intelligence Artificielle,

36(1): 61-71. https://doi.org/10.18280/ria.360107

[7] Hoang, X.D., Nguyen, N.T. (2019). Detecting website

defacements based on machine learning techniques and

attack signatures. Computers, 8(2): 35.

https://doi.org/10.3390/computers8020035

[8] Challa, R., Rao, K.S. (2022). Resource based attacks

security using RPL protocol in internet of things.

Ingénierie des Systèmes d’Information, 27(1): 165-170.

https://doi.org/10.18280/isi.270120

[9] Murty, M.S., Rao, N.N. (2020). Stalking the resources

for security in linked data applications using resource

description framework. Ingénierie des Systèmes

d’Information, 25(6): 793-801.

https://doi.org/10.18280/isi.250609

[10] Antunes, N., Vieira, M. (2009). Detecting SQL injection

vulnerabilities in web services. In 2009 Fourth Latin-

American Symposium on Dependable Computing, Joo

Pessoa, Brazil, pp. 17-24.

https://doi.org/10.1109/LADC.2009.21

[11] Nagabhooshanam, N., Ganapathy, N.B.S., Ravindra

Murthy, C., Mohammed Saleh, A.A., CosioBorda, R.F.

(2023). Neural network based single index evaluation for

SQL injection attack detection in health care data.

Measurement: Sensors, 27: 100779.

https://doi.org/10.1016/j.measen.2023.100779

[12] Dubey, A.M.S., Mehra, N. (2023). A review on SQL

injection, detection and preventions techniques. Journal

of Pharmaceutical Negative Results, 1: 1068-1073.

https://doi.org/10.47750/pnr.2023.14.S01.148

[13] Maraj, A., Rogova, E., Jakupi, G., Grajqevci, X. (2017).

Testing techniques and analysis of SQL injection attacks.

In 2017 2nd International Conference on Knowledge

Engineering and Applications (ICKEA), London, UK,

pp. 55-59.

https://doi.org/10.1109/ICKEA.2017.8169902

[14] Gu, H., Zhang, J., Liu, T., Hu, M., Zhou, J., Wei, T.,

Chen, M. (2019). DIAVA: A traffic-based framework for

detection of SQL injection attacks and vulnerability

analysis of leaked data. IEEE Transactions on Reliability,

69(1): 188-202.

https://doi.org/10.1109/TR.2019.2925415

[15] Alkhathami, J.M., Alzahrani, S.M. (2022). Detection of

SQL injection attacks using machine learning in cloud

computing platform. Journal of Theoretical and Applied

Information Technology, 100(15): 5446-5459.

[16] Tashenova, Z., Nurlybaeva, E., Tulegulov, A.,

Abdugulova, Z. (2021). SQL-Attack research and

protection. Journal of Theoretical and Applied

Information Technology, 99(19): 4536-4545.

http://www.jatit.org/volumes/Vol99No19/8Vol99No19.

pdf

[17] Volkova, M., Chmelar, P., Sobotka, L. (2019). Machine

learning blunts the needle of advanced SQL injections.

In MENDEL, 25(1): 23-30.

https://doi.org/10.13164/mendel.2019.1.023

[18] Bandhakavi, S., Bisht, P., Madhusudan, P.,

Venkatakrishnan, V.N. (2007). CANDID: Preventing

SQL injection attacks using dynamic candidate

evaluations. In Proceedings of the 14th ACM Conference

on Computer and Communications Security, New York,

United States, pp. 12-24.

https://doi.org/10.1145/1315245.1315249

[19] Johny, J.H.B., Nordin, W.A.F.B., Lahapi, N.M.B., Leau,

Y.B. (2021). SQL Injection prevention in web

application: A review. In Advances in Cyber Security:

Third International Conference, ACeS 2021, Penang,

Malaysia, Revised Selected Papers, Springer, Singapore,

3: 568-585. https://doi.org/10.1007/978-981-16-8059-

5_35

[20] Demilie, W.B., Deriba, F.G. (2022). Detection and

prevention of SQLI attacks and developing compressive

framework using machine learning and hybrid

techniques. Journal of Big Data, 9(1): 124.

https://doi.org/10.1186/s40537-022-00678-0

[21] Wijaya, M.C., Maksom, Z., Abdullah, M.H.L. (2021).

Two verification phases in multimedia authoring

modeling. Journal of Information and Communication

Convergence Engineering, 19(1): 42-47.

https://doi.org/10.6109/jicce.2021.19.1.42

1924

