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The Internet of Things (IoT) has recently been implemented in various applications. An IoT 

network is a group of Internet-connected computing devices embedded in everyday objects. 

Usually, those devices can interact with each other via the Internet by exchanging data. 

Because of privacy and security requirements, users of IoT-connected objects need 

measures to secure corresponding data during storage and transmission. This work presents 

an architecture that integrates IoT devices, blockchain technology, and embedded 

homomorphic encryption to ensure high computation speed and security levels in IoT 

systems. The ultralight linear encryption technique enhances computation speed, making it 

possible to obtain homomorphic addition over the encrypted data. Using this technique, 

each administrator gains specific access to the encrypted data. Security, stability, 

traceability, and anonymity are provided through blockchain technology, which is used to 

store data. The proposed architecture is demonstrated via a use case from the healthcare 

sector. The experimental analysis shows our technique’s effectiveness in energy 

consumption reduction and privacy preservation with minimal computation and 

communication costs. By using five fields per record, name, ID, age, gender, and blood 

glucose level, we achieved an encryption time equals 0,19 ms and decryption time equals 

0,98 ms vs. 15,7 and 1,6 respectively in the best comparison technique. In communication 

cost, we achieved 1KB vs. 5KB. 
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1. INTRODUCTION

In recent years, the Internet of Things (IoT) gained 

significant attention due to its benefits and applications. The 

goal of IoT is to connect any object at any time, in any location. 

“Things” in an IoT environment are outfitted with the ability 

to sense, process, and act.  IoT devices frequently work 

together to deliver intelligent and innovative services 

autonomously. This technology is utilized across various 

fields, including home automation, environmental monitoring, 

and healthcare [1]. One primary objective of modern IoT 

systems is to bring these various application domains together 

under a single concept known as smart life. IoT architectures 

may support numerous heterogeneous devices and integrate 

various communication technologies that enable the 

connectivity essential to provide the required services to end-

users. Different enabling technologies, e.g., Wireless Sensor 

Networks (WSNs), Radio Frequency IDentification (RFID), 

and cloud computing have evolved as essential components 

for developing IoT applications [2]. Objects in IoT systems 

inherently have limited resources: they possess restricted 

memory, low processing capacity, and limited computing 

power. 

Integrating blockchain technology with IoT devices and 

homomorphic encryption may offer significant advantages in 

terms of security, privacy, and data integrity [3, 4]. However, 

scalability and computational demands remain critical 

challenges [5]. Advanced cryptographic techniques, optimized 

algorithms, specialized hardware, and hybrid approaches are 

being developed to address these challenges, making these 

technologies more practical and efficient for real-world 

applications. In particular, blockchain technology with IoT 

devices and homomorphic encryption involves specific 

scalability and computational demands challenges [6]. 

Blockchain provides a decentralized framework that secures 

IoT devices against various cyber threats. Each IoT device acts 

as a node within the blockchain network, enabling secure and 

tamper-proof recording of data transactions. Smart Contracts, 

for instance, are self-executing contracts with the terms 

directly written into code. They automate processes such as 

device authentication, data sharing, and other operations 

without any intervention from a central authority. Scalability 

allows multiple transactions to occur off the main blockchain, 

reducing the load and increasing transaction throughput. 

Integrating homomorphic encryption with blockchain allows 

computations to be performed on encrypted data without 

decrypting it, preserving privacy. This is crucial for sensitive 

data handled by IoT devices. In Smart Contracts, HE can be 
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integrated into smart contracts to perform operations on 

encrypted data, ensuring data privacy throughout the 

computation process [7]. 

Addressing aforementioned concerns and ensuring security 

and privacy for IoT products and services overall layers of the 

IoT architecture is a fundamental priority [8]. IoT devices and 

related services have to be secure enough so that users can trust 

them. Additionally, ensuring the safety of the IoT system is 

imperative to avoid unacceptable risks of injury or physical 

damage from its components. In this work, we concentrate on 

the security vulnerabilities of IoT across three critical layers: 

perception, network, and application layer. Figure 1 represents 

some of these layer wise security issues. 

Levels examine the security issues of IoT across three layers: 

Perception layer threats, involve attacks on key components of 

IoT like WSNs and RFID systems. Network layer threats focus 

on vulnerabilities within communication protocols. 

Application layer threats, encompass attacks targeting IoT 

software and end-user devices. 

Purposes estimate the impact of security attacks on IoT 

systems. Common purposes of IoT attacks include gaining 

unauthorized communication access, capturing or altering data, 

causing service disruptions, and draining device resources. 

Security requirement addresses data, communication, and 

device security. Securing IoT communications involves 

implementing authentication, access control, and non-

repudiation measures. To safeguard data, essential security 

requirements such as confidentiality, privacy, and integrity 

must be met. Additionally, trust and availability of IoT devices 

are crucial in various environments. 

This article provides a blockchain-based IoT solution using 

efficient embedded homomorphic encryption, exploiting a 

linear asymmetric and additive homomorphic function. We 

embed data so that multiple data values can be encrypted in 

one value. This principle may provide many advantages, e.g., 

an attacker should possess all plain data values of the 

encrypted message to launch a brute force attack. Another 

advantage of this technique is that the values are encrypted in 

the stack, where the first encrypted value cannot be decrypted 

without decrypting all other values.

 

 
 

Figure 1. IoT layer wise security issues 

 

 

2. RELATED WORK 

 

Blockchain is the technology that provides the security and 

credibility terms for a decentralized system. Cryptocurrency, 

e.g., Bitcoin, which creates a digital asset transaction market, 

is one of the early applications of blockchain. Nowadays, 

blockchain is integrated with many technologies thanks to 

smart contracts, which are digital contracts triggered by some 

predefined circumstances. Ethereum was among the first to 

support their conception using smart contracts and 

transactions in the blockchain. The current blockchain 

applications are developed to find more and improve the 

usability of blockchain. This section discusses and analyzes 

the recently proposed technology in IoT blockchain solutions. 

Zhou et al. [9] presented a novel blockchain based on the 

threshold IoT service system Bee-Keeper, whose main goal is 

to provide a secret sharing and secure multi-party computing 

protocol in IoT environments. The servers blindly perform 

homomorphic computations on a user’s data; the server leader 

has the ability to reconstruct the data by gathering a threshold 

number of accurate responses. Moreover, the malicious nodes 

can be evaluated and examined. As a result, the obtained 

prototype is constructed for the Ethereum blockchain platform 

with four nodes, and the server responds to requests with 107 

milliseconds. However, this approach exhibits a lightweight 

computational complexity. BeeKeeper depends on the 

performance of the underlying blockchain platform. Since 

BeeKeeper operates within the constraints of the Ethereum 
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blockchain, which imposes a maximum limit of 1014 bytes, 

the efficiency of this approach is inherently bounded by the 

capabilities of the blockchain platform. BeeKeeper 2.0 [10], 

an enhancement of the study by Zhou et al. [9], is among the 

first blockchain-enabled IoT systems to use fully 

homomorphic computations. In this system, the servers cannot 

receive any plaintext data; if a server behaves dishonestly, it 

will be discovered by the validators. The outcomes of the 

experiments carried out by the authors indicate the 

effectiveness of the proposed system using resource-

constrained devices. They also prove that the average access 

delay to the blockchain is proportional to the rate of shared 

transactions. Furthermore, the access delay is highly affected 

by low throughput. Blockchain with homomorphic encryption 

is also addressed by Loukil et al. [11], in which a Privacy-

preserving IoT Data Aggregation (PrivDA) technique is 

proposed. PrivDA ensures confidentiality, data integrity, and 

the sender’s identity verification, which are security properties 

[12]. Also, it guarantees two privacy properties, namely 

anonymity and pseudonymity. The authors of PrivDA 

employed the Paillier homomorphic encryption scheme to 

allow IoT data aggregators to process encrypted data without 

disclosing the raw data produced by smart devices. The 

Ethereum blockchain stores data, ensures tamperproof 

communication, and controls data aggregation using a smart 

contract. In PrivDA, the network is split into two areas, namely 

regional area and blockchain networks. The first area contains 

several groups, each consisting of one data aggregator and 

several smart devices. Each group is connected to the 

blockchain network. The latter may contain smart devices, 

aggregators, consumers, and a key generation node. When a 

consumer wants to receive aggregated data from any group, it 

creates a smart contract. The smart contract places the 

potential data producers that can respond to the consumer into 

one group. Then, it chooses one aggregator to compute the 

group-requested result using homomorphic computations. The 

challenge with the Paillier cryptosystem is that it needs a larger 

storage space because it uses modulo 𝑛2. 

The link between blockchain and homomorphic encryption 

is not limited to IoT. In an attempt to combine blockchain and 

homomorphic encryption, Qu et al. [13] improved the voting 

efficiency through a blockchain-based protocol that avoids 

interacting with a non-trusted third party using a smart contract. 

The authors exploited the homomorphic encryption technique 

and the homomorphic signature encryption algorithm to 

encrypt and sign the ballot. Each registered voter can be 

regarded as a peer in the blockchain network and can vote on 

the identity of his peers in the blockchain. The number of 

voters does not change during the voting process. The smart 

contract is responsible for ensuring the verifiability and non-

repeatability of the protocol during the verification phase and 

preventing a voter from voting twice, i.e., it finds the 

corresponding status of the voters as ’voted’ and immediately 

discards the duplicate votes. However, the authors did not 

mathematically prove the method of calculating the number of 

votes. 

To resolve the security problems in data sharing and model 

sharing, Jia et al. [14] have developed an application model of 

blockchain-enabled Federated Learning to produce a data 

protection aggregation scheme, aiming to be used in an 

Industrial IoT (IIoT) scenario. They proposed three models: 

distributed K-means clustering with differential privacy and 

homomorphic encryption, distributed Random Forest with 

differential privacy, and distributed AdaBoost with 

homomorphic encryption. Integrating these models with 

blockchain and Federated Learning gives multiple data 

protection in complex IIoT environments. This solution is, 

therefore, used in a specific environment. Singh et al. [15] 

proposed a privacy-preserving data aggregation model for 

smart grids based on deep learning and homomorphic 

encryption. The data aggregation process has a multi-tiered 

architecture and is recorded in the cloud using a blockchain; it 

is also shown to be more effective in detecting smart meter 

manipulation while having low computational overhead. The 

authors used a new symmetric homomorphic encryption 

scheme and applied the SHA-256 hash function. Similar to 

Singh et al., Yan et al. [16] distributed privacy protection 

architecture based on blockchain and leveraging fully-

homomorphic Pailler cryptosystem [17] on edge computing. 

The task execution side encrypts all data, while the edge node 

processes the data’s received ciphertext and returns the final 

result’s ciphertext to the client. Through experiment results, 

the authors verified that their approach achieves security 

protection and integrity check of cloud data and realizes more 

extensive secure multiparty computation. However, this work 

does not clarify why it needs additive homomorphic 

encryption. 

In this article, we attempt to address some of the gaps in the 

aforementioned literature. We present an architecture for 

healthcare systems that integrates IoT devices and blockchain 

technology with embedded homomorphic encryption. The 

designed architecture is applied to a healthcare data system as 

a use case. The embedded homomorphic encryption makes it 

possible to obtain homomorphic addition over the encrypted 

data. Using this technique, the administrator can gain a 

different level of access to the encrypted data. In terms of 

security level and to ensure data stability, traceability, and 

anonymity, we use blockchain to store digital health 

information. 

 

2.1 Contributions and innovations 

 

Healthcare systems impose stringent requirements for data 

security, privacy, and accessibility, challenges that our 

architecture effectively addresses. Our research integrates IoT 

devices, blockchain technology, and embedded homomorphic 

encryption to enhance computation speed and security levels 

within IoT systems. Specifically, our proposed ultralight linear 

encryption technique accelerates computations, enabling 

homomorphic addition over encrypted data. This technique 

also provides customized access controls, ensuring that each 

individual gains specific access only to essential encrypted 

data, thereby minimizing exposure of sensitive information. 

 

2.2 Differences from existing studies 

 

Enhanced computation speed: Unlike traditional 

homomorphic encryption methods, our ultralight linear 

encryption technique significantly improves computation 

speed while maintaining robust security. This capability is 

crucial for processing sensitive patient information in real-

time without compromising privacy. Existing studies often 

focus on the theoretical aspects of homomorphic encryption 

but do not address the practical challenges of implementing it 

in resource-constrained IoT devices. 

Customized access control: Our solution enables specific 

access to encrypted data by different individuals. Patient 

datasets are exclusively accessible to healthcare professionals 
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directly involved in their care. We enforce strict, least-

privileged controls over access to IoT data, ensuring that 

individuals can only retrieve essential information necessary 

for their roles, thereby minimizing unnecessary exposure. 

Existing studies often focus on general access control 

mechanisms that do not provide this level of granularity. 

Integration with blockchain and fog computing: Our 

architecture leverages blockchain technology to provide 

security, stability, traceability, and anonymity. This 

integration ensures that all data transactions are recorded 

immutably, enhancing accountability and transparency. In 

addition, our model enables efficient data processing at the fog 

or cloud level, leveraging the increased computational 

resources available at these higher levels. Existing studies 

often focus on the use of blockchain for data storage but do not 

explore its potential for enhancing the security and integrity of 

data processing. 

To summarize, our architecture offers a unique combination 

of high computation speed, specific access control, and robust 

security through blockchain integration. By addressing the 

practical challenges of implementing homomorphic 

encryption in IoT systems, our work provides a significant 

innovation in the field of IoT security and data processing. 

This response clarifies the unique contributions and 

innovations of our paper, highlighting the differences from 

existing studies and the usefulness of our suggested 

architecture. 

 

 

3. BLOCKCHAIN AND HOMOMORPHIC 

ENCRYPTION INTEGRATION APPROACH 

 

In healthcare systems, the patient’s information and medical 

history are collected whenever a patient visits a doctor, 

hospital, or pharmacy. Only the patient and the healthcare 

professionals directly involved in his care and follow-up 

should have access to his complete profile. 

Certain medical information in a patient’s file may also be 

useful for other purposes beyond individual follow-up, such as 

improving healthcare and public services. The patient must be 

able to know who is allowed access and how his data is 

protected to respect his privacy. In this section, we present the 

details of an approach that integrates blockchain and 

homomorphic encryption to protect patients’ data effectively. 

 

3.1 Proposed approach specifications 

 

IoT is an emerging paradigm recognized as a revolutionary 

technology of this century. It allows devices to communicate 

with one another seamlessly, providing services without the 

need for human intervention [18]. The main goal of IoT is to 

improve human life by leveraging its intelligent and smart 

functionalities. IoT devices collect and exchange data over the 

network, which increases the attack vector. Hence, it is 

essential to implement mechanisms to preserve user privacy in 

IoT systems. Cryptography is a widely used technique for 

safeguarding data transmitted over wireless channels [19]. It 

encompasses both encryption and decryption processes, which 

can be categorized into two primary types: symmetric and 

asymmetric methods. Symmetric techniques utilize a single 

key for both encryption and decryption, whereas asymmetric 

methods involve a pair of keys: a public key for encryption 

and a private key for decryption. Traditional cryptographic 

methods are often impractical for IoT devices with limited 

resources, as they require substantial processing power and 

memory capacity. As a result, attaining robust security using 

streamlined methods presents a challenging task [20]. 

Lightweight cryptography has recently gained significant 

attention as a means to optimize traditional cryptographic 

algorithms and provide security solutions tailored for 

resource-constrained devices [21, 22]. 

To accomplish this, we employed an asymmetric 

lightweight scheme to showcase privacy preservation in our 

healthcare scenario. 

The used encryption technique consists of three processes: 

Keys generation KeyGen(): that returns a set of secret keys 

𝑆𝑘𝑖 and public keys 𝑃𝑘𝑖 , (𝑆𝑘𝑖, 𝑃𝑘𝑖) = (𝑘𝑖 , 𝑘𝑖 + 𝛼 × 𝑝) 

Encryption Enc(m): that encrypts a plaintext 𝑚 using the 

public keys 𝑃𝑘𝑖  where: 

 

𝑐 = (𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2 + … + 𝑚𝑖 × 𝑝𝑘𝑖) 𝑚𝑜𝑑 𝑛 

 

To encrypt a message, the sender decomposes it into several 

parts so m=m1 O m2 O m3 O. mi where O is an operation, for 

example, Addition, Multiplication, Concatenation, &, etc. The 

encryption consists of multiplying each part mi by a public key 

pki. If we choose "O" to be "&", this technique will be very 

flexible, because in this case, parts have no relationship 

between them, so mi is independent of mj. In our model, each 

mi will be a piece of information for the patient. 

 

Decryption Dec(c): decrypts a ciphered text 𝑐  using the 

secret keys 𝑆𝑘𝑖 , 𝑚𝑖 =
𝑐

𝑠𝑘𝑖
, 𝑖 = 𝑙, . . . 0, with 𝑐 ←  𝑐 − 𝑐 × 𝑠𝑘𝑖  

after each computed mi; where, (
𝑐

𝑠𝑘𝑖
) is the quotient of 𝑐 ÷ 𝑠𝑘𝑖 

and 𝑙 denotes the length of 𝑐. To ensure decryption and getting 

a valid plaintext, Eq. (1) must be verified. 

 

𝑝 > ∑ 𝑚𝑗

𝑖

𝑗=0

× 𝑘𝑗 (1) 

 

Algorithm 1 shows the KeyGen function. This function 

returns 𝑖  secret keys where 𝑖  is the number of fields to be 

encrypted; for each secret key, the function also returns the 

corresponding public key, which is easily computed using the 

private key 𝑝. 

 

Algorithm 1: Keys Generation 

(1): Require Private: 𝑝, 𝑞  two large prime numbers, 𝛼 : 

large random number, secret keys 𝑘𝑖 

(2): Require Public: 𝑖 = 𝑙𝑒𝑛(𝑚), 𝑀 = 𝑚𝑎𝑥 (𝑚) 

(3): Ensure: 𝛼 > 𝑞, 𝑝 > 𝑀 × ∑ 𝑘𝑗
𝑖
𝑗=0  

(4): 𝑆𝑘𝑖 ← 𝑘𝑖 

(5): 𝑃𝑘𝑖 ← 𝑘𝑖 + 𝛼 × 𝑝 

(6): 𝑛 ← 𝑝 × 𝑞 

(7): Return (𝑆𝑘𝑖 , (𝑃𝑘𝑖 , 𝑛)) 

After the key generation process, the devices use the 𝑃𝑘𝑖  to 

encrypt their data using Algorithm 2. 

 

Algorithm 2: Encryption 

(1): Require Public: 𝑛, 𝑃𝑘𝑖  

(2): Ensure: 𝑐 

(3):  𝑐 ← (𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2 + … + 𝑚𝑖 × 𝑝𝑘𝑖) 𝑚𝑜𝑑 𝑛 . 

(4): Return 𝑐 

The final user, patient, or administrator (e.g., doctor) can 

use the data after decrypting it according to Algorithm 3. 
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Algorithm 3: Decryption 

(1): Required Private: 𝑝, 𝑆𝑘𝑖 

(2): Ensure: 𝑚1, 𝑚2, … , 𝑚𝑖 

(3): 𝑖 ← 𝑙 , where 𝑙 is the length of 𝑐 

(4): 𝑚𝑖 =
𝑐

𝑠𝑘𝑖
 

(5): 𝑐 ← 𝑐 − 𝑐 × 𝑠𝑘𝑖 , 𝑖 ← 𝑖 − 1 

(6): repeat 4 and 5 until 𝑖 = 0 

(7): 𝑚 = ∑ 𝑚𝑗
𝑖
𝑗=0 ; (effectively, m=(m1, m2, … mi)) 

(8): Return 𝑚 

The computational complexity of the proposed system 

equals O(i) where i is the number of fields or information 

(Algorithms 1 and 2). 

 

3.2 Proposed model design 

 

In our proposed model design, IoMT (Internet of Medical 

Things) devices (Level 1 in Figure 2) receive patient 

information in fields such as name, surname, information 

relating to their state of health, genetic data, and biometric data 

(which are physical characteristics that are measurable and 

machine verifiable). To encrypt this data, the device uses an 

encryption scheme that multiplies each field value by a public 

key, then gathers the obtained results in a single record 

(transaction) by calculating the sum of these encrypted values, 

forming embedded homomorphic encryption. 

 

𝑐 ← (𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2

+ … + 𝑚𝑖 × 𝑝𝑘𝑖)𝑚𝑜𝑑 𝑛 
(2) 

 

To harness the computational capabilities, storage resources, 

intelligence, and processing power of devices, we employ Fog 

Computing to facilitate seamless data collection through 

device-generated transactions (Level 2 in Figure 2). The fog 

generates the blocks and participates in a consensus to 

integrate them into the blockchain. Using fogs within the local 

network enables real-time data processing, provides ample 

storage space, and optimizes data performance by distributing 

workloads. 

After a consensus iteration, a new block is added to the 

blockchain (Level 3 in Figure 2); this block contains the 

sensitive patient information, and the blockchain version is 

found at the fog level or at the cloud level (for more security). 

In these levels, homomorphic operations (such as addition) are 

performed to guarantee patient privacy. 

The end-user is at the highest level of the presented model 

(Level 4 in Figure 2). An end-user can be a patient himself, a 

doctor, a healthcare provider, a commissioner (who assesses 

how care is provided), an academic researcher (to understand 

the sources of disease better or develop new remedies), or a 

charity (to evaluate services and identify ways to improve 

care). The entire patients’ dataset will only be viewed by 

healthcare professionals directly involved in their care. Strict, 

least-privileged controls are implemented to govern access to 

IoT data, ensuring that individuals can only access the 

essential information required, minimizing unnecessary 

exposure. Our approach guarantees this by attributing a 

specific set of secret keys to everyone; whoever has more keys 

can read more embedded fields, using Eq. (3). 

 

𝑚𝑗 ←
𝑐

𝑠𝑘𝑗
 𝑤𝑖𝑡ℎ 𝑐 ← 𝑐 − 𝑐 × 𝑠𝑘𝑗 (3) 

 

3.3 Safe arrangement of fields 

 

The encrypted fields (embedded fields) order is not random 

in the proposed model. While combined to create a record, the 

first information, encrypted by the first key, cannot be 

interchanged with the second, and vice versa. 

 
 

Figure 2. The proposed architecture illustration in the healthcare sector 
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In Eq. (3), it is evident that possession of the key 𝑠𝑘𝑗 allows 

access to the most recent information 𝑚𝑗 . Likewise, having 

both keys 𝑠𝑘𝑗 and 𝑠𝑘𝑗−1  grants access to both the latest 

information 𝑚𝑗  and the preceding information 𝑚𝑗−1 , and so 

forth. We arrange the fields in an incremental fashion. For 

example: 

 

𝑐 = 𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2 + 𝑚3 × 𝑝𝑘3 

 

A user who captures information 𝑚2 must be authorized to 

access information 𝑚3 because 𝑚2 can only be decrypted by 

possessing the keys 𝑠𝑘2 and 𝑠𝑘3. The owner of key 𝑠𝑘3 will 

only be able to access the information 𝑚3. As for a user who 

needs to access information 𝑚1 must have the keys 𝑠𝑘1, 𝑠𝑘2, 

and 𝑠𝑘3; anyone who is qualified should have access to all the 

information. Table 1 summarizes the information encoding 

hierarchy based on the following formulate. 

 

𝑟𝑒𝑐𝑜𝑟𝑑 = 𝑓𝑖𝑒𝑙𝑑1 × 𝑝𝑘1 + 𝑓𝑖𝑒𝑙𝑑2 × 𝑝𝑘2 + ⋯
+ 𝑓𝑖𝑒𝑙𝑑𝑗 × 𝑝𝑘𝑗  

 

Table 1. Field record levels 

 

User Level Retrieved Fields Required Keys 

𝑙𝑗 𝑓𝑗  𝑠𝑘𝑗  

𝑙𝑗−1 𝑓𝑗 , 𝑓𝑗−1 𝑠𝑘𝑗 , 𝑠𝑘𝑗−1 

𝑙𝑗−2 𝑓𝑗 , 𝑓𝑗−1, 𝑓𝑗−2 𝑠𝑘𝑗 , 𝑠𝑘𝑗−1, 𝑠𝑘𝑗−2 

… … … 

𝑙1 𝑓𝑗 , … , 𝑓1 𝑠𝑘𝑗 , … , 𝑠𝑘1 

 

3.4 Additive technique 

 

The proposed embedded homomorphic encryption verifies 

the property of homomorphic addition, which we express in 

the following equation: 

 

𝐸𝑛𝑐(𝑚) ⊕ 𝐸𝑛𝑐(𝑚′) = 𝐸𝑛𝑐(𝑚 + 𝑚′) (4) 

 

This homomorphic property is used in the healthcare sector 

[11] because it provides statistics on the patient’s condition 

while respecting his privacy. We will subsequently prove that 

the proposed scheme satisfies the homomorphic addition. 

 
𝐸𝑛𝑐(𝑟𝑒𝑐𝑜𝑟𝑑) = 𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2 + ⋯ + 𝑚𝑗 × 𝑝𝑘𝑗  

𝐸𝑛𝑐(𝑟𝑒𝑐𝑜𝑟𝑑′) = 𝑚1
′ × 𝑝𝑘1 + 𝑚2

′ × 𝑝𝑘2 + ⋯ + 𝑚𝑗
′ × 𝑝𝑘𝑗  

𝐸𝑛𝑐(𝑟𝑒𝑐𝑜𝑟𝑑) + 𝐸𝑛𝑐(𝑟𝑒𝑐𝑜𝑟𝑑′)
= 𝑚1 × 𝑝𝑘1 + 𝑚2 × 𝑝𝑘2 + ⋯ + 𝑚𝑗 × 𝑝𝑘𝑗

+ 𝑚1
′ × 𝑝𝑘1 + 𝑚2

′ × 𝑝𝑘2 + ⋯ + 𝑚𝑗
′ × 𝑝𝑘𝑗

= (𝑚1 + 𝑚1
′ ) × 𝑝𝑘1 + (𝑚2 + 𝑚2

′ ) × 𝑝𝑘2 + ⋯
+ (𝑚𝑗 + 𝑚𝑗

′) × 𝑝𝑘𝑗 = 𝐸𝑛𝑐(𝑟𝑒𝑐𝑜𝑟𝑑 + 𝑟𝑒𝑐𝑜𝑟𝑑′) 

 

Using our technique, a user at a certain level can ask the 

cloud server to perform patient data operations without 

decrypting it. For example, a user of level j wants to calculate 

the sum of t samples ∑ 𝑚𝑗𝑖

𝑡
𝑖=1  ,where 𝑚𝑗  are blood glucose 

levels. The server calculates 𝑠1 = ∑ 𝑟𝑒𝑐𝑜𝑟𝑑𝑖
𝑡
𝑖=1 . Using private 

key 𝑠𝑘𝑗, the user decrypts s as follows: 

 

𝑠2 = 𝑠1 − (𝑠1𝑚𝑜𝑑 𝑠𝑘𝑗) = ∑ 𝑚𝑗𝑖

𝑡

𝑖=1

× 𝑝𝑘𝑗 = 𝑝𝑘𝑗 × ∑ 𝑚𝑗𝑖

𝑡

𝑖=1

 

 

Therefore, 𝑠2𝑚𝑜𝑑 (𝑠𝑘𝑗 − 1) = ∑ 𝑚𝑗𝑖

𝑡
𝑖=1  

4. PERFORMANCE EVALUATION 

 

Experimentation was conducted using an HP Laptop with 

the following specifications: Processor Intel(R) Core (TM) i3-

3110M CPU @ 2.40GHz, 2 Core(s), 4 Logical Processor(s), 4 

Go RAM. All the experiments were performed using Python 

programming language. We have employed encryption keys 

with sizes of both 128 bits and 256 bits. Table 2 summarizes 

our evaluation results. The proposed technique simulates a 

data compression process and therefore must be studied in 

several models in order to show its effectiveness compared to 

other techniques. There are two main modes: changing the key 

size and changing the number of merged or compressed fields. 

To conduct our experiments, we created a random dataset 

simulating a real database of records, each one consisting of 

five fields: name, ID, age, gender, and blood glucose level. We 

do not need correct values for each of these fields because we 

are interested in the size to get computation cost and the 

number of fields to get communication cost. 

 

Table 2. Comparative study as a function of running time 

(ms) 

 
Scheme Enc128 Dec128 Enc256 Dec256 

[23] 0.14 3.4 93.9 279 

[24] 74.5 0.4 403 1.6 

[25] 2.3 5.8 15.7 37.3 

Ours 0.13 0.79 0.19 0.87 

 

 

4.1 Computation cost 

 

In the experiment presented in Table 2, we performed two 

tests, the first with a key of length 128 bits and the second with 

a key of length 256 bits. Each test is performed ten times; these 

results are the average of the obtained values. 

A record consists of five fields: name, ID, age, gender, and 

blood glucose level. In some studies [23-25], each field is 

coded separately ci=Enc(mi). The output consists of five 

encrypted fields (c1, c2, c3, c4, and c5). Therefore, the total 

encoding time is the sum of the time required to encrypt each 

field. 

 

𝑇 = ∑ 𝑡𝑗
𝑖
𝑗=1  (5) 

 

where 𝑡𝑗  denotes the time required to encrypt a piece of 

information, and i is the amount of information. 

Our technique takes less time because the fields are coded 

together (see Eq. (2)) so i=1 in Eq. (5) and the output consists 

of only one field. Despite this, the execution time is also linked 

to the details of the techniques. By that, we mean the elemental 

operations represented in each technique separately, such as 

addition, multiplication, exponentiation, etc. While encoding 

each field requires multiplication and addition in the proposal, 

needs multiplication and two exponentiation operations [24]. 

The decryption process of our scheme is slightly slower 

compared to the encryption process because all the fields are 

interleaved in a single record, and we perform six operations 

(four modulo operations and two subtraction operations) to 

extract information (see Eq. (3)); therefore, thirty total 

operations to recover the five fields. On the contrary, Ren et al. 

[24] required two exponentiation operations, two subtraction 

operations, and four modulo operations. As for the other study 

[23], it was the slowest in terms of decoding speed, and this is 
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due to the large number of operations required to extract the 

information; there are two exponentiation operations, two 

multiplications, divisions, additions, and subtractions for each 

iteration, knowing that there are a number of iterations equals 

to length of ciphertext. In the study by Rivest et al. [25], there 

is an exponentiation operation in both the encryption and the 

decryption operations, but timeDec>timeEnc because 

length(ciphertext)>length(plaintext). 

Figure 3 shows the percentage increase in the encryption 

time when the key or message size increases [23-25]. Scheme 

3 achieved the largest increase in execution time because it 

contains more exponential operations than other schemes, as 

the exponential operation is characterized by a high execution 

time compared to other operations such as addition and 

multiplication. 

The scheme proposed by Kara et al. [23] is characterized by 

a significant increase in ciphertext size because it depends on 

the message length. Figure 4 shows the proposed technique 

exhibits a slight increase in time when the message size 

increases. This is because the multiplication operation is not 

much affected by the increase in size compared to the 

exponential operation. 

Table 3 shows the size of the records encrypted by the 

patient’s device (embedded encryption). Our proposed model 

demonstrates significant scalability improvements, as 

evidenced by the reduced record size of just 1kb compared to 

other methods. 

 

𝑆 = ∑ 𝑠𝑗

𝑖

𝑗=1

 (6) 

 

 
 

Figure 3. Encryption time of Pailler [24], Digit Fragm [23], 

and RSA [25] 

 

 
 

Figure 4. Encryption time of the proposed model 

 
 

Figure 5. Field size increase 

 

Eq. (6) summarizes how to calculate the size resulting from 

the encryption process, which is represented in the original 

text, 𝑠𝑗  denotes the size of a single output. The output is 

usually in order of the modulus n, and therefore when 

encrypting each piece of information separately for example 

Name or ID. In other words, the total size will be the number 

of information or fields. In the proposed technique i=1 which 

gives S=1kb vs. i=5 and S=5kb. 

Because there are i information fields (𝑖 > 2), the size of a 

record is related to the public key. In some studies [23-25], 

data will be presented in i independent fields, so the size in the 

study by Kara et al. [23, 25] will be i kb (kilobit) if the size of 

the public key is 1 kb. In the study of Ren et al. [24], the size 

is doubled because the authors used the Pailler public key 

encryption technique [17]. On the contrary, our proposed 

model combines the encoding of the i fields in a single record 

using natural addition, which increases the scalability of the 

system and the rigidity of the technique and decreases the 

storage size; this appears when the number of information 

fields is larger, as shown in Figure 5. 

 

Table 3. Field record size 

 
 [23] [24] [25] Ours 

Record size 5kb 10kb 5kb 1kb 

 

4.2 Scalability 

 

Scalability is a critical consideration when applying 

blockchain and homomorphic encryption in the domain of IoT 

and connected objects. Both technologies offer unique 

advantages and challenges in handling large volumes of users 

and devices. 

As the number of transactions and participants increases, 

traditional blockchains encounter delays and increased costs 

per transaction. This inefficiency poses a significant barrier to 

deploying blockchain in IoT applications where real-time data 

processing and responsiveness are crucial. To address 

blockchain's scalability limitations, we can introduce one of 

the proposed approaches such as sharding [26, 27], sidechains 

[28], and off-chain [29]. Sharding divides the blockchain 

network into smaller partitions, allowing for parallel 

transaction processing and reducing congestion. Sidechains 

enable specific transactions to be processed separately from 

the main chain, alleviating network congestion while 

maintaining interoperability. Off-chain solutions involve 

conducting transactions outside the main blockchain network, 

thereby reducing the burden on the main chain and improving 

overall scalability. 
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Encryption systems can be computationally intensive, 

potentially limiting their scalability when applied to large-

scale IoT deployments with numerous devices generating 

continuous streams of data. To enhance scalability, we used 

linear encryption that does not require much computational 

complexity. By embedding many pieces of information in only 

one record, the sizes of the outputs decrease very significantly 

(sours=s/i), especially when the number of merged fields i 

increases, and thus the blockchain's size is less, which opens 

the possibility for a larger number of participants to join the 

system, i.e. greater scalability. 

 

 

5. SYSTEM ANALYSIS AND EFFICIENCY 

 

Our proposed model incorporates several mechanisms to 

ensure data privacy and confidentiality during data sharing and 

transmission. Here are the key aspects: 

Homomorphic Encryption: We employ a homomorphic 

encryption technique to ensure that data is encrypted at all 

times, including during transmission and computation. This 

means that patient data remains encrypted throughout its 

lifecycle, maintaining privacy even when it is being processed. 

Only authorized personnel can access the data, and even then, 

only for the specific purposes for which they are authorized. 

This ensures that data privacy and confidentiality are 

maintained during data sharing and transmission. 

Hierarchical Access Control: Data is encrypted with 

multiple keys that are combined to generate a transaction. 

Only users with the appropriate number of private keys can 

access the specific data records, ensuring that only authorized 

personnel can view sensitive information. 

Blockchain Technology: Integrating blockchain provides 

decentralization, transparency, and anonymity. Each 

transaction is securely recorded on the blockchain, ensuring 

that data sharing is traceable and tamper-proof. The use of the 

CW-PoW algorithm further enhances security while 

preserving energy. 

Fog Computing: To further enhance data privacy and 

confidentiality, we utilize fog computing. By processing data 

closer to its source, fog computing reduces latency and 

minimizes the risk of data breaches during transmission. This 

additional layer of security ensures that data sharing and 

transmission are secure and efficient. 

In fact, preserving privacy in IoT systems, especially during 

the data aggregation process, is still a challenging task. 

Usually, aggregated data in IoT is collected, stored, and 

processed using a centralized server. Such an approach may be 

practical solely under trusted servers. Unfortunately, 

centralized structures suffer from issues such as the single 

point of trust problem. The collected data may be deleted or 

modified by an untrusted server. Some distributed solutions 

have been suggested to cope with IoT data aggregation issues 

encountered in centralized schemes, in which data aggregator 

nodes are selected to collect the received data from the 

collaborating users. However, as the received data is encrypted, 

aggregators must decrypt it to aggregate them, which may lead 

to data disclosure. In Section 3, we have introduced a 

blockchain-based IoT solution with the help of a 

homomorphic encryption scheme. 

 

5.1 Blockchain limitations to consider 

 

The key motivation to introduce blockchain technology in 

mission-critical IoT systems, e.g., healthcare, is its 

decentralized property. Decentralization allows our model to 

operate without a trusted third party that controls and manages 

the patient data, thus solving the single point of trust problem. 

Another significant blockchain feature that we leveraged in 

our approach is transparency, which provides users with 

visibility into the legitimacy of every transaction within our 

system, allowing for collective verification by all users. 

Additionally, blockchain’s security helps guarantee that all 

healthcare transactions are recorded, organized, and 

maintained in immutable and secure blocks. The blockchain 

makes sure that once a transaction is successfully committed, 

it cannot be altered. This ensures patient data integrity within 

each block, preventing tampering. Finally, blockchain’s 

anonymity feature may hide patients’ identities, a crucial 

privacy feature for any healthcare system. For these reasons, 

among others, blockchain technology may emerge as a prudent 

choice for designing privacy-preserving patient data systems 

in the healthcare sector. 

The mining process, i.e., block creation and validation, must 

be considered in IoT environments. Typically, in the context 

of IoT, various challenges are often encountered, including 

constraints such as limited power and memory, issues related 

to scalability and complexity, as well as latency overheads. 

Some studies in the literature address blockchain 

implementations, the most popular of which are Proof of Work 

(PoW) [30] and Proof of Stake (PoS) [31]. Nevertheless, the 

majority of existing implementations are ill-suited for direct 

application within the IoT context. For instance, PoW 

demands immense computational resources, while PoS 

requires both memory and computational resources to achieve 

consensus. Also, in both schemes, the blocks are broadcasted 

and verified by each node in the network. This leads to 

scalability issues because most IoT devices have limited 

bandwidth and processing power. In addition, the mining 

process usually suffers from latency issues (e.g., in Bitcoin, a 

wait of up to 30 minutes to confirm a transaction is needed), 

while most IoT, especially healthcare applications, have 

stringent delay requirements. On the other hand, due to the 

limited throughput and the total number of committed 

transactions per second that can be stored within a block, 

current blockchain implementations are unsuitable for an IoT 

environment as the number of interactions between IoT 

devices may exceed such limits. Hence, it is imperative to 

select an IoT-compatible consensus scheme that effectively 

tackles the aforementioned issues. Furthermore, an ill-advised 

choice of consensus algorithm could render the entire system 

inoperable. 

 

5.2 Selected consensus algorithm 

 

In the literature, there are many efficient proposed 

algorithms. PoW is a powerful consensus mechanism used in 

blockchain, and it is one of the most cited and referred by 

researchers. Nonetheless, it exhibits vulnerabilities, including 

high power consumption and susceptibility to the 51% attack. 

One approach to harness PoW’s advantages is to utilize its 

derivative known as Compute and Wait PoW (CW-PoW) [32]. 

CW-PoW is an improved version of the PoW consensus 

algorithm, where the authors divided the operation of reaching 

an agreement into several rounds. The nodes initiate the first 

round by attempting to find a valid hash. Once a node 

discovers such a hash, it shares it and then waits to receive the 

remaining hashes, which are expected to be found by the other 
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nodes. The node that successfully finds the hash is granted the 

privilege to partake in the subsequent round and repeat the 

PoW process. Conversely, if the network has not yet 

accumulated the required number of hashes, the candidate 

node will remain in a waiting state. In the final round, the 

miner will be the first node to discover the hash. In CW-PoW, 

the proof of round i is determined by the following condition: 

 

𝐻𝑎𝑠ℎ(𝐵𝑙𝑜𝑐𝑘 + 𝐼𝐷𝑅𝑜𝑢𝑛𝑑𝑖−1
+ 𝑁𝑜𝑛𝑐𝑒) < 𝑇𝑎𝑟𝑔𝑒𝑡 (7) 

 

Initially, 𝐼𝐷𝑅𝑜𝑢𝑛𝑑𝑖
=1 After that, 𝐼𝐷𝑅𝑜𝑢𝑛𝑑  equals the sum of 

nonces found in the previous round. It is defined in the 

following equation: 

 

𝐼𝐷𝑅𝑜𝑢𝑛𝑑𝑘
= ∑ (𝑁𝑜𝑛𝑐𝑒𝑖  𝑜𝑓𝑅𝑜𝑢𝑛𝑑𝑘−1)

𝑁𝑏𝑟𝑆

𝑖=1

 (8) 

 

where, NbrS is the number of solutions to find in each round. 

Let NbrR be the number of rounds and NbrP the number of 

processes (nodes). Figure 6 represents the efficiency of CW in 

energy preservation. 

 

 
 

Figure 6. Compute and Wait PoW energy preserving 

example 

 

Below, we provide a brief overview of known attacks that 

can be mitigated through the use of the CW-PoW consensus 

algorithm. 

• 51% attack (the majority attack): In PoW, mining a block 

by a miner or a group of miners means having more than 51% 

computing power. Thus, if someone (attacker) has more than 

50% of the computing power, it can control the underlying 

blockchain, i.e., the attacker can initiate a double spending 

attack, modify, reject, or reverse transactions, etc. By 

implementing CW-PoW in our model, the success rate of a 

51% attack is significantly diminished, given that the 

likelihood of a candidate winning (dominating) is greatly 

reduced. Furthermore, the mining process in CWPoW is 

accomplished through multiple rounds, each requiring the 

introduction of 𝐼𝐷𝑅𝑜𝑢𝑛𝑑  in the next proof of round. This 

approach can serve as a deterrent against double spending 

attacks, as it effectively slows down the process of creating an 

alternative branch. 

• Distributed DOS (DDOS) attack: In DDOS, attackers try 

to impede or overload the network by generating useless 

traffic. An attacker may compromise and utilize certain 

individuals’ IoT devices to target other devices, exploiting 

weaknesses or vulnerabilities within the underlying system. 

Fortunately, the CW-PoW consensus algorithm maintains the 

mining process even if some nodes leave the blockchain 

network. 

• Sybil attack: Employing multiple pseudonyms can 

enhance privacy but also introduce the risk of Sybil attacks. A 

hostile node may exploit this anonymity to engage in illicit 

activities with the support of a majority. In CW-PoW, two 

interesting techniques are combined: multi-rounds and 

standard deviation. To emerge as the ultimate victor, false 

identities must construct a longer branch than the public one. 

Nevertheless, their progress is hindered by the multi-round 

technique, while the second technique further diminishes their 

prospects, significantly reducing the vulnerability to Sybil 

attacks. 

 

5.3 Robustness of the encryption technique against attacks 

 

In healthcare, security and privacy are critical factors, the 

system needs to use suitable and secure parameters. The 

proposed scheme relies on the hardness of the number’s 

factorization problem, where attacker A must factorize the 

modulus N that equals p×q to get private keys p and q, and 

finally extract the secret key k. Therefore, the modulus N has 

to be large. 

In addition, the technique used focuses on the difficulty of 

polynomial reconstruction problems. Hence, one of the pivotal 

factors for the effectiveness of cryptosystems lies in the length 

of the ciphertext. 

Deterministic methods are vulnerable to Chosen Plaintext 

Attack (CPA). In CPA, the attacker has a ciphertext c and 

wants to find the original plaintext m. the attacker can choose 

m′ and get c′. Then, he computes Dec(c×c′) to obtain m×m′ 

and consequently m. 

The core of the proposed encryption is the 𝑐 = 𝑚 × 𝑘 

technique. This encryption scheme is vulnerable to certain 

attacks. Given (𝑐, 𝑚), the attacker can easily obtain the secret 

key k, because 𝑐 × 𝑚−1 = 𝑚 × 𝑚−1 × 𝑘 = 𝑘. Now assuming 

that 𝑐 = 𝑐1 + 𝑐2 = 𝑚1 × 𝑘1 + 𝑚2 × 𝑘2 , where, 𝑘1 ≠ 𝑘2 . If 

the attacker has 𝑚1 (or 𝑚2), he multiplies c by 𝑚1
−1 (or 𝑚2

−1) 

to get 𝑘1 + 𝑚1
−1 × 𝑚2 × 𝑘2 or 𝑚1 × 𝑚2

−1 × 𝑘1 + 𝑘2.  This 

does not give the attacker sensitive information; he can not get 

either 𝑘1𝑜𝑟 𝑘2 . When the attacker has 𝑚1  and 𝑚2 , then 

𝑐 × 𝑚1
−1 × 𝑚2

−1 = 𝑚1 × 𝑚1
−1 × 𝑚2

−1 × 𝑘1 + 𝑚2 × 𝑚2
−1 ×

𝑚1
−1 × 𝑘2 = 𝑚1

−1 × 𝑘2 + 𝑚2
−1 × 𝑘1. He must also possess a 

distinct set (𝑚1
′ , 𝑚2

′ ) to do the subtraction and obtain 𝑘2 (or 

𝑘1). 

In the context of the proposed cryptosystem, let’s consider 

that we have i messages to encrypt within a record, where i>2. 

To compromise the security, an attacker would need 𝑖𝑖 

plaintext messages along with their respective encryptions. 

This scenario is implausible, as the attacker doesn’t have 

access to 𝑚 × 𝑘  plaintexts independently; instead, they are 

embedded within the record. To encrypt a record, we use i 

fields in one value. Therefore, A must have i records with their 

corresponding ciphertexts to obtain ki. Thus, the proposed 

system is secure against both known plaintext attacks (KPA) 

and chosen plaintext attacks (CPA). 

In the man-in-the-middle attack, the attacker is positioned 

between users A and B to intercept their exchanged data. 

Initially, A selects a secret key k, creates a public key pk, and 

subsequently sends it to B. The attacker intercepts this key, 

chooses a private key 𝑘′, and generates another public key 𝑝𝑘′, 

which is then forwarded to B, deceiving B into thinking the 

message is from A. Simultaneously, the attacker also sends the 

same key 𝑝𝑘′ to A, this time pretending to be B. The attacker 

has successfully established a shared session key with both A 
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and B. With these session keys in place, the attacker can 

intercept the data exchanged between A and B, decrypt it, 

manipulate it, and then re-encrypt and forward it. To mitigate 

this type of attack and prevent B from being misled by the 

attacker posing as A, A’s public key can be verified by an 

independent certification authority. Additionally, in our 

cryptosystem, multiple keys are used to encrypt 

comprehensive information (records), adding an extra layer of 

complexity to thwart the attacker’s objectives. 

The probabilistic encryption approaches suffer from 

collision attacks. This type of attack can be defined by 

performing certain manipulations over ciphertexts to extract 

the whole or part of the initial plaintext. Therefore, the system 

will be broken when using a low entropy plaintext. To avoid 

collision attacks, some directives should be followed to reach 

a secure model. Besides increasing the number of fields i, the 

most important one is to use large secret numbers ki which will 

increase the entropy. 

In the Brute-Force Attack (BFA), the attacker must test all 

possible values from smallest to largest or opposite. In BFA 

on the public modulus N, the complexity for this attack to be 

successful equals O(N).  In BFA on the ciphertext, the 

complexity for this attack to be successful equals O(∏ ki) 

because he must try all possibilities of all keys. 

 

5.4 Implementing the proposed system to healthcare 

 

The use of homomorphic encryption in blockchain is in 

growth to include more industrial sectors. We just note the 

health privacy of functions such as critical disease prediction 

algorithms as well as the global state of the system. The most 

vital for this type of technology is statistical healthcare 

systems. This section illustrates a general architecture that 

shows how to use holomorphic blockchain-based encryption 

using anonymous statistical data of patients, for example, 

respiration or heart rate. We will use multi-levelled data of 

patients. The anonymous patient data 𝑚1 is encrypted using 

the first key 𝑝𝑘1  and the introduced data by the Technician 

𝑚2will be encrypted using the second key 𝑝𝑘2. The doctor's 

data will be encrypted in the third level so that anyone who has 

the private key of the doctor can only read the doctor-

embedded data. Furthermore, no one could read the 

anonymous patient data only after removing the doctor and 

technician-embedded data. 

In fact, the blockchain homomorphic-based principle offers 

the possibility to provide private and traceable operations over 

multileveled encrypted data. In case the cloud needs such 

computation, the main entity (the doctor) should permit by 

release of his embedded data. and the cloud immediately 

performs the next level of processing which offers an 

advantage in the proposed scheme by using levelled public 

encryption. The cloud-unknown user can perform 

computation and cannot find out the real value of the stored 

data. On the other hand, the database owner (medical company) 

may extract only his data level stored in the cloud using its 

level key. The patient as well can read his data only after the 

doctor and the technician reveal their data. 

 

 

6. CONCLUSION 

 

In this article, we contributed a model for integrating 

blockchain and homomorphic encryption in IoT systems using 

healthcare as a use case. The proposed model is based on 

embedding data using natural addition, giving an encryption 

that verifies the property of homomorphic addition. This is a 

highly needed function in healthcare applications, where 

statistics on patient conditions are maintained without 

compromising their privacy. When information is accessed 

exclusively in a hierarchical manner, the same record is 

encrypted with multiple keys that are combined to generate a 

transaction. A user with a greater number of private keys can 

access this record (transaction). We improved the proposed 

model with blockchain technology to offer decentralization, 

transparency, and anonymity. To add a new block to the 

blockchain, we based it on the CW-PoW algorithm, which has 

proven efficient in energy preserving within IoT systems. By 

using five fields per record in our experiments, name, ID, age, 

gender, and blood glucose level, we achieved an encryption 

time equals 0,19ms and decryption time equals 0,98ms vs. 

15,7 and 1,6 respectively in the best comparison technique. In 

communication cost, we achieved 1KB vs. 5KB. 

Our experimental analysis highlights the effectiveness of 

our technique in reducing energy consumption. Future 

research could delve deeper into energy optimization 

strategies to ensure the sustainable and long-term operation of 

IoT systems. Additionally, we envision the potential 

adaptation and application of the proposed model in diverse 

contexts beyond healthcare, including areas like agriculture. 

IoT devices are increasingly being used in precision 

agriculture to monitor soil conditions, crop health, and 

environmental factors. By integrating these IoT devices with 

blockchain and homomorphic encryption, as in our healthcare 

use case, we can ensure the secure collection, storage, and 

processing of agricultural data. Adapting the proposed model 

to the agricultural domain will require addressing specific 

challenges and making necessary adaptations. For example, 

the types of data collected and the analytical requirements may 

differ from those in healthcare. 
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