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 Securing communication in our highly digitalized world has become a pressing issue due 

to the escalating threats of unauthorized data access and violations of network policies. 

Cryptographic techniques are employed to encrypt data for protection to address these 

challenges. However, a potential vulnerability arises during data transmission. Sophistic 

intruders may discern the encrypted information, leading to suspicions and unauthorized 

access. In response, steganography emerged as an alternative method for communication 

security. Steganography involves concealing confidential information within the codes of 

digital files, providing a unique approach that focuses on disguising the presence of 

communication to enhance data security. In this context, this paper introduces an enhanced 

information-hiding method implemented by utilizing image edges and modulus functions. 

This study provides a comparative analysis of various steganographic methods, highlighting 

the trade-offs between image quality, as evaluated by the Peak Signal-to-Noise Ratio 

(PSNR), and the payload size. The experimental results indicate that the proposed method 

has efficient data-hiding capabilities with minimum degradation in the quality of the 

resulting stego image.  
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1. INTRODUCTION 

 

In the rapidly evolving landscape of information security, 

the field of information hiding, which includes cryptography 

and steganography, stands as a critical discipline 

encompassing diverse research areas. While cryptography and 

steganography share the overarching goal of safeguarding 

sensitive information, they exhibit distinct conceptual 

frameworks. Cryptography, a well-established practice, 

involves data encryption to ensure secure communication. 

However, it does not inherently conceal the existence of the 

communication itself, allowing encrypted data to be observed 

by third parties during transmission [1]. This potential 

susceptibility to interception raises concerns about 

confidentiality. In stark contrast, steganography operates with 

the explicit aim of preventing the detection of communication 

by embedding information within the digital fabric of files, 

such as audio [2], text [3], photos [4], and videos [5]. This 

deliberate concealment ensures that only the intended 

participants in communication are privy to the exchange, 

offering an additional layer of security. The main component 

of a steganographically-based communication system 

involves key elements: the cover, used for carrying the secret 

bits of the confidential information for transmission; the 

hidden bits, considered as the bitstreams making the 

confidential information; and the stego, resulting from 

combining the cover and the secret information.  

Considering the substantial redundancy inherent in digital 

images, numerous steganographic techniques for concealing 

data have been discussed in existing literature. The study [6] 

proposed a method where pixels for hiding secret data are 

chosen randomly; post-processing of the stego media is 

executed using a hybrid fuzzy difference expansion through an 

adaptive approach embedding data in regions of interest within 

the cover image. Based on the sophistication of the presence 

of the hidden data, several other research works [7-11] have 

been proposed to improve the visibility quality of the stego 

image after concealing a substantial amount of data. In the 

research [10], a steganographic method has been proposed that 

enhances the visual quality of the stego image by arranging 

two pixels in ascending order and applying an optimal pixel 

adjustment procedure. Their approach involved sorting the 

pixels of the cover image in ascending order before concealing 

the secret data, resulting in improved visibility quality with 

enhanced imperceptibility of the distortion in the stego image.  

Further research by Abdollahi et al. [12] emphasizes the 

selection of embedding positions in smooth and edge areas 

before concealing data. To ensure data security, secret sharing, 

and steganography were applied to embed data into images. 

Nevertheless, the existing steganographic approaches present 

several drawbacks, mainly based on the non-optimal use of the 

cover image's pixels, which results in the distortion of the 
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visibility quality of the stego image. This makes the 

steganographic algorithms vulnerable to steganalysis-based 

attacks of different forms [13-18]. To address this while 

addressing the image's distortion issues, the steganographic 

algorithms always seek to minimize the trade-off between the 

payload size concealment and the quality of the stego image.  

Considerable efforts are underway to fortify the security of 

the steganography process by incorporating a steganography 

key. In the study by Al-Jarah and Arjona [19], a 

steganographic method was introduced that uses a novel 

approach to enhance the security aspect of steganography. The 

technique proposed in that paper involves the utilization of a 

confidential steganography key. Simultaneously, a concerted 

effort is to leverage edge detection techniques to augment 

steganography's embedding capacity and overall security [6]. 

However, the reliance on an external key transmitted to the 

receiver via a communication link introduces vulnerability to 

interception and compromise. 

To address the challenges in steganography, particularly the 

optimal use of the pixels within cover images, this research 

presents a new approach to bolster security by combining 

picture edges and the modulus function. The primary goal of 

this method is to enhance both the embedding capacity and the 

security layer without transmitting the key through external 

channels. Employing a fuzzy logic-based approach, the study 

generates image edges to extract the original secret. During the 

extraction phase, the modulus function is applied, using edge 

images as a key to retrieve concealed sensitive data. The 

overarching objective is to augment embedding capacity and 

security while maintaining an acceptable level of quality in the 

resulting stego picture. This proposed system is implemented 

within the spatial domain, and it offers significant 

improvements over previous techniques by eliminating the 

need for external key transmission and optimizing pixel usage 

to minimize distortion. The contribution of this paper is 

summarized in these three points:  

(1) Introducing a new approach combining picture edges 

and the modulus function to improve security and embedding 

capacity. 

(2) Utilizing fuzzy logic-based edge generation and 

modulus function for data retrieval eliminates the need for 

external key transmission. 

(3) Implementing the system in the spatial domain to 

optimize pixel usage, minimize distortion, and maintain the 

quality of the stego picture. 

The remaining sections of this paper delve into the literature 

study in Section 2, followed by an elucidation of the proposed 

method in Section 3. Section 4 presents the results and 

discussion, and the paper concludes in Section 5. 

 

 

2. RELATED WORKS 

 

In recent years, significant strides have been made in digital 

image steganography, driven by the integration of various 

technologies. Notably, there has been a commendable 

advancement in performance, particularly with the emergence 

of intelligent algorithms designed to secure secret information. 

These algorithms, categorized based on their application 

domain, can be broadly delineated into spatial domain and 

transform (frequency) domain techniques. The concealment of 

confidential data within the spatial domain involves a direct 

manipulation of the pixel values of the cover image to achieve 

the desired enhancement [8]. This approach signifies a 

noteworthy achievement in steganographic techniques, 

showcasing the effectiveness of spatial domain methodologies 

in ensuring the security of secret information. 

Several extant methodologies exist for steganographic 

techniques, particularly in the spatial domain. The Least 

Significant Bit (LSB) approach, renowned for its simplicity 

within practitioners' circles, involves substituting the LSB of 

each pixel during the embedding process [19]. Despite its 

advantageous payload capacity, this method is susceptible to 

various picture-processing processes, including compression 

and cropping [20]. AlKhodaidi and Gutub [21] introduced a 

technique to refine secret data distribution to enhance 

steganographic security through secret sharing. Adaptive 

image refining (AIR) is proficient at securing confidential data 

distribution, making it suitable for information security. 

However, certain AIR techniques encounter boundary issues, 

potentially affecting data extraction and image quality. 

Moreover, several other research works have been proposed 

to enhance payload capacity while preserving image quality. 

Introducing a novel approach, Gaurav and Ghanekar [22] 

incorporate dilated hybrid edge detection on the three most 

significant bits (MSB) of cover images, amplifying data 

embedding capability within steganography's domain. In this 

work, two innovative approaches to Reversible Data Hiding 

(RDH) in image steganography address low embedding 

capacity challenges. The first approach enhances dual image-

based Least Significant Bit (LSB) matching with reversibility, 

maintaining stego-image quality while enabling complete data 

recovery. The second approach combines n-rightmost bit 

replacement (n-RBR) with modified pixel value differencing 

(MPVD) using four identical cover images, presenting 

significant improvements in RDH [22].  

Furthermore, the research work [23] introduced an 

improved method for hiding data by combining difference 

expansion and the modulus function. This research puts 

forward a new approach using difference expansion and the 

modulus function for concealing data in the spatial domain. 

The primary aim was to enhance the amount of data that can 

be hidden while maintaining a reasonable quality in the stego 

image. This method hides data in negative and positive 

variations between adjacent pixels. Two ranges were defined: 

negative values from negative two to zero and positive values 

from zero to positive two, outlining acceptable variations for 

data embedding. A modulus two operation was applied to the 

stego image pixels to retrieve data using this method. However, 

a limitation of this approach is its use of a narrow range of 

differences, impacting the data embedding capacity, as many 

pixels are left unused for data hiding. Hence, this method may 

not be suitable for concealing large data. The research 

proposed [11] developed a different steganographic algorithm, 

utilizing a difference expansion paradigm to balance the trade-

off between payload size and stego image distortion. Their 

approach suggests concealing a secret message through two 

steps. Firstly, differences between the neighboring pixels 

within the cover image are computed, forming the foundation 

for data hiding. Secondly, a technique called difference 

expansion embeds data within the obtained differences. 

Difference expansion conceals secret data bits within the 

calculated differences between neighboring pixels in the same 

pair of the cover image. 

Recent advancements in image steganography on increasing 

security spatial domain have been researched. Liu et al. [24] 

introduced a novel distortion cost function utilizing quaternion 

representation to improve spatial image steganography. Their 
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approach defines image complexity through quaternion 

magnitude and phase, resulting in a distortion cost function 

that efficiently allocates embedding modifications in complex 

image regions. This method demonstrates superior security 

performance compared to state-of-the-art schemes like S-

UNIWARD, HiLL, and MiPOD. Additionally, their 

generalized QMP (GQMP) model further enhances security by 

balancing the effects of quaternion magnitude and phase using 

an exponential model.  

Drawing inspiration from existing works, our newly 

proposed algorithm in this study is rooted in edge computation, 

employing the grayscale images from the commonly used 

dataset known as the SIPI database [25] to validate our method 

experimentally. 

 

 

3. METHODOLOGY 

 

The proposed method suggests a new steganographic 

scheme consisting of computing for the image's edge to be 

used as a secret key. This approach utilizes the unique features 

of edge images to embed hidden information within the pixels 

for the system's robustness.   

 

3.1 Fuzzy edge detection 

 

In the context of this research, a preliminary phase precedes 

the embedding process, wherein both the cover image and the 

secret message undergo rigorous mathematical processing. 

Specifically, applying fuzzy logic to cover images is employed 

to generate a key matrix. Subsequently, the edge detection 

method is executed systematically, encompassing four distinct 

steps, as elucidated below: 

 

Step 1: Compute Gradients 

Gradients play a foundational role in the detection of edges 

within images. In image analysis, an edge denotes a substantial 

alteration in intensity or color, corresponding to elevated 

gradient values. Through the computation of gradients, the 

analytical function identifies regions with pronounced changes 

indicative of potential edges. The gradients are distinctly 

calculated in both the horizontal ( 𝐷𝑦 ) and vertical ( 𝐷𝑥 ) 

directions. Sobel operators are employed for the precise 

computation of these gradients. The Sobel operator matrix is 

depicted in Eqs. (1)-(2), where (𝐺𝑥 ) and (𝐺𝑦) represent the 

horizontal and vertical gradients, respectively. 

 

𝐺𝑥 =  [
1 0 −1
2 0 −2
1 0 −1

] (1) 

 

𝐺𝑦 =  [
1 2 1
0 0 0

−1 −2 −1
] (2) 

 

Step 2: Fuzzified Gradients 

Fuzzified gradients are computed in this step by applying 

Gaussian Membership Functions (MF) to the gradients, 

resulting in the Sobel Operator. We calculate three levels of 

gradient intensity (low, middle, and high) for both. 𝐷𝑥 and 𝐷𝑦  

Using predefined means and a standard deviation. The 

Gaussian MF transforms each gradient value into a fuzzy value, 

indicating how strongly it belongs to each intensity level. 

Calculating different levels of gradient intensity allows a more 

sophisticated and accurate interpretation of the edges of the 

image. The formula to calculate Gaussian MF is shown in Eq. 

(3), where 𝜇(𝑥) is the membership value for the input 𝑥, and 

𝑒 represents the base of a natural algorithm. We use different 

mean and standard deviation values on the membership 

function calculation for each gradient level. To calculate three 

levels of gradient intensity, we will use the relations for the 

vertical gradient along the y-axis Eqs. (4)-(6), and the relations 

Eqs. (7)-(9) are used to compute the gradients along the x-axis. 

The sample of the fuzzified gradients is illustrated in Figure 1. 

 

 
 

Figure 1. Results of the fuzzified gradients 

 

𝜇(𝑥) =  𝑒
−

1
2

 ( 
𝑥−𝑚𝑒𝑎𝑛
𝑠𝑡𝑑_𝑑𝑒𝑣

)
 (3) 

 

𝜇𝐿𝑜𝑤𝐷𝐻(𝐷𝑥) =  𝑒−
1
2

 ( 
𝐷𝑥−0

255
)
 (4) 

 

𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝐻(𝐷𝑥) =  𝑒−
1
2

 ( 
𝐷𝑥−255

255
)
 (5) 

 

𝜇𝐻𝑖𝑔ℎ𝐷𝐻(𝐷𝑥) =  𝑒−
1
2

 ( 
𝐷𝑥−255

255
)
 (6) 

 

𝜇𝐿𝑜𝑤𝐷𝑉(𝐷𝑦) =  𝑒−
1
2

 ( 
𝐷𝑦−0

255
)
 (7) 

 

𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝑉(𝐷𝑦) =  𝑒−
1
2

 ( 
𝐷𝑦−255

255
)
 (8) 

 

𝜇𝐻𝑖𝑔ℎ𝐷𝑉(𝐷𝑦) =  𝑒−
1
2

 ( 
𝐷𝑦−255

255
)
 (9) 
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Step 3: Fuzzy Rules 

The fuzzified gradient information needs to be interpreted, 

and it needs to be determined whether each pixel in the image 

should be classified as an edge or background. We use Eqs. 

(10)-(12) as the set rules to determine whether a pixel is a 

background or an edge. 

 

𝑅𝑢𝑙𝑒1 = max (𝜇𝐻𝑖𝑔ℎ𝐷𝐻 , 𝜇𝐻𝑖𝑔ℎ𝐷𝑉) (10) 

 

𝑅𝑢𝑙𝑒2 = max (𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝐻 , 𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝑉) (11) 

 

𝑅𝑢𝑙𝑒3 = max (𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝐻 , 𝜇𝑀𝑖𝑑𝑑𝑙𝑒𝐷𝑉) (12) 

 

The edge output is obtained by combining the maximum of 

Rules 1 and 2, and the background output is determined by 

Rule 3. These rules effectively differentiate between edge and 

non-edge regions in an image by considering the intensity of 

gradients in both horizontal and vertical directions. High and 

middle-intensity gradients result in edge, while low intensity 

in both directions results in background. 

 

Step 4: Defuzzification 

Defuzzification operation involves translating the fuzzy 

logic results into a binary edge-detected image. This is done 

by comparing the edge output with the background output for 

each pixel. Given the edge output (𝐸) and background output 

(𝐵) the defuzzified value for each pixel can be determined by 

Eq. (13). 

 

𝑃𝑖𝑥𝑒𝑙 (𝑖, 𝑗) = {
255,  𝐸(𝑖, 𝑗) > 𝐵 (𝑖, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

 
 

Figure 2. Identified edges 

 

Defuzzification is critical in processing fuzzy logic systems, 

translating the fuzzy quantities into precise actions or outputs. 

In the context of edge detection in image processing, 

defuzzification helps finalize the decision for each pixel, 

determining whether it is part of an edge. The example result 

of the defuzzification process can be seen in Figure 2. 

Algorithm 1 summarizes the steps of Fuzzy Edge Detection 

 

Algorithm 1. Fuzzy rules for edge detection 

1: function FuzzyEdgeDetection(Cover) 

2:     for each Pixel in the Cover do 

3:         Gx ← ComputeGradientX(Pixel) 

4:         Gy ← ComputeGradientY(Pixel) 

5:         LowX ← GaussianMF(Gx, "low") 

6:         MidX ← GaussianMF(Gx, "middle") 

7:         HighX ← GaussianMF(Gx, "high") 

8:         LowY ← GaussianMF(Gy, "low") 

9:         MidY ← GaussianMF(Gy, "middle") 

10:        HighY ← GaussianMF(Gy, "high") 

11:        EdgeRule1 ← max(HighX, HighY) 

12:        EdgeRule2 ← max(MidX, MidY) 

13:        BackgroundRule ← min(LowX, LowY) 

14:        EdgeOutput ← max(EdgeRule1, EdgeRule2) 

15:        if EdgeOutput > BackgroundRule, then 

16:            Edges[Pixel] ← 255 

17:        else 

18:            Edges[Pixel] ← 0 

19:        end if 

20:    end for 

21:    return Edges 

22: end function 

 

3.2 Data embedding  

 

As illustrated in Figure 3, the data embedding process is 

made of steps starting from edge identification until the secret 

data is concealed in the cover image. At the first embedding 

stage, the cover image is processed to get all the edges of the 

image using the Sobel operator. To generate the key, we 

convert all the pixels that have 255 values to 1. The resulting 

key will be a n  n matrix with binary values, with n being the 

size of the image. The binary key matrix is critical in 

enhancing security in embedding and extracting concealed 

information within the cover image.  

 

 
 

Figure 3. The flow of embedding process 

 

 
 

Figure 4. Generating secret prime 
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The key metric will generate a transformed secret key (see 

Figure 4). Let 𝑆 represent the vector of the secret base 5 bits, 

and 𝐸 represent the reshaped edge image matrix flattened into 

a vector. The operation to generate the transformed secret key 

(𝑆′) is mathematically expressed in Eq. (14). This secret key 

transformation adds a layer of security to the process. 

 

𝑆′ = (𝑆 + 𝐸) 𝑚𝑜𝑑 5 (14) 

 

After generating the transformed secret, we continue to 

embed the secret prime into the image. The embedding process 

is as follows:  

Step 1: Calculate the modulo-5 value of the pixel using Eq. 

(15). 

 

𝑚 = 𝑝 𝑚𝑜𝑑 5  (15) 

 

Step 2: Compute the difference between the secret prime 

and the modulo-5 value of the pixel using Eq. (16). 

 

𝑑 = 𝑆′ − 𝑚 (16) 

 

Step 3: Let 𝑝′ the new pixel value. If 𝑑 is less than half of 

the base of the secret prime (in this case 
5

2
) the pixel value is 

increased by 𝑑. Otherwise, the pixel's value is decreased by 5-

d to wrap around the base five systems (see Eq. (17)). 

 

𝑝′ = {
𝑝 + 𝑑, 𝑑 <

5

2

𝑝 − (𝑏 − 𝑑), 𝑑 ≥
5

2

 (17) 

 
Algorithm 2 summarizes the steps of Data Embedding for 

embedding secrets into stego image. 

 

Algorithm 2. Data embedding algorithm 

1: function StegoEmbedding (CoverImage, SecretData) 

2:     Cover ← ReadCoverImage (CoverImage) 

3:     Secret ← ReadSecretData (SecretData) 

4:     Edges ← FuzzyEdgeDetection (Cover) 

5:     BinaryKey ← ConvertEdgestoBinary (Edges) 

6:     TransformedSecret ← TransformSecret  

7:     for each Pixel in the Cover, do 

8:         ModValue ← Pixel mod 5 

9:         Difference ← TransformedSecret - ModValue 

10:        if Difference < 2.5 then 

11:            NewPixel ← Pixel + Difference 

12:        else 

13:            NewPixel ← Pixel - (5 - Difference) 

14:        end if 

15:        UpdateCoverImage(Pixel, NewPixel) 

16:    end for 

17:    StegoImage ← WriteStegoImage (Cover) 

18:    return StegoImage 

19: end function 

 
3.3 Data extraction 

 

As illustrated in Figure 5, the proposed method considers 

three key elements in the data recovery process: extracting the 

transformed secret data, generating the key matrix, and 

recovering the original secret data.  

(1) Transformed secret data extraction: For each pixel (𝑝), 

calculate the remainder of the pixel value when divided by the 

base 5 using Eq. (18) to generate a secret prime (𝑆′).  

 

𝑆′ = 𝑝 𝑚𝑜𝑑 5 (18) 

 

 
 

Figure 5. The flow of data recovery 

 

(2) To obtain the key matrix, we generate edges from the 

stego images using the Sobel operator we used previously in 

an embedding process to ensure the key generated is consistent. 

The resulting key is the same size and value as the key in the 

embedding process, an 𝑛 𝑥 𝑛 matrix with binary values, with 

n being the size of the image.  

(3) To recover the original secret data, we proceed as 

follows: Let 𝑆′  be the vector representing the transformed 

secret data extracted from the image and let 𝐸 be the vector 

representing the edge image that is already flattened. Both 

vectors are of the same length 𝑛,  and their elements 

correspond to the individual values of the secret prime and the 

edge image, respectively. The operation to retrieve the original 

secret 𝑠 from the 𝑆′ and the edge image 𝐸 is defined for each 

element 𝑖 (where 𝑖 ranges from 1 to 𝑛) based on Eq. (18). 

 

𝑆′ = 𝑝 𝑚𝑜𝑑 5𝑠 = (𝑆′
𝑖 + 5 −  𝐸𝑖) 𝑚𝑜𝑑 5 (19) 

 

Algorithm 3 summarizes the steps of Data extraction for 

extracting secrets from stego images. 

 

Algorithm 3. Data extraction algorithm 

1: function DataExtraction (StegoImage) 

2:     Stego ← ReadStegoImage (StegoImage) 

3:     Edges ← FuzzyEdgeDetection (Stego) 

4:     BinaryKey ← ConvertEdgestoBinary (Edges) 

5:     TransformedSecret ← [] 

6:     for each Pixel in Stego do 

7:         ModValue ← Pixel mod 5 

8:         TransformedSecret.append (ModValue) 

9:     end for 

10:     SecretData ← [] 

11:     for each i in TransformedSecret, do 

12:         OriginalSecret ← (TransformedSecret[i] + 5 - 

BinaryKey[i]) mod 5 

13:         SecretData.append(OriginalSecret) 

14:     end for 

15:     return SecretData11:    return SecretData 

16: end function 

 

 

4. RESULTS AND DISCUSSION 

 

To implement the proposed algorithm experimentally, we 

use images from the SIPI image database [25] with sample 

images illustrated in Figure 6. These 512×512 pixel grayscale 

images, each with eight bits per pixel, are known as Zelda, 

Plane, Baboon, Lake, Boat, and Goldhill. The secret data used 
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in this research consists of bitstreams in base five ranging from 

10 to 100KB. The proposed method's performance is analyzed 

using the six selected cover images.  

We use the Peak Signal-to-Noise Ratio (PSNR) evaluated 

in decibels (dB) to assess the steganographic image's quality. 

It is worth noting that the threshold value for the PSNR to be 

admissible for a stego image is 30 dB. The PSNR is computed 

using the Mean Square Error (MSE) obtained from Eq. (20) 

and calculated using Eq. (21) with 𝑐𝑜𝑣𝑒𝑟𝑖𝑚(𝑖, 𝑗)  the pixel 

value at the position(𝑖, 𝑗) in the cover image and 𝑠𝑡𝑜𝑖𝑚(𝑖, 𝑗) 

the pixel value at the position(𝑖, 𝑗) in the stego image. 

 

𝑀𝑆𝐸 =
1

𝑘 × 𝑙
∑ ∑ [𝑐𝑜𝑣𝑒𝑟𝑖𝑚(𝑖, 𝑗) − 𝑠𝑡𝑜𝑖𝑚(𝑖, 𝑗)]2

𝑙

𝑗=1

𝑘

𝑖=1
 (20) 

 

𝑃𝑆𝑁𝑅 = 10log10

2552

𝑀𝑆𝐸
 (21) 

 

Table 1 compares three steganographic methods with the 

same cover images and payload sizes. The results of the 

proposed method are compared to those reported in several 

studies [26, 27]. The evaluation is centered around varying 

payload sizes in kilobits (KB) and the resulting PSNR values 

for each method across the considered cover images, namely 

"Plane," "Baboon," "Lake," "Boat," "Goldhill," and "Zelda." 

Based on the obtained results, it is demonstrated that the 

proposed method showcases the highest PSNR values, which 

indicate the superior quality of the stego images obtained with 

this newly proposed approach, emphasizing the effectiveness 

of the proposed method in minimizing information loss during 

data embedding. The IPPVO results reported by Ding et al. 

[26] are also among the good results recently achieved. 

However, they are consistently inferior to those reported by 

Chang et al. [27]. In this method, we propose an improvement. 

The outperformance of the proposed method identifies a 

contextual understanding of how the proposed steganographic 

technique fares concerning an existing approach. 

The analysis of the average PSNR values in Figure 7 shows 

that the PSNR values generally decrease as the payload size 

increases from 10KB to 50KB. This trend is consistent across 

all three methods. The proposed method consistently 

outperforms the IPPVO and HPPVO methods across all 

payload sizes in this range, indicating better image quality 

retention after steganographic processing. Higher PSNR in 

smaller payloads suggests that the Proposed Method is 

particularly effective in maintaining image quality in less 

complex or lower-resolution images, making the 

steganographic modifications less detectable. In the 60-

100KB range, the PSNR values tend to decrease as the Payload 

size increases, as shown in Figure 8. This trend holds for all 

methods. However, the proposed method shows a notably 

higher PSNR than the IPPVO and HPPVO methods, 

suggesting a substantial improvement in maintaining image 

quality in this file size range. The overall trend across all 

payload sizes indicates that as the amount of data to be 

encoded increases, the quality of the resultant image, as 

measured by PSNR, decreases. This is expected due to the 

increased compression required to maintain the payload within 

the specified size. The IPPVO and HPPVO methods, while 

effective to a degree, seem less capable of maintaining high 

image quality during steganographic processing than the 

proposed method. 

Table 2 shows how the Structural Similarity Index (SSIM) 

values vary for different cover images (Plane, Baboon, Lake, 

Goldhill, and Zelda) across payload capacities ranging from 

10KB to 100KB. As expected, the SSIM values decrease with 

increasing payloads, indicating a decline in image quality as 

more data is embedded. For instance, the Plane image starts 

with an SSIM of 0.94 at a 10KB payload, dropping to 0.77 at 

100 KB, demonstrating a gradual quality degradation. 

Similarly, Baboon shows high initial quality with an SSIM of 

0.93 at 10KB, reducing to 0.75 at 100KB. The Lake image 

begins at 0.92 SSIM at 10KB and falls to 0.64 at 100KB, 

suggesting it is more prone to quality loss compared to Plane 

and Baboon. Goldhill's SSIM values start at 0.91 for 10KB and 

decrease to 0.64 for 100KB, while Zelda shows a similar trend 

with SSIM values from 0.87 at 10KB to 0.61 at 100KB. These 

results highlight the trade-off between payload capacity and 

image quality, with higher payloads leading to greater 

structural dissimilarities in the cover images. 

 

 
 

Figure 6. Sample cover images 
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Table 1. Comparison of the obtained and the existing results 

 

Payload (in KB) 
PSNR Result (in dB) 

Cover Images Proposed Method IPPVO [26] HPPVO [27]  

10 

Plane 60.92 64.09 64.18 

Baboon 61.10 54.75 55.45 

Lake 60.96 60.53 60.42 

Goldhill 60.95 60.79 60.91 

Zelda 60.64 59.96 60.51 

20 

Plane 57.83 60.42 60.40 

Baboon 58.15 56.54 56.84 

Lake 57.88 55.36 55.52 

Goldhill 57.87 55.60 55.97 

Zelda 57.67 56.12 56.81 

30 

Plane 56.09 58.31 58.52 

Baboon 56.33 53.12 53.70 

Lake 56.18 52.38 53.11 

Goldhill 56.12 53.53 53.91 

Zelda 55.96 54.81 54.95 

40 

Plane 54.87 56.51 56.72 

Baboon 55.04 52.14 52.42 

Lake 54.94 52.33 52.51 

Goldhill 54.87 52.73 53.07 

Zelda 54.72 51.41  59.43 

50 

Plane 53.88 54.75 54.96 

Baboon 54.07 51.36 51.64 

Lake 53.87 51.56 51.73 

Goldhill 53.87 50.97 51.31 

Zelda 53.77 51.17 51.41 

60 

Plane 53.12 54.17 54.39 

Baboon 53.24 50.25 50.53 

Lake 53.13 50.50 50.67 

Goldhill 53.13 50.39 50.82 

Zelda 52.96 50.24 50.59 

70 

Plane 52.46 52.91 53.13 

Baboon 52.60 48.73 49.01 

Lake 52.45 48.99 49.15 

Goldhill 52.37 49.13 49.56 

Zelda 52.28 49.23 49.48 

80 

Plane 51.84 51.33 51.56 

Baboon 51.98 47.15 47.15 

Lake 51.85 47.39 47.39 

Goldhill 51.86 47.55 47.98 

Zelda 51.71 47.65 47.90 

90 

Plane 51.38 49.89 50.02 

Baboon 51.49 45.71 45.99 

Lake 51.31 45.95 46.11 

Goldhill 51.32 46.11 46.54 

Zelda 51.25 46.21 46.46 

100 

Plane 50.87 48.44 48.59 

Baboon 51.07 44.27 44.56 

Lake 50.89 44.51 44.68 

Goldhill 50.88 44.66 45.09 

Zelda 50.77 44.76 45.21 

The Structural Similarity Index (SSIM) is a metric used to 

evaluate the similarity between two images. It considers 

changes in structural information, luminance, and contrast to 

provide a comprehensive assessment of image quality. SSIM 

values range from -1 to 1, where 1 indicates perfect similarity, 

0 indicates no similarity, and -1 indicates perfect dissimilarity. 

Unlike traditional metrics such as Mean Squared Error (MSE), 

which only consider pixel differences, SSIM models the 

human visual perception of image quality, making it more 

sensitive to structural distortions. It is widely used in image 

processing tasks, including image compression, denoising, 

and quality assessment, to ensure that the processed images 

retain high visual fidelity. An SSIM value above 0.9 is 

generally considered good, indicating that the image retains 

most of its original quality, while values between 0.7 and 0.9 

indicate moderate quality, and values below 0.7 suggest 

noticeable degradation in image quality. 

To illustrate the practical application of the proposed 

algorithm in information security, this study incorporates a 

steganalysis attack using adaptive steganalysis models, as 

cited by several researchers [13, 16]. The stego images are 

generated using the proposed steganographic algorithm with 

payload capacities of 50KB and 100KB. To ensure robust 

attack results, the stego images undergo one or more common 

attack operations (such as cropping and compression) before 

being used for training. The data presented in Table 3 indicate 

the proposed algorithm's strong resistance, as the detection 

accuracy in all scenarios remains below 50%. The highest 
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detection accuracy, achieved with preprocessed images during 

a strong steganalysis attack, is only 42.83%. This explains the 

robustness of the proposed method against such attacks. 

 

 
 

Figure 7. Average PSNR generated using secret data sizes ranging from 10KB to 50KB 

 

 
 

Figure 8. Average PSNR generated using secret data sizes ranging from 60KB to 100KB 
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Table 2. SSIM value for each cover image 

 

Payload (in KB) 
SSIM Value 

Cover Images Proposed Method 

10 

Plane 0.94 

Baboon 0.93 

Lake 0.91 

Goldhill 0.87 

Zelda 0.81 

20 

Plane 0.71 

Baboon 0.67 

Lake 0.63 

Goldhill 0.62 

Zelda 0.95 

30 

Plane 0.89 

Baboon 0.88 

Lake 0.79 

Goldhill 0.74 

Zelda 0.72 

40 

Plane 0.70 

Baboon 0.69 

Lake 0.65 

Goldhill 0.63 

Zelda 0.89 

50 

Plane 0.87 

Baboon 0.87 

Lake 0.86 

Goldhill 0.85 

Zelda 0.73 

60 

Plane 0.67 

Baboon 0.64 

Lake 0.63 

Goldhill 0.60 

Zelda 0.91 

70 

Plane 0.90 

Baboon 0.86 

Lake 0.82 

Goldhill 0.82 

Zelda 0.77 

80 

Plane 0.72 

Baboon 0.71 

Lake 0.71 

Goldhill 0.62 

Zelda 0.87 

90 

Plane 0.87 

Baboon 0.85 

Lake 0.80 

Goldhill 0.78 

Zelda 0.77 

100 

Plane 0.75 

Baboon 0.64 

Lake 0.64 

Goldhill 0.61 

Zelda 0.60 

 

Table 3. Detection accuracy in percentage (%) of the proposed method by steganalysis attacks 

 
Staganalysis Method (Attaching Algorithm) Payload Capacity of 50KB Payload Capacity of 100KB 

Algorithm in [13] 25.21 36.44 

Algorithm in [16] 32.51 42.83 

 

 

5. CONCLUSION 

 

In conclusion, this study has significantly improved the 

efficacy of existing data-hiding methodologies, enhancing the 

security of concealed payloads by incorporating edge images 

as an additional security layer. Including this extra security 

layer is vital to safeguarding the embedded secret payload, 

rendering it less susceptible to detection or extraction by 

unauthorized entities. Moreover, integrating edge images 

introduces a heightened complexity to the embedding process, 

thereby increasing potential attackers' difficulty deciphering 

the concealed information. Beyond offering an efficient means 

of concealing information within images with minimal impact 

on quality for smaller data loads, the proposed method 
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introduces an innovative security feature. This feature 

significantly enhances the resilience of steganographic content 

against unauthorized access and detection [1]. Such a strategic 

advantage positions the proposed method as a highly effective 

technique for secure steganographic practices, particularly in 

scenarios where data integrity and security are paramount 

considerations. The findings of this study contribute not only 

to the advancement of steganographic methodologies but also 

to the broader discourse on secure information transmission 

within digital images.  

The practical applications of this method are extensive, 

ranging from secure communication in military and diplomatic 

contexts to protecting intellectual property and personal 

privacy in the digital age. One of the main challenges that 

could arise is the computational complexity introduced by the 

edge detection and embedding processes, which might require 

optimization for real-time applications. Additionally, there 

may be limitations in the method's robustness against highly 

sophisticated steganalysis techniques that continue to evolve. 

Addressing these challenges in future research will be crucial 

for enhancing the method's practical applicability and overall 

effectiveness. 

The comparative analysis of various steganographic 

methods has yielded valuable insights into the trade-offs 

between image quality, as measured by PSNR, and payload 

size. Notably, the proposed method, leveraging edge images 

as a key to steganography, has exhibited superior performance 

by maintaining elevated PSNR values even at smaller payload 

sizes. This characteristic underscore the method's proficiency 

in preserving image quality, especially when minimizing 

embedded data volume is imperative for secure image 

transmission. 

Based on the results of this work and the state-of-the-art, 

there is room for improving the ability to hide more data by 

preserving the quality of the stego image. Future work should 

focus on several key areas to address these limitations. First, 

optimizing the computational efficiency of the edge detection 

and embedding processes will be essential for real-time 

applications. This could involve developing more efficient 

algorithms or leveraging hardware acceleration techniques. 

Second, enhancing the robustness of the method against 

advanced steganalysis techniques will require ongoing 

research and adaptation to emerging threats. This could 

include integrating machine learning approaches to adjust 

embedding strategies based on detected threats dynamically. 

Third, further research should explore methods to optimize the 

balance between embedding capacity and image quality across 

a broader range of image types and conditions. Developing 

adaptive techniques that can tailor the embedding process to 

the specific characteristics of each image could significantly 

improve the method's overall performance. 
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