
A Proposed CPU Job-Scheduling Technique Based on Round Robin Method Using Dual 

Synchronized Time-Slices 

Salam Ayad Hussein* , Emad Issa Abdul Kareem

Department of Computer Science, College of Education, Mustansiriyah University, Baghdad 10052, Iraq 

Corresponding Author Email: salamayad.77@uomustansiriyah.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290517 ABSTRACT 

Received: 18 December 2023 

Revised: 30 August 2024 

Accepted: 14 September 2024 

Available online: 24 October 2024 

A major aspect of distributed systems is task scheduling. How significant is it to adequately 

allocate tasks to each one of the computer's processors for the purpose of achieving better 

performance? The indicated approaches attempt to reduce costs and improve performance 

while maximizing the utilization of the central processing unit (CPU) in such a situation. 

The main flaw in such methods is that they require a lot of scheduling and, as a result, a lot 

of time. To address such a flaw, a modified CPU job-scheduling method was suggested, 

which used the Round Robin technique (R.R.) and dual synchronized time-slices to reduce 

jobs’ waiting time to be executed. Therefore, the present study proves that the suggested 

approach has optimization efficiency with an average percentage of (12.4%–62.07%), 

according to an original R.R. algorithm. 

Keywords: 

operating system, task scheduling, round 

robin (R.R.), time quantum (T.Q), 

optimization techniques 

1. INTRODUCTION

Task scheduling is an important field in the operating 

system. Task scheduling can be divided into two types: 

dynamic and static. Schedules are created throughout runtime 

in dynamic scheduling, while no knowledge regarding the task 

is available until it arrives [1].  

It develops schedules prior to running time and has no 

ability to change them in static scheduling. Comparatively, all 

tasks should be identified ahead of time. Put differently, a 

static task scheduling algorithm schedules a group of tasks on 

processors with known communication and processing 

properties to improve a few performance metrics like 

complexity, Makespan, and CPU utilization [1]. The hybrid 

optimization scheduling approach is the focus of this study. 

The problem of timetabling was studied for many years, and 

various solutions were suggested. Since the 1960s, researchers 

have examined adequate as well as heuristic solution methods 

for the university and school timetabling problem [2]. When 

looking at the solution approaches' history, it's indicated that 

many solutions were suggested for such an issue. The 

operations research literature has been thoroughly indicated in 

the construction of university schedules over the last three 

decades [3]. 

In light of the prolonged execution time identified as a 

pivotal challenge in this undertaking, the primary objective is 

to ascertain an optimal sequence for the execution of jobs. The 

proposed methodology will consider both the time at which 

jobs are initiated and the time required for their completion. 

By balancing the entrance and execution times, the proposed 

approach aims to reduce the overall waiting time for jobs.  

The proposed technique is based on the concept of dual 

synchronisation, which differs from the traditional approach 

of single synchronisation. In contrast to the traditional (R.R.) 

method, which does not take the length of the jobs into account, 

this technique considers the length of the jobs to be a key factor 

in the scheduling process. According to the proposed approach, 

the expected advantages Combine single and dual 

synchronisation for short and long jobs respectively. This 

approach will facilitate the completion of lengthy jobs without 

impacting the execution time of shorter jobs [4]. 

Thus, the objective of this paper will be to minimize 

execution time to achieve better usage of processors. Where, 

our contributions will be through creating a new, hybrid 

scheduling technique (by taking features from basic operating 

system scheduling techniques) and re-arrange it in a way that 

ensures better performance and the highest score in its fitness 

function [5]. 

2. RELATED WORK

Hussein et al. [6] demonstrated that the suggested hybrid 

planning framework is more effective and exacerbates the 

current planning gap. It aids in the study of the operating 

system and the use of a multi-programming environment. 

Creating a single priority activity policy resulted in identical 

scalability testing. The value of mixing complicated real-time 

and soft-time jobs in the system is also assessed. 

Suppiah et al. [7] presented a novel queue-based multi-level 

CPU scheduling system. The suggested method assigns CPU 

service time and dynamically decides the time quantity (TQ) 

between different queues. The fuzzy toolbox is used to build 

the programming method utilized in the Math Lab application. 

In the multi-level feedback queue programming technique, 

Jain and Jain [8], conducted a simulation study known as 

Markov chain analysis to examine the influence of wait state 

on overall system efficiency and performance. This study also 

Ingénierie des Systèmes d’Information 
Vol. 29, No. 5, October, 2024, pp. 1847-1858 

Journal homepage: http://iieta.org/journals/isi 

1847

https://orcid.org/0000-0001-5922-0954
https://orcid.org/0000-0003-1314-1198
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290517&domain=pdf


 

underlines the fact that the comparison analysis is calculated 

in an arithmetic model with shifting values and d. 

Maktum et al. [9] proposed utilizing a genetic algorithm to 

develop near-optimal solutions to the CPU scheduling 

problem. They developed a simple scheduling algorithm for 

uni-processor scheduling based on their evolutionary 

technique and compared it to SJF and FCFS scheduling to 

reduce average wait times. 

Jawad [10] developed a neural fuzzy programming 

technique for the application, as well as a modified CPU 

scheduling algorithm, in order to increase reaction time while 

minimizing average time and response time. It accomplishes 

this by combining established schedules, such as SJF 

preemptive scheduling and Nero fuzzy scheduling. 

Saroj et al. [11] offered a strategy that was simulated and 

implemented in C++ programming. This solution addresses a 

number of difficulties, including longer average wait times, 

rotation times, infinite hunger blocking, and hands-on 

execution. With two types of split times, the proposed 

timetable solved numerous difficulties and was simple to 

implement. 

Ahmed and Brifcani [12] to learn advanced features, they 

employed a multi-layer artificial neural network, similar to 

deep neural networks. Deep learning was performed using the 

essential characteristics derived from the data. 

Elmougy et al. [13] proposed SRDQ, a revolutionary hybrid 

task scheduling technique that combines Shortest Job First 

(SJF) and Round Robin (RR) schedulers while taking the 

quantity of dynamically changing jobs into consideration. The 

suggested algorithms are primarily based on two essential keys: 

the first contains a large number of dynamic jobs to balance 

the waiting time between short and long tasks, and the second 

divides the ready queue into two sub-queues, Q1 for short 

tasks and Q2 for lengthy tasks. and another for quick jobs. the 

lengths. With two Q1 tasks and one Q2 task, task assignment 

to Q1 or Q2 resources is mutual. 

Sai et al. [14] presented a hybrid approach to solve the 

scheduling problem. This approach combines the shortest and 

longest job scheduling techniques and indicates if it is suitable 

for both unit-processor and multiprocessor systems depending 

on the results. This technique can lead to efficient solutions 

when additional characteristics such as waiting time and 

execution time are taken into account. 

Himthani et al. [15] suggested a multitasking scheduling 

approach that enhances system throughput and decreases 

context switching cost. Because it includes the benefits of both 

systems, the suggested strategy is a hybrid of Round Robin 

and Shortest Remaining Time First. The quantum time update 

is determined by the slice bit and the remaining time of the 

packet in this technique. 

 

 

3. CPU SCHEDULING 

 

Processor scheduling can be defined as Allocating CPU 

time slots to processes procedure. In a multi-processing system, 

which can be regarded as a dynamic operation that grows more 

challenging [16, 17]. 

The major scheduling aims can be summarized as [18, 19]: 

1. Being fair between processes. 

2. Maximizing the number of completed processes for each 

unit time (throughput). 

3. Avoiding the indefinite postponement regarding any 

process (Starvation Free). 

4. Minimizing overhead, i.e., minimizing the wasted time in 

scheduling. 

5. Balancing resource usage, i.e., using all resources all the 

time. 

6. Enforcing a priority scheme for allowing certain 

processes to get more CPU time. 

7. Degrading under heavy loads. 

With regard to significance, there are numerous scheduling 

types which were delivered as follows [20, 21]: 

 

3.1 First in first out scheduling (FIFO) 

 

Processes are dispatched based on the arrival time on the 

Ready Queue in such a type. As soon as the process has access 

to the CPU, it will run to the point where it’s finished. Due to 

the fact that FIFO scheduling isn't non-preemptive, it might be 

used in a single programming environment. It can’t be utilized 

as a master scheme in multi-programming yet, only as part of 

its [22, 23]. 

Disadvantages [24, 25]:  

a. Less execution time process endures, i.e., the waiting time 

is often excessively long. 

b. Favours CPU-bound processes over I/O-bound processes. 

c. The first process will get the CPU first; remaining 

processes can use the CPU exclusively after the existing 

process has achieved its execution. 

 

3.2 Round robin scheduling 

 

Round-robin scheduling has been considered comparable to 

FCFS scheduling, with the exception that the CPU bursts are 

given time quantum limits (T.Q.). In addition, a timer has been 

set to whatever value was set for time quantum in a case where 

a process is given the CPU. In the case where the process 

completes its burst prior to the expiration of the quantum timer, 

it’s swapped out of the CPU in the same way that the standard 

FCFS algorithm is. The process has been swapped out of the 

CPU and then moved to the back end of the ready queue in a 

case where the timer goes off first. The ready queue is kept as 

a circular queue, which means that as soon as all processes 

have had their turn, the scheduler will give the first process 

another turn, etc. [24, 26]. 

Disadvantages [18, 25]: 

a. Setting the quantum too short increases the overhead and 

lowers the CPU efficiency, but setting it too long may cause a 

poor response to short processes. 

b. The average waiting time under the RR policy is often 

long. 

c. If the time quantum is very high, then RR degrades to 

FCFS. 

 

3.3 Shortest job first (SJF) 

 

It has been indicated that an extremely simple method 

solves the problem; actually, it's an idea that has been 

borrowed from operations research [C-54, PV-56] and utilized 

for job scheduling in computer systems. SJF is the name of this 

novel scheduling discipline, and it must be easy to remember 

since it accurately describes policy: it runs the shortest job first, 

after that the next shortest, etc. [27]. 

Disadvantages [13, 25]: 

a. SJF may cause starvation if shorter processes keep 

coming. This problem is solved by aging. 

1848



 

b. It cannot be implemented at the level of short-term CPU 

scheduling. 

 

3.4 Priority scheduling 

 

Priority scheduling has been considered a more general 

version of SJF, where every one of the jobs is given a priority 

and the maximum priority job is served first. SJF prioritizes 

according to the inverse of the expected burst time; the smaller 

the expected burst, the higher the priority. Actually, priorities 

are conducted with the use of integers within a fixed range, yet 

there isn't consensus on whether high priorities should be 

conducted with small or large numbers. In this study, high 

priorities are represented by a low number, with 0 being the 

highest possible priority [28, 29]. 

Disadvantages [30, 31]: 

a. If high-priority processes use up a lot of CPU time, lower-

priority processes may starve and be postponed indefinitely. 

The situation where a process never gets scheduled to run is 

called starvation. 

b. Another problem is deciding which process gets which 

priority level assigned to it. 

The major effect of the previously mentioned disadvantages 

is that they might cause an oscillation in the optimization 

efficiency of these approaches. 

 

 

4. THE PROPOSED APPROACH 

 

The suggested approach has considered a finite number of 

jobs, each with a different execution time (length). Those jobs 

have been placed in the job pool from which they have been 

assigned to be implemented by an OS, as shown in Figure 1 

below: 

 

 
 

Figure 1. The proposed job's sequence 

 

4.2 The proposed method flowchart 

 

The suggested model will be concentrated on the job’s 

execution time using a proposed scheduling technique via 

taking advantage of the R.R. technique, as in the following 

flowchart (Figure 2). 

 

 
 

Figure 2. The proposed method flowchart 

 

4.3 The proposed method steps 

 

Basically, a number of jobs will be assigned (N) with 

various lengths. As in the R.R. technique, a time quantum 

(T.Q.) will be specified in order to be utilized to execute job 

slices from main jobs. Normally, the T.Q. should be 

commensurate with the length of the shortest job (T.Q. less 

than the shortest job length). The execution starts (based on 

the job's arrival sequence) by executing dual synchronized 

slices from both sides of each job.  

For each round, three parameters will be considered as input: 

No. of jobs, T.Q, and length of jobs. Initially, two variables 

(right_side, left_side) need to be assigned. The right_side will 

be equal to the longest job, while the left_side needs to be 

assigned to be equal to the start state (initially equal to 0). For 

each execution round, these two variables in addition to the 

max_length variable will be updated using Eqs. (1)-(3) 

respectively (see Figure 3). 

 

𝑅𝑖𝑔ℎ𝑡_𝑆𝑖𝑑𝑒𝑖 = 𝑅𝑖𝑔ℎ𝑡_𝑆𝑖𝑑𝑒 𝑖−1 − 𝑇. 𝑄 (1) 

 

𝐿𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑖 = 𝑙𝑒𝑓𝑡_𝑠𝑖𝑑𝑒𝑖−1 + 𝑇. 𝑄 (2) 

 

𝑀𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 = 𝑀𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ𝑖−1 −  𝑇. 𝑄 (3) 

Job1

Job2

Job3

Job4

Job5

Job6

Jobn

Start

Assign finite number of jobs (N) 

with various lengths

Assign (T.Q) less than shortest 

job length

FCFS

Complete jobs 

execution?

Start (R.R) by executing dual 

slices from job's both sides  

END

Yes
No

1849



 

 
 

Figure 3. The proposed technique implementation 

 

5. RESULTS AND ANALYSIS 

 

The results have been presented via quantitative evaluation. 

Three hundred random jobs have been used in this issue (see 

Figure 4 and appendix A). The randomness came from 

assigning a random time for the job to enter and a random time 

for the job to be executed. The evaluation of the suggested 

scheduling algorithm has been detected by finding the optimal 

ratio gained via the proposed algorithm. The suggested 

algorithm is an optimization algorithm that balances between 

the two above- noted criteria (i.e., the time of job entry and the 

time that the job will take to be executed). The results have 

been presented via quantitative evaluation. The optimization 

ratio of the proposed approach comparing with traditional R.R 

has been calculated via Eq. (4). 

 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑖𝑜 = (
𝑟𝑖𝑔ℎ𝑡 _𝑠𝑖𝑑𝑒

𝐽𝑜𝑏_𝑙𝑖𝑛𝑔𝑡ℎ
) × 100 (4) 

 

In Eq. (4), the left-side variable has been ignored because it 

is a common factor for both approaches (i.e., traditional and 

proposed approaches), while the right-side factor corresponds 

to the proposed approach. Thus, the right-side factor 

contributes to the optimality of the proposed approach 

compared to traditional R.R.  

The jobs' optimization rate will be divided into three periods: 

period 1 includes jobs with an optimization rate in the range 

(0% to 33%); period 2 includes jobs with an optimization rate 

in the range (33% to 66%); and period 3 includes jobs with an 

optimization rate in the range (66% to 100%). 

 
 

Figure 4. Optimization ratio for each job of the 300 jobs 

Job1

Job2

Job3

Job4

Job5

Job6

Jobn

Left slice Right slice

1850



The benefit of the proposed approach is that it does not 

affect the execution times of the shortest jobs, as shown in 

Figure 4, where jobs with an execution time that is less than 

half that of the longest job within the synchronized jobs group 

would take their own execution time. The jobs' optimization 

rate will improve as soon as their execution times increase. 

Thus, it is evident that the rate of optimization and job 

execution time are directly correlated. additionally, it was 

discovered that a job group will achieve the highest 

optimization rate when it is larger than 40 seconds and 

includes equal values, or at the very least, nearly equivalent 

values. 

Finally, it should be mentioned that the system overhead 

will never increase because both long and short jobs are 

executed at each clock cycle at least from the left side (unlike 

the standard R.R. that only at most executes one side of long 

and short jobs at each clock cycle). And for fairness and 

scientific integrity, it should be mentioned that the 

mathematical complexity might increase in this approach due 

to the ongoing updating in job's length measurement from the 

start until the end of the execution. 

 

 

6. QUANTITATIVE COMPARISON 

 

The standard round robin and the proposed method have 

been compared quantitatively using a sample of 400 randomly 

chosen jobs with random different lengths (which makes the 

proposed approach applicable at any different scenario). In 

this experiment, the attributes were: job length, start state, 

right-side and left side. In addition to T.Q which is less than 

the shortest job. When These attributes had been generated 

randomly. The quantitative results of the experiment are 

shown in Tables 1 and 2. In comparison to the conventional 

Round Robin, the proposed method has been able to minify 

the long job Time of execution to around (12.4%–62.7%), as 

shown in Figure 5. 

 

 

 
 

Figure 5. Quantitative comparison between traditional round robin and the proposed method 

 

 

7. CONCLUSIONS 

 

The suggested method has the priority of the execution of 

jobs according to entering time as well as the strategies for 

taking the long execution jobs into account. It combines the 

benefits of the round-robin method with dual synchronized 

time slices. In light of this, there was a noticeable decrease in 

the average waiting time by (12.4% to 62.07%). This proves 

that the proposed method is successful in reducing job 

execution time. This led us to the conclusion that the proposed 

method accomplished the primary study objective for which it 

was designed.  

8. RECOMMENDATIONS FOR FUTURE WORK 

 

(1) In order to shorten the time required to complete jobs, it 

is suggested that the classic round robin be coupled with the 

best aspects of spatial or temporal notions. 

(2) For real time system, we recommend reducing the 

number of jobs or using a parallel processing to achieve the 

optimal results from the proposed method.  

(3) In cloud computing, the proposed method can be a useful 

solution for task scheduling in virtual machines queues or in 

the request schedule manager after fog computing layer. 

(4) It is recommended that the technical complexity should 

1851



 

be measured between classic R.R and this approach to find the 

system overhead.  

 

 

REFERENCES  

 

[1] Hasoon, J.N., Hassan, R.F. (2019). Solving job 

scheduling problem using fireworks algorithm. Journal 

of Al-Qadisiyah for Computer Science and Mathematics, 

11(2): 1–8. https://doi.org/10.29304/jqcm.2019.11.2.557 

[2] Karuppusamy, S., Muthaiyan, M. (2016). An efficient 

placement algorithm for data replication and to improve 

system availability in cloud environment. International 

Journal of Intelligent Engineering and Systems, 9(4): 88-

97. https://doi.org/10.22266/ijies2016.1231.10 

[3] Balagoni, Y., Rao, R. (2018). SAGS: A SLA-Aware 

green scheduling in heterogeneous cloud using hadoop 

YARN. International Journal of Intelligent Engineering 

and Systems, 11(6): 108–117. 

https://doi.org/10.22266/ijies2018.1231.11 

[4] Banday, M.T., Khan, M. (2014). A study of recent 

advances in cache memories. 2014 International 

Conference on Contemporary Computing and 

Informatics (IC3I), Mysore, India, pp. 398–403. 

https://doi.org/10.1109/IC3I.2014.7019786 

[5] Kareem, E.I.A., Hussein, S.A. (2022). Optimal CPU jobs 

scheduling method based on simulated annealing 

algorithm. Iraqi Journal of Science, 6(8): 3640–3651. 

https://doi.org/10.24996/ijs.2022.63.8.38 

[6] Hussein, S.A., Kareem, M.R., George, D.N. (2024). 

Minimizing the cache memory miss ratio using modified 

replacement algorithm (M-CAR). Ingénierie des 

Systèmes d’Information, 29(2): 697-703. 

https://doi.org/10.18280/isi.290231 

[7] Suppiah, Y., Bhuvaneswari, T., Yee, P.S., Yue, N.W., 

Horng, C.M. (2022). Scheduling single machine problem 

to minimize completion time. TEM Journal - Technology, 

Education, Management, Informatics, 11(2): 552-556. 

https://doi.org/10.18421/TEM112-08 

[8] Jain, S., Jain, S. (2016). Analysis of multi level feedback 

queue scheduling using markov chain model with data 

model approach. International Journal of Advanced 

Networking and Applications, 7(6): 2915-2924. 

[9] Maktum, T.A., Dhumal, R.A. Ragha, L. (2014). A 

genetic approach for processor scheduling. In 

International Conference on Recent Advances and 

Innovations in Engineering (ICRAIE-2014), Jaipur, 

India, pp. 1–4. 

https://doi.org/10.1109/ICRAIE.2014.6909108 

[10] Jawad, S. (2014). Design and evaluation of a neurofuzzy 

CPU scheduling algorithm. In Proceedings of the 11th 

IEEE International Conference on Networking, Sensing 

and Control, Miami, FL, USA, pp. 445–450. 

https://doi.org/10.1109/ICNSC.2014.6819667 

[11] Saroj, S.K., Sharma, A.K., Chauhan, S.K. (2016). A 

novel CPU scheduling with variable time quantum based 

on mean difference of burst time. In 2016 International 

Conference on Computing, Communication and 

Automation (ICCCA), Greater Noida, India, pp. 1342–

1347). https://doi.org/10.1109/CCAA.2016.7813986 

[12] Ahmed, O., Brifcani, A. (2019). Gene expression 

classification based on deep learning. In 2019 4th 

Scientific International Conference Najaf (SICN), Al-

Najef, Iraq, pp. 145–149. 

https://doi.org/10.1109/SICN47020.2019.9019357 

[13] Elmougy, S., Sarhan, S., Joundy, M. (2017). A novel 

hybrid of Shortest job first and round Robin with 

dynamic variable quantum time task scheduling 

technique. Journal of Cloud Computing, 6: 12. 

https://doi.org/10.1186/s13677-017-0085-0 

[14] Sai, R.V., Keerthana, S., Madhiarasi, S., Preethi, S.A 

(2019). Competent approach to predict dengue diseases 

using a hybrid approach in machine learning algorithm. 

International Journal of Engineering Research & 

Technology, 7(1): 1–4.  

[15] Himthani, P.,  Mishra, N.K., Pare, T., Dubey, G.P. (2021). 

Hybrid multi-tasking scheduling scheme based on 

dynamic time quantum using slice bit for improving CPU 

throughput. In Proceedings of the 3rd International 

Conference on Communication & Information 

Processing (ICCIP). http://doi.org/10.2139/ssrn.3916291 

[16] Alazawi, S.A., Salam, M.N.A. (2021). Evaluation of 

LMT and DNN algorithms in software defect prediction 

for open-source software. In Research in Intelligent and 

Computing in Engineering, Singapore, pp. 189–203. 

https://doi.org/10.1007/978-981-15-7527-3_19 

[17] Pappas, C., Moschos, T., Alexoudi, T., Vagionas, C., 

Pleros, N. (2022). Caching with light: First 

demonstration of an optical cache memory prototype. 

Optical Fiber Communication Conference (OFC), pp. 

Th4B.3. https://doi.org/10.1364/OFC.2022.Th4B.3 

[18] Aalsaud, A., Rafiev, A., Xia, F., Shafik, R., Yakovlev, A. 

(2018). Model-free runtime management of concurrent 

workloads for energy-efficient many-core heterogeneous 

systems. 2018 28th International Symposium on Power 

and Timing Modeling, Optimization and Simulation 

(PATMOS), Platja d'Aro, Spain, pp. 206–213. 

https://doi.org/10.1109/PATMOS.2018.8464142 

[19] Jaber, S., Ali, Y., Ibrahim, N. (2022). An automated task 

scheduling model using a multi-objective improved 

cuckoo optimization algorithm. International Journal of 

Intelligent Engineering and Systems, 15(1): 295–304. 

https://doi.org/10.22266/ ijies2022.0228.27 

[20] Al-Jawaherry, M.A., Abdulmajeed, A.A., Tawfeeq, T.M. 

(2022). Developing a heuristic algorithm to solve 

uncertainty problem of resource allocation in a software 

project scheduling. Iraqi Journal of Science, 63(5): 

2211–2229. https://doi.org/10.24996/ijs.2022.63.5.34 

[21] Abdulmohsin, H.A., Hasan, S.S., Setapa, S. (2016). The 

impact of operating system on bandwidth in open VPN 

technology. Baghdad Science Journal, 13(1): 0204. 

https://doi.org/10.21123/bsj.2016.13.1.0204 

[22] Kashani, M.H., Jahanshahi, M. (2009). Using simulated 

annealing for task scheduling in distributed systems. In 

2009 International conference on computational 

intelligence, modelling and simulation, Brno, Czech 

Republic, pp. 265-269. 

https://doi.org/10.1109/cssim.2009.36 

[23] Jahanshahi, M., Gholipour, M., Kordafshari, M.S., 

Rahmani, A.M. (2009). A novel method for task 

scheduling in distributed systems using memetic. In 2009 

Second International Conference on Communication 

Theory, Reliability, and Quality of Service, Colmar, 

France, pp. 58-62. https://doi.org/10.1109/ctrq.2009.29 

[24] Chen, G., Bruno, R., Salama, M. (1991). Optimal 

placement of active/passive members in truss structures 

1852

https://doi.org/10.29304/jqcm.2019.11.2.557
https://doi.org/10.22266/ijies2016.1231.10
https://doi.org/10.22266/ijies2018.1231.11
https://doi.org/10.1109/IC3I.2014.7019786
https://doi.org/10.24996/ijs.2022.63.8.38
https://doi.org/10.18421/TEM112-08
https://doi.org/10.1364/OFC.2022.Th4B.3
https://doi.org/10.1109/PATMOS.2018.8464142
https://doi.org/10.22266/%20ijies2022.0228.27
https://doi.org/10.24996/ijs.2022.63.5.34
https://doi.org/10.21123/bsj.2016.13.1.0204
https://doi.org/10.1109/cssim.2009.36


 

using simulated annealing. AIAA Journal, 29(8): 1327–

1334. https://doi.org/10.2514/3.10739 

[25] Advantages and Disadvantages of Various CPU 

Scheduling Algorithms. 

https://www.geeksforgeeks.org/advantages-and-

disadvantages-of-various-cpu-scheduling-algorithms/, 

accessed on Nov. 12, 2023. 

[26] Mohan, J., Lanka, K., Rao, A.R. (2019). A review of 

dynamic job shop scheduling techniques. Procedia 

Manufacturing, 30: 34–39. 

https://doi.org/10.1016/j.promfg.2019.02.006 

[27] Liaqait, R.A., Hamid, S., Warsi, S.S., Khalid, A. (2021). 

A critical analysis of job shop scheduling in context of 

industry 4.0. Sustainability, 13(14): 7684. 

https://doi.org/10.3390/su13147684 

[28] Abduljabbar, I.A., Abdullah, S.M. (2022). An 

evolutionary algorithm for solving academic courses 

timetable scheduling problem. Baghdad Science Journal, 

19(2): 0399. 

https://doi.org/10.21123/bsj.2022.19.2.0399 

[29] Jain, A., Meeran, S. (1999). Deterministic job-shop 

scheduling: Past, present and future. European Journal of 

Operational Research, 113(2): 390–434. 

https://doi.org/10.1016/s0377-2217(98)00113-1 

[30] Cheng, R., Gen, M., Tsujimura, Y. (1996). A tutorial 

survey of job-shop scheduling problems using genetic 

algorithms—I. representation. Computers & Industrial 

Engineering, 30(4): 983–997. 

https://doi.org/10.1016/0360-8352(96)00047-2 

[31] Nasr, N.A., Elsayed, E.M. (1990). Job shop scheduling 

with alternative machines. International Journal of 

Production Research, 28(9): 1595–1609. 

https://doi.org/10.1080/00207549008942818 

 

 

Appendix A 

 

This appendix contains a table (Table 1) of the results of 

Three hundred random jobs have been used. The optimization 

ratio of the proposed approach comparing with traditional R.R 

has been calculated via Eq. (4). 

 

Table 1. Optimization ratio for each job of the 300 jobs 

 
NO. Job Length Leftt_slice Right_slice Optimization Rate 

1 99 98 1 1.01010101 

2 62 61 1 1.612903226 

3 62 61 1 1.612903226 

4 99 95 4 4.04040404 

5 49 47 2 4.081632653 

6 49 47 2 4.081632653 

7 49 47 2 4.081632653 

8 49 47 2 4.081632653 

9 93 88 5 5.376344086 

10 93 88 5 5.376344086 

11 101 95 6 5.940594059 

12 101 95 6 5.940594059 

13 101 95 6 5.940594059 

14 71 65 6 8.450704225 

15 98 89 9 9.183673469 

16 98 89 9 9.183673469 

17 102 92 10 9.803921569 

18 102 92 10 9.803921569 

19 20 18 2 10 

20 73 65 8 10.95890411 

21 91 81 10 10.98901099 

22 62 55 7 11.29032258 

23 82 72 10 12.19512195 

24 92 80 12 13.04347826 

25 105 91 14 13.33333333 

26 102 88 14 13.7254902 

27 102 88 14 13.7254902 

28 87 74 13 14.94252874 

29 87 74 13 14.94252874 

30 116 98 18 15.51724138 

31 109 92 17 15.59633028 

32 109 92 17 15.59633028 

33 107 90 17 15.88785047 

34 68 57 11 16.17647059 

35 114 95 19 16.66666667 

36 114 95 19 16.66666667 

37 114 95 19 16.66666667 

38 70 57 13 18.57142857 

39 118 96 22 18.6440678 

40 118 96 22 18.6440678 

41 125 100 25 20 

42 114 91 23 20.1754386 

43 110 87 23 20.90909091 

44 100 78 22 22 

45 100 78 22 22 

46 118 92 26 22.03389831 

47 118 92 26 22.03389831 

48 117 91 26 22.22222222 

49 117 91 26 22.22222222 

50 84 65 19 22.61904762 

51 17 13 4 23.52941176 

52 85 65 20 23.52941176 

53 132 100 32 24.24242424 

54 132 100 32 24.24242424 

55 98 74 24 24.48979592 

56 98 74 24 24.48979592 

57 128 96 32 25 

58 128 96 32 25 

59 16 12 4 25 

60 127 95 32 25.19685039 

61 135 100 35 25.92592593 

62 135 100 35 25.92592593 

63 119 88 31 26.05042017 

64 99 73 26 26.26262626 

65 55 40 15 27.27272727 

66 138 100 38 27.53623188 

67 138 100 38 27.53623188 

68 105 76 29 27.61904762 

69 65 47 18 27.69230769 

70 65 47 18 27.69230769 

71 65 47 18 27.69230769 

72 65 47 18 27.69230769 

73 136 96 40 29.41176471 

74 136 96 40 29.41176471 

75 143 100 43 30.06993007 

76 143 100 43 30.06993007 

77 113 79 34 30.08849558 

78 113 79 34 30.08849558 

79 136 95 41 30.14705882 

80 136 95 41 30.14705882 

81 136 95 41 30.14705882 

82 79 55 24 30.37974684 

83 49 34 15 30.6122449 

84 111 77 34 30.63063063 

85 111 77 34 30.63063063 

86 111 77 34 30.63063063 

87 111 77 34 30.63063063 

88 101 70 31 30.69306931 

89 65 45 20 30.76923077 

90 131 90 41 31.29770992 

91 131 90 41 31.29770992 

92 134 92 42 31.34328358 

1853

https://doi.org/10.2514/3.10739
https://doi.org/10.1016/j.promfg.2019.02.006
https://doi.org/10.3390/su13147684
https://doi.org/10.1016/s0377-2217(98)00113-1
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1080/00207549008942818


 

93 134 92 42 31.34328358 

94 136 93 43 31.61764706 

95 136 93 43 31.61764706 

96 147 100 47 31.97278912 

97 84 57 27 32.14285714 

98 146 99 47 32.19178082 

99 146 99 47 32.19178082 

100 136 91 45 33.08823529 

101 114 76 38 33.33333333 

102 108 72 36 33.33333333 

103 133 88 45 33.83458647 

104 134 88 46 34.32835821 

105 134 88 46 34.32835821 

106 122 80 42 34.42622951 

107 110 72 38 34.54545455 

108 153 100 53 34.64052288 

109 153 100 53 34.64052288 

110 118 77 41 34.74576271 

111 138 90 48 34.7826087 

112 138 90 48 34.7826087 

113 94 61 33 35.10638298 

114 94 61 33 35.10638298 

115 144 93 51 35.41666667 

116 152 98 54 35.52631579 

117 127 81 46 36.22047244 

118 102 65 37 36.2745098 

119 154 98 56 36.36363636 

120 154 98 56 36.36363636 

121 154 98 56 36.36363636 

122 154 98 56 36.36363636 

123 74 47 27 36.48648649 

124 74 47 27 36.48648649 

125 74 47 27 36.48648649 

126 74 47 27 36.48648649 

127 156 99 57 36.53846154 

128 156 99 57 36.53846154 

129 139 87 52 37.41007194 

130 55 34 21 38.18181818 

131 122 74 48 39.3442623 

132 122 74 48 39.3442623 

133 139 84 55 39.56834532 

134 139 84 55 39.56834532 

135 139 84 55 39.56834532 

136 139 84 55 39.56834532 

137 139 84 55 39.56834532 

138 131 79 52 39.69465649 

139 131 79 52 39.69465649 

140 150 90 60 40 

141 154 92 62 40.25974026 

142 154 92 62 40.25974026 

143 154 92 62 40.25974026 

144 154 92 62 40.25974026 

145 152 90 62 40.78947368 

146 114 67 47 41.22807018 

147 143 84 59 41.25874126 

148 143 84 59 41.25874126 

149 143 84 59 41.25874126 

150 143 84 59 41.25874126 

151 162 95 67 41.35802469 

152 156 91 65 41.66666667 

153 156 91 65 41.66666667 

154 155 90 65 41.93548387 

155 160 92 68 42.5 

156 160 92 68 42.5 

157 71 40 31 43.66197183 

158 174 98 76 43.67816092 

159 174 98 76 43.67816092 

160 174 98 76 43.67816092 

161 174 98 76 43.67816092 

162 73 41 32 43.83561644 

163 125 70 55 44 

164 140 78 62 44.28571429 

165 140 78 62 44.28571429 

166 167 93 74 44.31137725 

167 167 93 74 44.31137725 

168 178 99 79 44.38202247 

169 178 99 79 44.38202247 

170 132 73 59 44.6969697 

171 85 47 38 44.70588235 

172 85 47 38 44.70588235 

173 85 47 38 44.70588235 

174 85 47 38 44.70588235 

175 125 69 56 44.8 

176 182 100 82 45.05494505 

177 141 77 64 45.39007092 

178 141 77 64 45.39007092 

179 141 77 64 45.39007092 

180 141 77 64 45.39007092 

181 171 93 78 45.61403509 

182 72 39 33 45.83333333 

183 72 39 33 45.83333333 

184 165 89 76 46.06060606 

185 165 89 76 46.06060606 

186 173 93 80 46.24277457 

187 151 81 70 46.35761589 

188 102 54 48 47.05882353 

189 172 91 81 47.09302326 

190 172 91 81 47.09302326 

191 123 65 58 47.15447154 

192 172 90 82 47.6744186 

193 140 73 67 47.85714286 

194 75 39 36 48 

195 75 39 36 48 

196 149 77 72 48.32214765 

197 105 54 51 48.57142857 

198 159 81 78 49.05660377 

199 89 45 44 49.43820225 

200 93 47 46 49.46236559 

201 93 47 46 49.46236559 

202 186 93 92 49.46236559 

203 93 47 46 49.46236559 

204 93 47 46 49.46236559 

205 107 54 53 49.53271028 

206 109 55 54 49.5412844 

207 129 65 64 49.6124031 

208 137 69 68 49.6350365 

209 139 70 69 49.64028777 

210 149 75 74 49.66442953 

211 157 79 78 49.68152866 

212 157 79 78 49.68152866 

213 161 81 80 49.68944099 

214 173 87 86 49.71098266 

215 175 88 87 49.71428571 

216 175 88 87 49.71428571 

217 177 89 88 49.71751412 

218 177 89 88 49.71751412 

219 179 90 89 49.72067039 

220 183 92 91 49.72677596 

221 183 93 91 49.72677596 

222 183 92 91 49.72677596 

223 185 93 92 49.72972973 

224 191 96 95 49.7382199 

225 191 96 95 49.7382199 

226 195 98 97 49.74358974 

227 195 98 97 49.74358974 

228 195 98 97 49.74358974 

229 195 98 97 49.74358974 

230 195 98 97 49.74358974 

231 199 100 99 49.74874372 

232 199 100 99 49.74874372 

233 199 100 99 49.74874372 

234 199 100 99 49.74874372 

1854



 

235 199 100 99 49.74874372 

236 168 84 84 50 

237 168 84 84 50 

238 134 67 67 50 

239 94 47 47 50 

240 168 84 84 50 

241 148 74 74 50 

242 38 19 19 50 

243 134 67 67 50 

244 168 84 84 50 

245 168 84 84 50 

246 94 47 47 50 

247 154 77 77 50 

248 154 77 77 50 

249 94 47 47 50 

250 168 84 84 50 

251 154 77 77 50 

252 190 95 95 50 

253 154 77 77 50 

254 182 91 91 50 

255 148 74 74 50 

256 38 19 19 50 

257 134 67 67 50 

258 180 90 90 50 

259 184 92 92 50 

260 180 90 90 50 

261 78 39 39 50 

262 152 76 76 50 

263 196 98 98 50 

264 198 99 99 50 

265 190 95 95 50 

266 186 93 93 50 

267 156 78 78 50 

268 162 81 81 50 

269 122 61 61 50 

270 94 47 47 50 

271 168 84 84 50 

272 154 77 77 50 

273 190 95 95 50 

274 168 84 84 50 

275 154 77 77 50 

276 190 95 95 50 

277 182 91 91 50 

278 38 19 19 50 

279 180 90 90 50 

280 144 72 72 50 

281 176 88 88 50 

282 184 92 92 50 

283 146 73 73 50 

284 78 39 39 50 

285 180 90 90 50 

286 184 92 92 50 

287 198 99 99 50 

288 160 80 80 50 

289 156 78 78 50 

290 130 65 65 50 

291 122 61 61 50 

292 68 34 34 50 

293 114 57 57 50 

294 80 40 40 50 

295 182 91 91 50 

296 82 41 41 50 

297 143 84 84 58.74125874 

298 130 77 77 59.23076923 

299 148 92 92 62.16216216 

300 138 92 91 65.94202899 

 

Appendix B 

 

This appendix contains a table (Table 2) of the results of 

four hundred random jobs have been used. The optimization 

ratio of the proposed approach comparing with traditional R.R 

has been calculated. 

 

Table 2. Quantitative comparison between traditional round 

robin and the proposed method 

 
X Values The Proposed Method Traditional R. R 

1 14 14 

2 84 168 

3 11 11 

4 58 58 

5 91 183 

6 73 73 

7 62 154 

8 65 65 

9 55 139 

10 84 168 

11 59 143 

12 61 61 

13 32 32 

14 18 65 

15 46 93 

16 2 49 

17 54 54 

18 67 134 

19 63 63 

20 32 32 

21 27 74 

22 38 85 

23 16 16 

24 47 94 

25 14 14 

26 84 168 

27 11 11 

28 58 58 

29 9 98 

30 88 177 

31 76 165 

32 4 4 

33 68 137 

34 57 57 

35 18 18 

36 56 125 

37 74 149 

38 16 16 

39 15 15 

40 11 11 

41 48 122 

42 13 87 

43 74 148 

44 24 98 

45 18 18 

46 13 13 

47 12 12 

48 19 38 

49 54 54 

50 67 134 

51 63 63 

52 32 32 

53 14 14 

54 84 168 

55 11 11 

56 58 58 

57 91 183 

58 73 73 

59 62 154 

60 65 65 

61 55 139 

62 84 168 

63 84 143 

64 61 61 

1855



 

65 27 74 

66 38 85 

67 16 16 

68 47 94 

69 91 138 

70 73 73 

71 62 154 

72 65 65 

73 76 174 

74 57 57 

75 56 154 

76 97 195 

77 41 118 

78 1 1 

79 77 154 

80 77 130 

81 77 154 

82 64 141 

83 34 111 

84 41 41 

85 99 199 

86 48 48 

87 35 135 

88 59 59 

89 27 74 

90 38 85 

91 16 16 

92 47 94 

93 91 183 

94 73 73 

95 62 154 

96 65 65 

97 55 139 

98 84 168 

99 59 143 

100 61 61 

101 32 32 

102 18 65 

103 46 93 

104 2 49 

105 76 174 

106 57 57 

107 56 154 

108 97 195 

109 77 154 

110 64 141 

111 34 111 

112 41 41 

113 6 101 

114 19 114 

115 95 190 

116 41 136 

117 77 154 

118 72 149 

119 39 39 

120 28 28 

121 91 182 

122 65 156 

123 26 117 

124 81 172 

125 21 21 

126 78 159 

127 80 161 

128 76 76 

129 48 122 

130 13 87 

131 74 148 

132 24 98 

133 18 18 

134 13 13 

135 12 12 

136 19 38 

137 67 134 

138 45 45 

139 47 114 

140 50 50 

141 41 131 

142 48 138 

143 90 180 

144 63 63 

145 17 109 

146 42 134 

147 16 16 

148 92 184 

149 74 167 

150 43 136 

151 92 186 

152 55 55 

153 90 180 

154 17 107 

155 65 65 

156 88 88 

157 38 138 

158 99 199 

159 25 125 

160 38 138 

161 1 1 

162 36 75 

163 39 78 

164 33 72 

165 7 62 

166 24 79 

167 54 109 

168 52 52 

169 66 66 

170 78 157 

171 52 131 

172 34 113 

173 29 105 

174 76 152 

175 38 114 

176 46 46 

177 54 152 

178 98 196 

179 1 99 

180 6 6 

181 26 118 

182 68 160 

183 92 148 

184 10 102 

185 32 132 

186 99 199 

187 53 153 

188 43 143 

189 79 178 

190 99 198 

191 47 146 

192 57 156 

193 69 139 

194 68 68 

195 55 125 

196 31 101 

197 58 123 

198 6 71 

199 37 102 

200 64 129 

201 67 162 

202 32 127 

203 95 190 

204 4 99 

205 93 186 

206 80 173 

1856



 

207 78 171 

208 51 144 

209 22 100 

210 62 140 

211 78 156 

212 63 63 

213 46 127 

214 70 151 

215 81 162 

216 10 91 

217 5 93 

218 14 102 

219 87 175 

220 46 134 

221 82 82 

222 18 116 

223 28 28 

224 97 195 

225 33 94 

226 30 30 

227 1 62 

228 61 122 

229 27 74 

230 38 85 

231 16 16 

232 47 94 

233 55 139 

234 84 168 

235 59 143 

236 61 61 

237 32 32 

238 18 65 

239 46 93 

240 2 49 

241 76 174 

242 57 57 

243 56 154 

244 97 195 

245 77 154 

246 64 141 

247 34 111 

248 41 41 

249 40 136 

250 22 118 

251 95 191 

252 32 128 

253 6 101 

254 19 114 

255 95 190 

256 41 136 

257 55 139 

258 84 168 

259 59 143 

260 61 61 

261 32 32 

262 18 65 

263 46 93 

264 2 49 

265 76 174 

266 57 57 

267 56 154 

268 97 195 

269 9 98 

270 88 177 

271 76 165 

272 4 4 

273 77 154 

274 64 141 

275 34 111 

276 41 41 

277 40 136 

278 22 118 

279 95 191 

280 32 128 

281 6 101 

282 19 114 

283 95 190 

284 41 136 

285 91 182 

286 65 156 

287 26 117 

288 81 172 

289 2 20 

290 4 17 

291 4 16 

292 19 38 

293 41 131 

294 48 138 

295 90 180 

296 63 63 

297 38 110 

298 72 144 

299 10 82 

300 36 108 

301 31 119 

302 88 176 

303 45 133 

304 22 22 

305 17 109 

306 42 134 

307 16 16 

308 92 184 

309 74 167 

310 43 136 

311 92 185 

312 55 55 

313 67 140 

314 73 146 

315 26 99 

316 59 132 

317 20 20 

318 86 173 

319 23 110 

320 52 139 

321 20 65 

322 44 89 

323 45 45 

324 36 36 

325 1 1 

326 36 75 

327 39 78 

328 33 72 

329 60 150 

330 90 180 

331 37 37 

332 65 155 

333 89 179 

334 64 64 

335 82 172 

336 62 152 

337 66 66 

338 78 157 

339 52 131 

340 34 113 

341 26 118 

342 68 160 

343 92 184 

344 10 102 

345 32 132 

346 99 199 

347 53 153 

348 43 143 

1857



 

349 79 178 

350 99 198 

351 47 146 

352 57 156 

353 42 122 

354 80 160 

355 12 92 

356 33 33 

357 22 100 

358 62 140 

359 78 156 

360 63 63 

361 19 84 

362 8 73 

363 65 130 

364 20 85 

365 5 93 

366 14 102 

367 87 175 

368 46 134 

369 33 94 

370 30 30 

371 1 62 

372 61 122 

373 21 55 

374 34 68 

375 15 49 

376 7 7 

377 11 68 

378 13 70 

379 27 84 

380 57 114 

381 82 182 

382 35 135 

383 47 147 

384 99 199 

385 31 71 

386 19 19 

387 40 80 

388 15 55 

389 51 105 

390 48 102 

391 53 107 

392 44 44 

393 91 182 

394 45 136 

395 23 114 

396 14 105 

397 36 36 

398 32 73 

399 41 82 

400 16 16 

 

 

1858




