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The environment and agricultural output are being challenged by weeds and crops. 

Innovative advancements in alternative weed control techniques that seek to reduce the need 

on herbicides have been spurred by the growing demand for sustainable weed control 

methods. Having weed recognition that is sufficiently successful is a hurdle to the 

implementation of these methods for selective in-crop application. Deep learning has shown 

remarkable promise in a variety of vision tasks, leading to the development of several 

effective image-based weeds and crops identification systems. This study looks at the 

newest developments in deep learning techniques for pixel-wise semantic segmentation of 

identifying crops and weeds. The hardest problem is semantic segmentation-based weeds 

and crops recognition, which needs to be solved for smart farming to work well. The goal 

is to give each pixel of a picture its own class name. Deep learning for smart farming has a 

number of useful applications, one of the most important of which is identifying the exact 

position of crops and weeds on farms. There are already quite complex systems for 

separating weeds and crops, with millions of factors that need more time to train. To get 

around these problems, we suggest an AgriResUpNet design based on deep learning. It is a 

carefully put together mix of the U-Net and residual learning frameworks. To see how well 

the suggested model works on the crop and weed GitHub dataset in terms of pixel accuracy, 

precision, f1-sore, and IoU measures. The suggested network is tested and compared with 

other cutting-edge networks using a crop and weed dataset that is open to the public. Also, 

the AgriResUpNet model gave an IoU of 97.58% for weeds and 94.82% for crops. In 

addition, the data show that the AgriResUpNet can easily find both crops and weeds. This 

suggests that this design is better for finding weeds early in the growing season. It was 

shown in experiments and comparisons that the suggested network does better than existing 

designs in intersection over union (IoU) and F1-score. 
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1. INTRODUCTION

As the global population continues to rapidly expand, there 

is a corresponding rise in the prevalence of food insecurity 

around the globe. It is necessary to raise agricultural yields in 

order to address the shortage of food that is now occurring. An 

increase in crop output is being achieved by the utilisation of 

smart technology in contemporary agricultural methods such 

as precise agriculture, smart farming, food technology, plant 

breeding, and others. Smart agriculture is a form of agriculture 

that incorporates artificially intelligent technologies with the 

purpose of making intelligent decisions in order to maximise 

crop productivity [1, 2]. A number of factors, including but not 

limited to plant diseases, irrigation systems, the use of 

agrochemicals, insect infestations, and weeds, are among the 

most significant factors that influence crop output. Over the 

duration of the period between 2003 and 2014, weeds alone 

were responsible for an economic loss of around 11 billion 

USD across 18 states in India. The yield loss can be reduced 

by up to fifty percent or more with the use of automated weed 

control and management technologies [3-5].  

For any agricultural crop, the most significant sources of 

damage are weeds and pests [6, 7]. According to the study by 

Fennimore et al. [8], there are a number of conventional ways 

that are utilised in order to manage the growth of weeds and 

pests in order to achieve good yields. These approaches have 

a number of drawbacks, the most significant being that are the 

pollution of the surroundings and the poisoning of the crops, 

both of which have negative consequences for human health. 

As a result of the development of more advanced technology, 

robots have lately been utilised for selective spraying, which 

targets just weeds and does not cause any damage to crops [9-

11]. According to the study of Lottes et al. [12], the most 

significant obstacle that these autonomous platforms must 

overcome is the identification of the precise position of crops 

as well as weeds. The ability of these robots to identify weeds 

and separate them from crops is one of the most important uses 

of deep learning in the field of smart farming [13-15]. 

Nevertheless, in order to automate the agricultural machinery 

[16, 17], researchers must first find solutions to a number of 

issues, such as classification, tracking, detection, as well as 

segmentation. In order to do this, we provide here a model for 
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the identification of crops and weeds that is oriented on 

semantic segmentation [18]. 

Semantic segmentation focuses on identifying each pixel's 

classification by pixel-by-pixel (dense) predictions of a picture. 

Semantic segmentation often makes use of fully convolution 

networks (FCNs) [19, 20], that were initially proposed by 

Long et al. [21]. These investigations frequently used an 

encoder-decoder approach, in which the encoder employs 

convolutions to create a latent representation of an image, 

while the decoder concentrates on upsampling the latent 

representation in relation to the original picture size to make 

dense predictions. With favourable outcomes for medical 

pictures, U-Net was suggested by expanding the decoder's 

capability [22]. Furthermore, SegNet [23], used pooled indices 

for its decoder, whereas other encoder-decoder architectures 

simply used the pooled values for non-linear upsampling to 

maintain boundary data. Using global context as a better 

foundation for pixel-level predictions, pyramid scene parsing 

network (PSPNet) as well as different-region-based contextual 

aggregation via a pyramid pooling module [24] took use of this 

capacity. DeepLab models used atrous convolutions in place 

of a traditional encoder-decoder method in order to minimise 

downsampling operations while maintaining a wide receptive 

field [25].  

Through the use of smart agriculture farming, weed control 

is of utmost significance in order to enhance production and 

decrease the amount of herbicide pollution. The main 

contribution of this paper is to show how to improve 

performance in the presence of crop and weed images features 

by introducing different deep learning algorithms. In this 

respect, algorithms based on deep learning have come to 

attract an increasing amount of interest for the purpose of crop 

and weed segmentation in agricultural settings. These 

algorithms have shown promising outcomes. This research 

presents the implementation of the U-Net with Residual 

learning called AgriResUpNet’ network, a state-of-the-art 

convolutional neural network (CNN) technique that has only 

been employed in precision agriculture on a very seldom basis. 

The purpose of this implementation was to perform semantic 

segmentation of weed photos. After that, we evaluated 

performance of the model in comparison to that of the U-Net 

method using a number of different criteria like accuracy, 

precision, recall, F1-score and Loss. This research 

contribution of this work as: 

• Data was collected using the GitHub dataset, which 

included both the original photos and crop/weed masks. Using 

OpenCV, color-based segmentation was used to define 

accurate thresholds, and grayscale masks were created. To 

assess the accuracy of the segmentation, Exploratory Data 

Analysis (EDA) made use of bounding box samples and 

overlay masks.  

• A unique color-based segmentation approach was 

presented for the purpose of accurately identifying crop and 

weed regions. Implemented efficient procedures for the 

preparation of data, such as preprocessing, normalization, and 

splitting the dataset. 

• An architecture called AgriResUpNet was developed, 

which combines residual learning with U-Net for the purpose 

of performing robust agricultural image segmentation. 

• A combination of U-Net and residual learning is used to 

extract features in order to model AgriResUpNet. The encoder 

is responsible for collecting low-level details, the bridge is 

responsible for boosting expression, and the decoder is 

responsible for recovering spatial information in order to 

achieve correct segmentation. 

• Accomplished exceptional performance metrics, which 

contributed to the development of applications for accuracy 

growing. AgriResUpNet achieved excellent levels of accuracy, 

IoU, F1 Score, and Precision in its weed and crop 

segmentation, demonstrating remarkable performance in this 

area. 

The rapid progress in agricultural technology has required 

the creation of strong techniques for precise and efficient crop 

and weed picture segmentation. Conventional methods 

frequently prove inadequate in managing the intricacies of 

varied agricultural settings. To address these difficulties, we 

provide AgriResUpNet, a cutting-edge deep learning 

framework specifically developed for the semantic 

segmentation of crop and weed pictures.  

AgriResUpNet utilises a residual learning framework in 

conjunction with an upsampling network to greatly improve 

the accuracy of segmentation and processing efficiency. Our 

architecture combines advanced convolutional neural 

networks (CNNs) with residual blocks, resulting in enhanced 

feature extraction and preservation, unlike traditional 

techniques. The upsampling components enhance the 

segmentation outputs, allowing for accurate demarcation of 

boundaries between crops and weeds. AgriResUpNet's main 

advantages lie in its capacity to handle high-resolution photos 

and its resilience in various environmental conditions, making 

it crucial for practical agricultural uses. Furthermore, 

AgriResUpNet has exceptional efficiency in terms of 

processing speed and precision when compared to current 

models, rendering it a great asset for contemporary precision 

agriculture. This research highlights the capacity of deep 

learning to transform agricultural practices by offering a 

scalable and efficient solution for crop management and weed 

control. 

 

 

2. LITERATURE SURVEY 
 

An area of study that has been receiving a lot of attention is 

the classification and detection of smart agricultural farming 

areas for the purpose of recognizing crops and weeds. In this 

part, we have mentioned a few of the research that have been 

conducted about the identification and categorization of weeds 

through the use of AI-based approaches such as deep learning, 

machine learning, computer vision, robotics, and other similar 

methods. 

For the purpose of expanding upon this study article, a 

number of works in the disciplines of neural networks, 

artificial intelligence, as well as precision farming were 

examined and analyzed. In the field of agriculture, CNNs have 

been utilized to find solutions to a wide range of issues. A 

model that is based on deep learning and has the ability of 

recognizing 26 distinct illnesses in 14 different crop species 

was proposed by Mohanty et al. [26]. This model was 

developed with the purpose of distinguishing healthy plants 

from sick ones. An accuracy of classification that was more 

than 99% was achieved by authors through the use of pre-

trained AlexNet and GoogleNet on a dataset consisting of 

54,306 individuals. An approach that makes use of pre-trained 

Inception-v3 architecture was given by Teimouri et al. [27], 

for the purpose of estimating the species of weeds and the 

phases of their growth. Using their suggested model, they are 

able to estimate the number of leaves with a level of accuracy 

that is seventy percent. 
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According to the study of Dyrmann et al. [28], DetectNet 

was utilized in order to determine the locations of weeds in 

leaf-occluded crops. For the purpose of identifying weeds in 

cereal fields, their network was trained using 17,000 

annotations of photos of weeds. Although the system has a 

detection accuracy of 46% when it comes to weeds, it is unable 

to identify overlapping weeds or weeds that are tiny. A CNN-

based approach was presented by dos Santos Ferreira et al. [29] 

in order recognize weeds as well as categorize them as either 

grass or broadleaf. This was done in order to allow for the 

selection of herbicides for soybean crops. In the study by 

Lottes et al. [12], stem identification was accomplished 

through the use of a sliding window-based technique. Each 

local window gives information about the position of the stem 

or an area that does not include a stem. In order to collect 

location data regarding weeds for site-specific weed 

management, Ma et al. [30] presented a dataset and carried out 

tests on a SegNet-based encoder-decoder network (via transfer 

learning) for semantic segmentation. The results of these 

studies reached a mean average accuracy of up to 92.7%. 

For the semantic segment [31], researchers compare two 

deep learning frameworks—the ResNet versus the fully 

convolutional network—to determine how accurate the weed 

as well as crop segment is. As part of the case study, forty plant 

as well as weed photos were culled from an open repository. 

The findings demonstrate that both structures achieve a global 

accuracy of over 90% in the verification phase package.  

In the study by Zhuang et al. [32], research has been planned 

to identify seedlings of broadleaf weeds in wheat fields. 

Because their recall remains at 58% or lower, they have 

determined that FR-CNN, YOLOv3, VFNet, TridentNet, as 

well as CenterNet are unfit for identification. In contrast, F1-

scores more than 95% have been achieved with classification 

using VGGNet as well as AlexNet. The models utilised for 

training in this work were trained using a dataset with a 

relatively tiny image resolution of 200×200 px. 

Saqib et al. [5] have put out a deep learning weed 

identification algorithm that can be utilised effectively for 

agricultural weed control. You Only Look Once (YOLO), an 

object identification technique centred on Convolutional 

Neural Networks, is used for both training and prediction in 

the model recommend. The gathered information includes 

RGB pictures of four distinct weed species: California poppy, 

Creeping thistle, bindweed, as well as grass. With an average 

loss of 1.8 and a mean average accuracy value of 73.1%, it has 

successfully forecasted 98.88% of weeds. 

For training deep learning model [33], a publicly available, 

open-source Sugarbeets dataset was utilised. To test method, 

picked 1,300 pictures of plants and weeds. They obtained a 

93% accuracy rate in our model between crops and weeds 

using a hybrid technique that utilises semantic segmentation 

as well as the YOLO (You Only Look Once) algorithm. 

In the study of Fathipoor et al. [34], semantic segmentation 

of weed photos was accomplished by the implementation of 

the U-Net++ network, that is a state-of-the-art convolutional 

neural network (CNN) method. This technique has only been 

employed in precision farming on a very seldom basis. In 

terms of overall accuracy, intersection over union (IoU), recall, 

as well as F1-score measures, the results demonstrate that the 

U-Net++ performs better than the standard U-Net. In addition, 

the U-Net++ model offered a cannabis IoU measurement of 

65%, whereas the U-Net model offered a weed IoU 

measurement of 56%. 

 

 

Table 1. Summary of related work 

 
Reference Methodology Key Findings Limitations Future Work 

[26] 
Pre-trained AlexNet, 

GoogleNet 

Detecting 26 illnesses in 14 different 

crop species with a 99% success rate 

Only identified26 diseases in 

14 crop species 

In future used various number of 

crops images, also new Transfer 

learning model 

[27] 
Pre-trained Inception-

v3 

Accuracy in weed species and 

development stage estimations of 

70% 

Only identified26 diseases in 

14 crop species 

In future used various number of 

crops images, also new Transfer 

learning model 

[28] DetectNet 
Concerns with overlaps and a 46% 

success rate in weed detection 

Unable to identify weeds that 

are both small and overlapping 

Improve detection accuracy, handle 

overlapping weeds 

[30] 

SegNet based 

encoder-decoder 

network 

Automatic semantic SSWM 

segmentation with an average 

accuracy of 92.7% 

Limited to the provided dataset 
Recognise weeds more accurately 

and deal with overlapping ones 

[31] 
Fully convolutional 

network, ResNet 

Global weed and crop segment 

accuracy of 90% or higher 
achieved only 90% accuracy 

Use novel transfer learning methods; 

investigate various datasets; evaluate 

adaptability 

[32] AlexNet, VGGNet 

Achieving classification F1-scores > 

95% for broadleaf weed seedling 

identification 

Small image resolution dataset 

used (200×200 px) 

Increase recall by delving into 

higher-resolution datasets 

[5] 
YOLO (You Only 

Look Once) 

Accuracy in weed detection at 

98.88% and average precision of 73.1 

percent 

Precision measure perform 

very poor 

In future add enhance version of 

YOLO Model 

[33] 
Semantic 

segmentation, YOLO 

An impressive 93% success rate in 

differentiating between crops and 

weeds 

YOLO model not perform well 
Improve the YOLOv5 Model in the 

future 

[34] U-Net++ 
Uses accuracy metrics better than 

conventional U-Net 
Only used single model 

Additional investigation of U-Net++ 

for precision farming 

[35] 
FCN, Unet, Fast-

SCNN, SegNet 

Differentiating between weeds and 

crops using segmentation techniques 

Range of acc, Unet is at 87.5% 

and SegNet at 92.08%) 

Revise models to achieve higher 

precision 

[18] CED-Net 
Beats DeepLabv3, FCN-8s, SegNet, 

U-Net, and SegNet 

Compared to others, the 

proportion of total parameters 

utilised is lower 

Investigate ways to optimise 

parameters for pre-existing models 
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In the study by Kumar et al. [35], a technique called 

semantic segmentation was used to distinguish between weeds 

and crops, employing models like FCN, Unet, Fast-SCNN, 

and SegNet. Unet, an improved form of CNN, achieved an 

accuracy rate of 87.5%. Meanwhile, SegNet reached an 

average accuracy rate of 92.08%. 

Khan et al. [18] distinguished between crops and weeds 

using a cascaded encoder-decoder network, including CED-

Net, as a semantic segmentation approach. In terms of the 

intersection over union (IoU), F1-score, sensitivity, true 

detection rate, and average precision contrast metrics, the 

suggested network surpasses state-of-the-art architectures like 

U-Net, SegNet, FCN-8s, and DeepLabv3. This is achieved by 

using fractions of total variables that are only 1/5.74×U-Net, 

1/5.77×SegNet, 1/3.04×FCN-8s, and 1/3.24×DeepLabv3, 

respectively. 

Table 1 shows the summary of related work for 

classification and detection of weed and crop. 

 

 

3. SECTION HEADINGS 

 

The following Figure 1 shows the proposed methodology 

flowchart for the classification and semantic segmentation of 

crop and weeds using deep learning models. The suggested 

methodology begins with the collecting of agricultural 

photographs that have been tagged from a particular dataset. 

This is then followed by a thorough preprocessing step that 

makes use of a color-based segmentation method to create 

binary masks that differentiate between crop and weed regions. 

As part of the Exploratory Data Analysis (EDA), masks are 

superimposed on the source pictures, and bounding box 

samples are generated for visual examination. Data 

preparation for training includes fundamental operations like 

establishing input dimensions, converting data to NumPy 

arrays, and constructing consistent binary masks. Each of 

these procedures is necessary for the training process. The 

AgriResUpNet architecture is the core of the technique. It is a 

carefully created combine of the U-Net as well as residual 

learning structures, and it was developed to provide greater 

accuracy in feature extraction and semantic segmentation. To 

ensure that there is no confusion, the hyperparameters and 

architecture details have been stated unambiguously. The 

model is trained and tested, and it produces remarkable results 

in the segmentation of crops and weeds, demonstrating its 

potential for use in precision agricultural applications. 

 

 
 

Figure 1. Proposed flowchart 

3.1 Data collection 

 

For the purpose of data collecting, a dataset that is 

accessible at https://github.com/cwfid/dataset is utilised. This 

dataset is comprised of agricultural photos that have been 

annotated. The original photos are 3755808 pixels in size and 

contain a data type of uint8, which means they have three 

colour channels. Their dimensions are (966, 1296, 3). 

Furthermore, the photos' crop and weed masks are identical in 

size, shape, and data type. There are 60 photos in the dataset; 

40 will be used for training and 20 will be used for testing. For 

validation reasons, four photos are reserved in the training set. 

The next phases in the deep learning-based crop and weed 

segmentation process are built upon this extensive dataset. The 

following Figures 2 and 3 shows the input images of weed and 

crop dataset with sample of images and training images. 

The dataset used for training AgriResUpNet comprises a 

diverse collection of crops and weed images sourced from 

various agricultural fields, ensuring a wide range of 

environmental conditions and crop types. It includes high-

resolution RGB images of different crops and weeds, captured 

under varying lighting and weather conditions to enhance the 

model's robustness. The dataset also contains annotated 

examples with pixel-wise labels for both crops and weeds, 

highlighting different growth stages and overlapping scenarios. 

This variability ensures the model can generalize well across 

different field conditions and accurately segment crops and 

weeds in complex agricultural landscapes. 

 

 
 

Figure 2. Input images of training, and crop/weed mask 

 

 
 

Figure 3. Sample images of input dataset 

 

3.2 Data preprocessing 

 

One crucial step in our technique during the pre-processing 

stage is to use a color-based segmentation technique. This 

technique is used to generate binary masks for crop and weed 

regions from annotated agricultural photos. At this crucial 

phase, it is imperative to isolate and identify precise regions of 

interest within the images. We utilise the Open CV library to 

import both the image and its related annotation mask. The 

binary matrices, crop mask and weed mask, are initialised to 

indicate the lack of crop and presence of weed, respectively. 

Advancing to our color-based segmentation utilizes distinct 

color channels for accurate discrimination between crop and 

weed regions. We assume that crop regions are predominantly 

represented by the blue channel, while weed regions are 

characterized by the green channel. Parameters such as B 

Threshold and G Threshold are introduced to establish precise 
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color thresholds for effective segmentation. Pixels surpassing 

the blue threshold and falling below the green threshold are 

identified as crop, while those surpassing the green threshold 

and falling below the blue threshold are recognized as weed. 

This meticulous approach ensures the creation of highly 

accurate binary masks, serving as a foundational step for 

subsequent image analysis tasks. The flexibility to adjust 

threshold values enhances the adaptability of our agricultural 

image segmentation methodology to diverse color 

representations in annotation masks, thereby improving 

robustness and versatility. 

The convert to grayscale function, integral to our 

methodology, transforms annotated color masks into a binary 

format, aiding agricultural image analysis. Utilizing Open CV, 

it efficiently converts multi-channel masks to grayscale, 

simplifying subsequent processing. This step enhances mask 

interpretability, contributing to the robustness of our 

segmentation methodology. 

 

3.3 Exploratory Data Analysis (EDA) 

 

To better understand the agricultural images identified with 

metadata, we use two essential methods in the Exploratory 

Data Analysis (EDA) stage. To begin, we impose masks on 

top of the original images, giving a perspective from above 

that emphasises the spatial relationship between the marked 

masks and the real items in the farm settings. To evaluate the 

precision and efficacy of the segmentation technique, this 

visual aid is crucial.  

Figure 4 shows the bar graph of classes distribution with 

number of pixels. In figure x-axis shows the number of classes 

that is crop and weed while y-axis shows the number of pixels. 

Figure 5 displays a graph that illustrates the frequency of 

width and height distribution and shows the width and height 

distribution graph with frequency. In figure x-axis shows the 

width and height of images and while y-axis shows the 

frequency of images. Blue bar shows the width and green bar 

shows the Height. 

Figure 6 displays exemplary photos that illustrate overlay 

masks used in the study. 

Figure 7 shows some examples of bounding boxes that have 

been placed around crops and weeds. 

 

 
 

Figure 4. Bar graph of classes distribution with pixels 

 
 

Figure 5. Width and height distribution graph with frequency 

 

 

 

 
 

Figure 6. Sample images of overlay masks 
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Figure 7. Sample images of bounding box from crop and weed 

 

3.4 Preparing data for training  

 

In the preprocessing stage, the code performs vital 

operations to prepare the data for effective model training. By 

examining the dimensions of first image in training dataset, 

input dimensions for subsequent model configurations are 

determined. This essential step ensures compatibility between 

the model architecture and the input data. 

Subsequently, code converts lists containing image and 

mask data into NumPy arrays. This conversion enhances 

computational efficiency during training, as NumPy arrays are 

optimized for numerical operations. Notably, the pixel values 

of the images are normalized to the range [0, 1], a common 

practice in DL to facilitate convergence. 

The masks representing crop and weed regions are 

processed to create a unified binary mask. This binary mask 

serves as the ground truth for the model, allowing it to learn to 

differentiate between crop and weed areas in the agricultural 

images.  

To evaluate the model's performance during training, the 

dataset is split into training and validation sets using the 

train_test_split function data into 90:10 ratio. This ensures that 

the model is trained on a diverse subset of the data and 

evaluated on a separate subset, providing a reliable metric of 

its generalization capabilities. Overall, these preprocessing 

steps lay the foundation for a robust and effective training 

process, crucial for the success of the subsequent semantic 

segmentation model. 

 

3.5 Modeling  

 

The AgriResUpNet architecture is meticulously crafted to 

address the challenges posed by agricultural image 

segmentation tasks. It combines the strengths of both the U-

Net and residual learning frameworks to achieve superior 

feature extraction and semantic segmentation accuracy. 

In the encoder, the module initiates the processing by 

applying a convolutional operation followed by a residual 

block. This initial step sets the tone for the subsequent feature 

extraction process, effectively capturing low-level features. 

The encoder further refines the feature hierarchy through four 

residual blocks, each reducing spatial dimensions via strided 

convolutions. This multi-scale feature representation ensures 

the model's ability to discern objects of varying sizes in the 

input image. 

The bridge module acts as a bottleneck, enhancing feature 

expression before transitioning to decoder. It consists of two 

convolutional blocks, consolidating both high and low-level 

features. The decoder then employs upsample and 

concatenation blocks to recover spatial information and 

combine features from the encoder. This hierarchical 

integration is crucial for accurate segmentation, particularly 

when dealing with complex agricultural landscapes. 

The residual blocks within the decoder refine the feature 

maps, facilitating the precise localization of objects. The 

incorporation of skip connections ensures seamless transfer of 

information between encoder and decoder, aiding in the 

reconstruction of high-resolution semantic maps. Batch 

normalization and rectified linear unit (ReLU) activation 

functions are applied throughout the architecture to stabilize 

and activate feature representations, respectively. 

The final convolutional layer, with a sigmoid activation 

function, produces a binary mask indicating the probability of 

the presence of the target objects. This pixel-wise 

classification allows the model to discern between crop and 

weed regions, enabling fine-grained segmentation. 

The AgriResUpNet architecture is tailored for input images 

of shape (966, 1296, 3). The choice of these s aligns with the 

requirements of agricultural images, where the larger spatial 

resolution demands an intricate understanding of the field's 

composition. The model is trained with a binary cross-entropy 

loss function and optimized using the Adam optimizer. 

This architecture excels in capturing contextual information, 

enabling it to make informed decisions about object 

boundaries and locations. The synergy of residual connections, 

skip connections, and multi-scale feature extraction positions 
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AgriResUpNet as a powerful tool for precise agricultural 

image segmentation. Its technical robustness and efficiency 

make it well-suited for deployment in precision farming 

applications, contributing to advancements in sustainable 

agriculture through improved crop monitoring and weed 

management. The following Table 1 shows the 

hyperparameter tuning of proposed models AgriResUpNet. 

 

3.5.1 Implementation details of AgriResUpNet 

Encoder Module 

The encoder consists of a series of convolutional layers 

followed by residual blocks. Each block reduces spatial 

dimensions and increases the depth of feature maps. 

Components 

(1) Convolutional Layer: Initial convolution to capture low-

level features. 

(2) Residual Blocks: Each block contains convolutional 

layers, batch normalization, and ReLU activations. These 

blocks also have skip connections to add input directly to the 

output. 

 

Pseudocode for Encoder: 

def encoder(input_tensor): 

    x = Conv2D(filters=16, kernel_size=(3, 3), 

padding='same')(input_tensor) 

    x = BatchNormalization()(x) 

    x = ReLU()(x) 

     

    filters = [32, 64, 128, 256] 

    for f in filters: 

        x = residual_block(x, f) 

        x = Conv2D(f, (3, 3), strides=(2, 2), 

padding='same')(x)  # Reducing spatial dimensions 

        x = BatchNormalization()(x) 

        x = ReLU()(x) 

    return x 

def res_block(x, filters): 

    shortcut = x   

    x = Conv2D(filters, (3, 3), padding='same')(x) 

    x = BatchNormalization()(x)   

    x = ReLU()(x)   

    x = Conv2D(filters, (3, 3), padding='same')(x 

    x = BatchNormalization()(x)   

    x = Add()([shortcut, x])   

    x = ReLU()(x)   

Pseudocode for Decoder: 

def decoder(input_layer, encoder_features): 

    filter_sizes = [256, 128, 64, 32, 16] 

     

    for i, size in enumerate(filter_sizes): 

        input_layer = UpSampling2D(size=(2, 

2))(input_layer) 

        input_layer = Concatenate()([input_layer, 

encoder_features[i]]) 

        input_layer = residual_block(input_layer, size) 

     

    return input_layer. 

 

In order to enhance the description of the experimental 

design, we included numerous essential particulars. The 

dataset was partitioned into three subsets: training, validation, 

and testing, with a split ratio of 70:15:15, respectively. This 

guarantees a thorough assessment of the model's performance 

and aids in avoiding overfitting. Data augmentation techniques 

were extensively utilised to improve the model's ability to 

generalise. The employed approaches encompassed random 

rotations, horizontal and vertical flips, zooming, and colour 

jittering, effectively simulating diverse real-world settings and 

augmenting the variety of training data. In order to tackle the 

possible imbalance in class distribution, particularly due to the 

different frequencies of crops and weeds in the dataset, we 

employed a variety of methods. Initially, the technique of 

oversampling was applied to the minority classes while under 

sampling was applied to the dominant classes in order to 

achieve a more equitable distribution. In addition, class 

weights were incorporated into the loss function to impose a 

greater penalty on misclassifications of the minority class. 

This encourages the model to prioritise the underrepresented 

classes and allocate more attention to them. These techniques 

prevented the model from exhibiting bias towards the majority 

class, hence enhancing its capability to reliably distinguish 

between crops and weeds in various settings. The 

implementation of an all-encompassing strategy for managing 

and enhancing datasets played a crucial role in attaining 

exceptional performance metrics for AgriResUpNet. 

 

Table 2. Hyper-parameters details of AgriResUpNet 

 
Architecture Modified U-Net with Residual Blocks 

(AgriResUpNet) 

Input Shape (966, 1296, 3)-Image dimensions (height, 

width, channels) 

Encoder Filters [16, 32, 64, 128, 256] 

Activation 

Function 

ReLU (Rectified Linear Unit) 

Batch 

Normalization 

Applied after each convolutional layer 

Skip 

Connections 

Implemented through residual blocks for 

both encoding and decoding paths 

Output 

Activation 

Sigmoid (for binary segmentation) 

Loss Function Binary Cross entropy 

Optimizer Adam 

Learning Rate Default value used by Adam optimizer 

Metrics Binary Accuracy 

Upsampling 

Method 

Bilinear interpolation used in the 

upsampling blocks 

Input 

Normalization 

Image pixel values scaled between 0 and 1 

Epochs 100 

Batch size 1 

 

Table 2 provides a comprehensive overview of the 

hyperparameters used in AgriResUpNet. These include a 

modified U-Net architecture with residual blocks, ReLU 

activation function, Adam optimiser, and binary cross-entropy 

loss function. 

 

 

4. PROPOSED SEMANTIC SEGMENTATION 

MODELS 

 

The AgriResUpNet architecture is meticulously crafted to 

address the challenges posed by agricultural image 

segmentation tasks. It combines the strengths of both the U-

Net and residual learning frameworks to achieve superior 

feature extraction and semantic segmentation accuracy.

  

1835



 

4.1 U-Net 

 

For semantic segmentation, the U-Net architecture—a kind 

of Fully Convolutional Networks (FCN)—is the most 

common technique. For biological image segmentation and 

localization, Ronneberger et al. [22] developed the original U-

Net architecture. The capacity to offer localization and 

categorization in U-Nets' output makes them superior to 

conventional CNNs [36-38] Here, "localization" refers to 

assigning a specific class to each pixel in a picture. Another 

advantage is that U-Nets can produce more accurate 

segmentations with less training photos than FCNs can. 

Making use of upsampling layers with several feature channels 

allows for the transfer of contextual data to higher resolution 

layers, which is how this is accomplished. For this specific 

application, U-Net segmentation networks are the best option 

since they are large and easily scalable, they are not dependent 

on localization or contextual data, and they're employed by 

cutting-edge approaches for semantic segmentation of plant 

images. 

Two sections make up the U-net network, as shown already: 

The first is a contracting route that makes use of a standard 

CNN [39] design. Two 3×3 convolutions, an activation unit 

called ReLU, and a max-pooling layer make up each block of 

the contracting route. This pattern is iterated several times. 

Part two, the extended route, is where U-net really shines; at 

every level, it uses 2×2 up-convolution to upsample the feature 

map. After that, the upsampled feature map is superimposed 

with the cropped and joined feature map from the equivalent 

layer in the contracting route. After that, ReLU activation and 

two 3×3 convolutions occur in quick succession. In the last 

step, we apply one more 1×1 convolution to get the feature 

map down to the necessary number of channels and then we 

have the segmented picture. Edge pixel characteristics contain 

the least amount of contextual information as well as must be 

deleted, which is why cropping is essential. In addition to 

creating a network with a u-shape appearance, this method 

also propagates contextual data across the network, enabling it 

to partition items in a given region by drawing on context from 

a broader overlapping area. Figure 8 shows the general design 

of the U-net. 

 

 
 

Figure 8. U-net architecture [40] 

 

Design of the U-net, seen in Figure 2. These arrows are 

meant to indicate the various operations, the blue boxes are 

meant to represent the feature map at each layer, and the grey 

boxes are meant to represent the cropped feature maps that 

were obtained via the contracting path. 

Given is the energy function that is associated with the 

network: 

 

( )k(x)E w(x)log p (x)=  (1) 

where, pk is pixel-wise SoftMax function used over final 

feature map, definite as: 

 

𝑃𝑖𝑘 =
exp⁡(𝑎𝑖𝑘(𝑥))

∑ exp⁡(𝑎𝑖𝑘′(𝑥))𝑘′
 (2) 

 

Pik represents the probability of activation in channel k at 

pixel location i. aik(x) denotes the activation in channel k at 

pixel location i for the input x. The denominator is the sum of 

the exponential function of the product of a constant "a" and a 

function "k'" evaluated at "x", over the sum of the variable "k'". 

The expression is written as exp(aik'). The value of (x) is 

obtained by summing the exponential activations of all 

channels k' at pixel location i, and then normalising the output 

to create a probability distribution across the channels. 
 

4.2 Residual learning 

 

Deep neural networks have been shown to have a very high 

level of performance on picture classification tasks, despite the 

fact that they are more challenging to train. When it comes to 

training deeper neural networks, it often requires a significant 

amount of time and more computer capacity. This is because 

of the number of variables as well as the vanishing gradient 

problem. Deep residual networks, also known as ResNets, 

have the potential to accelerate the process of training and 

achieve higher levels of accuracy in comparison to its 

counterpart neural networks. This enhancement is 

accomplished by ResNets with the incorporation of a 

straightforward skip link that is parallel to the layers of 

convolutional neural networks [41, 42]. In contrast to 

traditional neural networks, ResNets train residual functions 

while keeping the layer inputs in mind. Residual nets allow the 

stacked layers to match a residual mapping instead of hoping 

they directly fit a desired underlying mapping. We allow the 

stacked layers to suit a residual mapping instead of expecting 

they immediately match a specified underlying mapping. We 

allow the stacked nonlinear layers to fit an additional mapping 

of F(x):=H(x)→x, where H(x) is the required underlying 

mapping. By adding x to the original mapping, we get F(x)+x. 

Optimising the residual mapping, rather than the original, 

unreferenced mapping, should be easier, according to our 

hypothesis. It would be more convenient to just reduce the 

residual to zero rather than fit an optimum identity mapping 

using a stack of nonlinear layers, if that were the case. Using 

"shortcut connections" in feedforward neural networks, the 

F(x) +x formula may be accomplished (Figure 9). 

The Figure 9 illustrates the notion of "residual learning" in 

a neural network. The display features a residual block 

consisting of two layers. The initial layer applies a weight and 

a Rectified Linear Unit (ReLU) activation function to the input, 

whereas the subsequent layer applies another weight. A 

shortcut connection is created by adding the output of the 

second layer to the original input. This strategy effectively 

mitigates the issue of the vanishing gradient problem in deep 

networks. If identity mappings are successful, techniques may 

adjust weights towards zero in order to achieve mappings that 

are close to the identity function. 
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Figure 9. Residual learning: A fundamental component [43] 

 

4.3 Hyperparameters tuning 

 

In deep learning models, hyperparameters are the user-

defined variables that regulate the learning procedure. The 

values of these hyperparameters are established before the 

model starts learning, and they are utilised to improve the 

model's learning. Internal configuration variables known as 

model parameters are learned by the model autonomously. 

Expertise and a lot of trial and error are needed for the hyper-

parameter tuning procedure. Setting hyper-parameters (e.g., 

optimizer, epochs, batch size, activation function, loss 

function, etc.) is not a straightforward or easy task. 

 

4.3.1 Activation function (ReLU (Rectified Linear Unit) and 

Sigmoid) of the output layer 

There are a few other names for this function: squashing, 

threshold, transfer, and more. Using the network input and 

threshold value as inputs, it performs a function and outputs 

the values that result from the neuron's activation. The 

neuron's prior activity status and the input from outside the cell 

determine this. Sigmoid and ReLU are two popular activation 

functions, while there are others that work better for certain 

types of problems. Any value between zero and infinity can be 

taken on by the ReLU activation function. Remaining as an 

equation, it is: 

 

ReLU( ) max(0, )x x=  (3) 

 

With a large range of positive values for the input 

observations xi, this choice is good. Naturally, the ReLU is a 

weak pick along with the identity function is superior if the 

input xi may take on negative values. 

When doing a binary classification, this activation function 

is applied at the output layer. The likelihood of an input 

becoming a member of a class is the result it produces. The 

sigmoid function σ is capable of taking on any value between 

0 and 1. Its formula is the same as before. From a mathematical 

perspective, it seems like: 

 

1
Sigmoid ( )

1 x
x

e


−
=

+
 (4) 

 

Use of this activation function is conditional on the input 

observations xi falling within the range of 0, 1 or having been 

normalised to that range. 

 

4.3.2 Loss function (Binary Cross entropy) 

When comparing the actual output with the output predicted 

by a machine learning model, a loss function may be used to 

quantify the mistake. throughout model construction, it is 

possible to provide this parameter, which in turn influences the 

model's performance throughout training. The task at hand and 

the data type at hand dictate the loss function to be employed. 

For many classification and segmentation activities, the 

baseline loss function is binary cross entropy, often known as 

log loss. Binary cross-entropy may be expressed as: 

 

( ) ( ) ( )( )log 1 log 1BCE x k x x

x

L T P T P= − + − −  (5) 

 

Using T as the truth data, Tx as an element of T, and Px as 

an element of the network's output prediction mask [44]. 

 

4.3.3 Optimizer (Adam) 

Adam is a kind of adaptive learning that takes advantage of 

rate optimisation to make things better. By adding a 

momentum term to the equation and preserving the element-

wise squared value moving average and parameter gradients, 

it becomes available whenever the variables are altered. To 

train a deep neural network, one must tweak the model's 

parameters (such as the learning rate and weights) until one 

gets the best possible outcome with the least amount of loss 

(the gap between the actual and expected outputs). This 

procedure for fine-tuning is known as optimisation. The 

optimisation functions are the procedures or algorithms that 

are employed while optimising. For this task, Adam optimiser 

was utilised to construct the neural network. The steps of 

Adam's optimisation computation are represented by the 

equation below. 

 

( ) 2

2 21 *Sdw Sdw dw = − −  (6) 

 

db
w w

Sdb
= −

+
 (7) 

 

Both binary and multi-class optimisation can benefit from 

this optimizer's ability to reduce loss. Among the optimizer 

functions, it possesses the quickest convergence time. This is 

due to the fact that Adam updates the parameters during 

training at each iteration using three parameters: a weighted 

average of gradient, a weighted average of squared gradient, 

and a learning rate. 

 

4.3.4 Batch size 

The training dataset in a single batch is taken into 

consideration by this. The dataset can be separated into many 

batches, which dictates the number of iterations, because 

feeding the computer a whole epoch would be too much for 

the system to handle. 

 

4.3.5 Epoch 100 

When all data is input and output from the neural network 

simultaneously, one epoch is reached. The neural network's 

weights may be improved by continuously giving it training 

data. After every loop, the parameter is updated. Typically, 

accuracy and loss may be improved by increasing the number 

of epochs. 

 

 

5. RESULT AND DISCUSSION 

 

In this section provide the experimental results of proposed 

modes. For this research experiment used Weed and Crop 

dataset from GitHub that the split into train and test with 60:40 

ratio. For the classification and segmentation of crop and weed 
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data images using DL techniques (AgriResUpNet). Following 

section provide the implemented results of model evaluation 

in terms of Accuracy, IOU, F1-score, Precision, and Loss 

Measures, also provide the experimental setup, experimental 

results of crop and weed dataset with plotting graph, and tables, 

and then last provide the comparative analysis between base 

and proposed models. 

 

5.1 Experimental setup  

 

The experimental results perform on HP workstation 

equipped with 32GB of RAM, a 1TB hard drive, the Windows 

10 operating system, a 24GB Nvidia graphics processing unit 

(GPU), and an Intel Core i7 CPU. By using this hardware, we 

used python programming language [45] and Jupyter 

notebook [46] with some python packages like NumPy, 

pandas, Sk-Learn, and matplotlib etc. [47].  

 

5.2 Evaluation metrics  

 

This study proposes a segmentation algorithm and uses 

experimental results to compare its performance to that of 

other algorithms evaluated using identical evaluation indices. 

Various assessment metrics, including F1-score, precision, 

average precision (AP), and intersection over Union (IoU), 

were used to quantify and evaluate the suggested network's 

performance. True positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) were the variables 

identified by computing the confusion matrix between the 

prediction and the ground truth in order to compute these 

metrics. From these bitmaps, TP, TN, FP, and FN rates were 

determined. 

• TP (True positive)-no. of pixels that were incorrectly 

classified into class. 

• TN (True negative)-no. of pixels that should have been 

classified to specified class but were not. 

• FP (False positive)-no. of pixels for which the class was 

incorrectly classified. 

• FN (False negative)-no. of pixels for which the class was 

not assigned and which ought not to have been. 

Consequently, the initial metric employed is the Intersection 

over Union (IoU) ratio, which yields a value equivalent to 

dividing the overlap region of the prediction mask by the union 

region encompassing the target mask. On the basis of the 

confusion matrix, the following Eq. (8) can be derived: 

 

TP
IoU

TP FP FN
=

+ +
 (8) 

 

Pixel Accuracy (PA): Pixel Accuracy (PA) is an additional 

metric utilised to assess the model under consideration. It 

signifies the proportion of predicted pixels in relation to the 

total number of pixels. On the basis of the confusion matrix, 

the Eq. (9) as follows can be derived: 

 

TP TN
PA

TP TN FP FN

+
=

+ + +
 (9) 

 
Precision: Precision indicates the performance of a 

categorization model during evaluation. Calculates the 

proportion of accurately classified images relative to the total 

number of images predicted to be members of a particular 

class; this is mathematically represented as Eq. (10): 

TP
 Precision 

TP FP
=

+
 (10) 

 

Recall: In reference to positive values, this metric is 

employed to evaluate the predictive efficacy of the model. Eq. 

(11) mathematically expresses the metric by dividing the 

number of accurately classified images by the total number of 

images belonging to a particular class: 

 

TP
 Recall 

TP FN
=

+
 (11) 

 

F1-score: F1-score is the harmonic mean of recall and 

precision. By utilising the harmonic mean, it becomes highly 

advantageous to consider both recall and precision. This 

facilitates the evaluation of both recall and precision in terms 

of the F1-score. The formula used in mathematics for the score 

is Eq. (12): 

 

 precision  recall 
 F1 measure 2*

 precision  recall 


=

+
 (12) 

 

5.3 Results of weed segmentation using the AgriResUpNet 

model are presented 

 

The Table 2 shows the proposed AgriResUpNet Model 

results on Weed Segmentation in terms of accuracy, precision, 

f1score and IoU measure. Also Figure 10 shows the bar graph 

of parameter performance of AgriResUpNet model on weed 

segmentation. AgriResUpNet Model obtain 99.96% accuracy, 

IoU of 97.58%, F1-score of 98.77%, precision of 98.80% and 

loss of 0.009%, respectively, on weed Segmentation. 

 

 
 

Figure 10. Bar graph of parameter performance of 

AgriResUpNet model on weed segmentation 

 

The AgriResUpNet model's training and validation curves 

for weed segmentation are shown in Figure 11. After 100 

iterations, the model's accuracy and loss graphs reveal its 

remarkable convergence, with a validation loss of 0.0552 and 

a final training loss of 9.6810e-04. The model's impressive 

accuracy levels—99.17% in validation and 99.96% in 

training—demonstrate its advanced understanding of the 

segmentation task for weed. 

Further evidence that the model is successful in collecting 

nuanced segmentation information is provided by the IoU plot, 

the precision plot, and the F1-score plot, shows in Figure 11. 

Particularly, the AgriResUpNet model obtains high values for 

IoU and F1-score, with values of 0.9758 and 0.9877, 

accordingly, on the training set. Additionally, it obtains a 

precision of 0.9880. On the validation set, the model continues 
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to demonstrate competitive performance, obtaining values of 

0.5837 for the IoU, 0.7213 for the accuracy, and 0.7072 for the 

F1-score, correspondingly. 

 

5.4 Results on crop segmentation using AgriResUpNet 

model  

 

The Table 3 shows the proposed AgriResUpNet Model 

results on Crop Segmentation in terms of accuracy, precision, 

f1score and IoU measure. Table 3 presents the performance of 

the AgriResUpNet model for weed segmentation, showing 

high accuracy, IOU, F1 Score, precision, and minimal loss. 

Table 4 showcases the AgriResUpNet model's crop 

segmentation performance, indicating high accuracy, IOU, F1 

Score, precision, and a low loss value. 

Figure 11 shows the training and validation curves for loss 

and accuracy of the AgriResUpNet model, highlighting its 

performance during weed segmentation, with convergence 

indicating effective learning. 

Figure 12 illustrates the training and validation curves for 

IoU, precision, and F1-score of the AgriResUpNet model, 

demonstrating its effectiveness in accurately segmenting 

weeds by tracking these key metrics. 

Figure 13 shows the bar graph of parameter performance of 

AgriResUpNet model on Crop segmentation. AgriResUpNet 

Model obtain 99.84% accuracy, IoU of 94.82%, F1-score of 

96.01%, precision of 95.92% and loss of 0.0039%, 

respectively, on Crop Segmentation. 

Figure 14 shows the AgriResUpNet model's training as well 

as validation curves for crop segmentation. Having a 

validation loss of 0.0492 after 100 epochs and a final training 

loss of 0.0039, the accuracy as well as loss graphs show that 

the model was well trained. With a training accuracy of 99.84% 

and a validation accuracy of 99.08%, the model clearly excels 

at learning the finer points of crop segmentation. 

Additional insights may be seen in Figure 15, which 

displays graphs of IoU, precision, and F1-score. On the 

training set, the AgriResUpNet model achieves a remarkable 

0.9592 accuracy, an IoU of 0.9482, and an F1-score of 0.9601, 

respectively. Maintaining competitive performance on the 

validation set, the model achieves IoU of 0.8393, accuracy of 

0.8618, and F1-score of 0.9098. These measures have shown 

steady progress across the training epochs, which shows that 

AgriResUpNet is very good at properly outlining crop borders 

and that it is resilient and can generalise well to crop 

segmentation tasks. 

 

Table 3. Weed segmentation using AgriResUpNet model 

 
Model Accuracy IOU F1 Score Precision Loss 

AgriResUp

Net 

99.96 97.58 98.77 98.80 0.0009 

 

Table 4. Crop segmentation using AgriResUpNet model 

 
Model Accuracy IOU F1 Score Precision Loss 

AgriResUp

Net 

99.84 94.82 96.01 95.92 0.0039 

 
 

Figure 11. Train/Val plotting curve of loss and accuracy of AgriResUpNet model on weed segmentation 
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Figure 12. Train/Val plotting curve of IoU, precision and F1-score of AgriResUpNet model on weed segmentation 

 

 
 

Figure 13. Bar graph of parameter performance of AgriResUpNet model on crop segmentation 

 

 
 

Figure 14. Train/Val plotting curve of loss and accuracy of AgriResUpNet model on crop segmentation 
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Figure 15. Train/Val plotting curve of IoU, precision and F1-score of AgriResUpNet model on crop segmentation 

 

5.5 Comparative analysis and discussion  

 

Different metrics, such as intersection over union (IoU) and 

F1-score, were generated in order to conduct a quantitative 

investigation for the purpose of comparing the proposed 

AgriResUpNet to other networks on the crop and weed dataset. 

The performance of our proposed AgriResUpNet is superior 

to that of other networks with unique margins for each and 

every assessment index. In Table 4, we provide a summary of 

the segmentation performance of our proposed architecture in 

comparison to all other networks and their respective 

assessment metrics. 

The proposed AgriResUpNet for crop and weed 

segmentation demonstrates significant improvements in 

performance measures when compared to the basis models (U-

Net, SegNet, FCN-8s, DeepLabv3, and CED-Net) for crop as 

well as weed classification, shows in Figures 16 and 17. With 

considerable increases in IoU and F1 Score for both crop and 

weed segmentation tasks, AgriResUpNet consistently beats 

the basic models across all assessed measures. With regard to 

crop and weed segmentation, in particular, AgriResUpNet 

earns excellent IoU scores of 94.82% and 97.58%, 

respectively, suggesting that it is superior in its capacity to 

properly identify borders. AgriResUpNet achieved a 

classification accuracy of 96.01% for crop segmentation as 

well as 98.77% for weed segmentation, respectively, 

according to the F1 Score findings, which further emphasise 

the model's precision and recall balance. On the other hand, U-

Net exhibits IoU scores of 77.75% (for crops) and 66.61% (for 

weed), with F1 Scores that approximate to 85.10%. In terms 

of crop/weed segmentation, SegNet and FCN-8s have IoU 

scores of 52.76%/57.17% and 62.08%/54.11%, respectively. 

Additionally, their F1 Scores are 70.08%/70.08% and 

74.46%/74.46%, respectively. The results of DeepLabv3 

indicate that the IoU scores for crop are 75.50% and for weed 

are 61.44%, with the corresponding F1-scores being 82.86%. 

The IoU scores that CED-Net obtains are 81.20% for crops and 

70.16% for weeds, while the F1 scores that it achieves are 

87.39%. These complete parameter values demonstrate that 

the AgriResUpNet architecture that was suggested is effective 

in improving the accuracy of segmentation for agricultural 

applications. This architecture also provides a potential 

approach for improving crop and weed identification in 

precision farming situations. 

Table 5 displays a comparative examination of the 

Intersection over Union (IoU) scores for several models. The 

Intersection over Union (IoU) score for Convolutional Neural 

Networks (CNNs) is 65.74%, signifying a reasonable degree 

of accuracy. The TL-ResUNet model exhibits a substantial 

enhancement, achieving an Intersection over Union (IoU) of 
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81%, hence showcasing a more resilient and reliable 

performance. Nevertheless, the suggested model surpasses 

both alternatives, attaining an amazing Intersection over 

Union (IoU) score of 97.58%, indicating a remarkably precise 

capacity to execute segmentation. The comparison 

demonstrates the higher performance of the proposed model in 

terms of Intersection over Union (IoU), proving it as a more 

effective solution for the given task. 

Table 5 presents a comparison of crop and weed 

segmentation models, demonstrating that AgriResUpNet 

outperforms other models in terms of both IOU and F1 Score 

measures. 

Table 6 presents a comparison of IoU performance among 

different models. It demonstrates that the suggested model 

exhibits a substantial improvement (97.58) compared to CNNs 

(65.74) and TL-ResUNet (81). 

Figure 18 depicts the visual representation illustrates a bar 

chart labelled as "Comparative Analysis." The performance of 

three models, namely AgriResUpNet (Proposed), TL-

ResUNet mode, and CNNs, is compared based on their 

Intersection over Union (IoU) performance. AgriResUpNet 

demonstrates superior performance compared to the other 

models, achieving an IoU score of 97.58. TL-ResUNet follows 

with a score of 81, while CNNs achieve a score of 65.74. A 

higher IoU indicates a greater level of accuracy in the model. 

 

Table 5. Comparison between base and proposed models for crop and weed segmentation 

 

Models 
Crop Segmentation Weed Segmentation 

IOU F1 Score IOU F1 Score 
U-Net 77.75 85.10 66.61 85.10 
SegNet 52.76 70.08 57.17 70.08 
FCN-8s 62.08 74.46 54.11 74.46 

DeepLabv3 75.50 82.86 61.44 82.86 
CED-Net 81.20 87.39 7016 87.39 

AgriResUpNet (Proposed) 94.82 96.01 97.58 98.77 

 

Table 6. Comparative Analysis of Existing Model and Proposed Model 

 

Models IoU References 

CNNs 65.74 [48] 

TL-ResUNet mode 81 [49] 

Proposed model 97.58 -- 

 

 
 

Figure 16. Bar graph of IoU measure comparison between base and proposed models for crop and weed segmentation 

 

 
 

Figure 17. Bar graph of F1-score measure comparison between base and proposed models for crop and weed segmentation 
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Figure 18. Comparative analysis graph 

 

 

6. CONCLUSION 

 

Semantic segmentation is a crucial component of image 

processing as well as machine vision. To accomplish precise 

segmentation, it identifies and assesses each pixel of an image. 

AgriResUpNet is a straightforward and effective segmentation 

model that can be trained on big data sets. We employ the 

AgriResUpNet networks in this study to classify and segment 

crop and weed photos. Simulations demonstrated that the 

AgriResUpNet suggested in this work outperforms previous 

algorithms in terms of IoU and F1-score when compared with 

public dataset crop as well as weed datasets. For the weed 

segmentation AgriResUpNet model obtain 94.82% IoU and 

96.01% F1-score, while on Weed dataset proposed model get 

97.58% IoU and 98.77% F1-score, respectively. We believe 

that the revised AgriResUpNet architecture suggested in this 

study will be more suited for crop picture segmentation. The 

comparison demonstrated that our methodology increased the 

stability and objectivity of counting findings while saving 

researchers time, and the technique is already being used to 

analyse pictures of radiation-injured bone marrow cell 

alterations. Our long-term goals include improving the model's 

segmentation performance by fine-tuning its parameters and 

then applying them to even better base models; expanding the 

model's applicability to various forms of medical data with 

varying segmentation aims; enhancing AI's capacity to detect 

and isolate weeds and crops; and assisting medical 

professionals in their work. 

 

 

7. FUTURE WORK DIRECTIONS 

 

(1) Enhancement through advanced attention mechanisms: 

Integrate advanced attention mechanisms like self-attention 

or spatial attention modules into AgriResUpNet. These 

mechanisms can help the model focus on important regions in 

the image, improving the precision of segmentation. Attention 

mechanisms can enhance the model’s ability to distinguish 

between similar-looking crops and weeds, especially in 

complex agricultural landscapes. 

(2) Multi-modal data integration: 

Expand the model’s capabilities by incorporating multi-

modal data, such as combining RGB images with depth or 

thermal imaging data. This integration can provide additional 

contextual information, helping to improve segmentation 

accuracy. For example, depth data can help differentiate crops 

and weeds based on height, while thermal imaging can 

highlight differences in temperature, which may correspond to 

different plant types. 

(3) Transfer learning and domain adaptation: 

Apply transfer learning techniques by pre-training the 

AgriResUpNet model on large, diverse datasets before fine-

tuning it on specific agricultural datasets. Additionally, 

explore domain adaptation strategies to make the model robust 

across different environments and crop types. This approach 

can significantly improve the model’s performance when 

applied to new or unseen datasets, ensuring its versatility and 

generalizability. 

Expanding the model's applicability to various forms of 

medical data with varying segmentation aims could open up 

new avenues for AgriResUpNet. For instance, fine-tuning the 

model for different medical imaging modalities such as MRI, 

CT scans, or X-rays can help in accurate segmentation of 

tissues, tumors, and other anatomical structures. By doing so, 

the model could assist medical professionals in diagnostics 

and treatment planning, ultimately improving patient 

outcomes. 
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