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With the use of Brain-Computer Interface (BCI) technologies, the brain and the outside 
world can communicate directly, bypassing the peripheral nervous system. This concept is 
fascinating as it acknowledges that the cells in our brain are electrical signals generated by 
neurons, which are the brain's information-processing units. The techniques for processing 
these electrical signals are crucial for mapping this electrical activity to develop reliable 
brain-computer interfaces. Electroencephalography (EEG) stands out as one of the most 
commonly utilized Brain-Computer Interface (BCI) techniques, primarily due to its ease of 
use and non-invasive characteristics. The capacity of a BCI system to interpret patterns of 
cognitive activity through computational algorithms to manipulate external devices is a key 
aspect of this technology. In the present study, an examination is conducted on the potential 
for researchers engaged in the analysis of EEG signals originating from the brain, 
encompassing methodologies reliant on multi-channel EEG data as well as diverse 
physiological signals. The focus extends to applications developed since 2018 and 
subsequent years, delving into details such as the nature of the data employed, specifications 
of the equipment utilized for capturing electrical signals for control purposes, the number 
of electrodes deployed, the volume of participants involved in data generation essential for 
cutting-edge BCI applications, techniques for obtaining EEG features and the optimal 
accuracy achievement levels in the said applications. Overall, BCI technology is a 
promising field with a vast range of applications. As technology advances, we can expect 
to see more sophisticated and reliable brain-computer interfaces that can be applied to 
enhance the lives of those who are disabled and neurological disorders. 
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1. INTRODUCTION

One of the essential principles underlying human
civilization is interaction and communication. This 
foundational aspect facilitates the expression of emotions, 
ideas, and innovative thoughts. Human communication is 
rendered more fluid and less constrained, whether it is 
conveyed through vocalization, gestures, or written text. The 
aforementioned avenues for engagement are absent for 
individuals who experience a sense of closure. The principal 
etiological factors contributing to locked-in syndrome 
encompass multiple sclerosis, amyotrophic lateral sclerosis 
(ALS), cerebral palsy, brain stem stroke, and spinal cord injury 
[1, 2]. Although individuals afflicted with locked-in syndrome 
possess acute awareness of their environment, they are 
rendered incapable of communication or social interaction 
with others [3]. An individual suffering from locked-in 
syndrome encounters substantial challenges in establishing 
connections with others; consequently, numerous research 
endeavors within the domain of human-computer interaction 
(HCI) concentrate regarding brain-machine interfaces (BCIs). 
BCIs have been employed, for instance, to monitor activity [4, 
5], engage with software and gaming applications [6], and 

directly manipulate the movement of physical objects [7]. The 
integration of BCIs with supplementary sensors, such as eye-
tracking [8] and gyroscopes [9], has the potential to enhance 
BCI efficacy. This integration can augment the user's degrees 
of freedom (for instance, the user may select an item utilizing 
eye-tracking while simultaneously issuing a command through 
BCIs). There are many of effective EEG-based BCI 
applications available, including wheelchair controllers [10] 
and word speller programs [11]. Moreover, BCIs can be 
utilized not only for the mental control of devices but also for 
the interpretation of our mental states [12]. The oscillatory 
nature of electrical potentials in the brain, resulting from the 
ionic current flow among neurons, is captured by an 
electroencephalogram (EEG). EEG data is acquired through 
the measurement of electrical activity at electrode sites on the 
scalp. The 10-20 electrode placement method [12-14], 
illustrated in Figure 1, provides a standardized system to 
ensure consistent reproducibility. When employed in real-
world applications, the BCI encounters multiple challenges, 
including: 

1-Data throughput Rate (Bandwidth): BCI applications face
limitations in response time and control precision due to low 
data bandwidth. 
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Figure 1. The 10–20 system of electrode placement [12] 
 

2-Low BCI signal strength: Brain signals typically exhibit 
low intensity, complicating their extraction and necessitating 
signal amplification. 

3-High error rate: The weak signal and slow data throughput 
contribute significantly to the elevated error rate, compounded 
by considerable fluctuations in brain signals. 

4-Unreliable signal characterization: Electrodes capture 
signals from specific brain regions, yet inaccurate 
classification and interference hinder effective signal 
categorization. 

Therefore, the objectives of this article are a comprehensive 
overview of brain-computer interfaces for studies in the last 
years, which delve into various aspects including the 
characteristics of the data utilized, the specifications of the 
apparatus employed for capturing electrical signals intended 
for control purposes, the quantity of electrodes implemented, 
the number of participants engaged in data generation pivotal 
for avant-garde BCI applications, and the levels of optimal 
accuracy attained in these applications following the 
methodologies adopted therein for electroencephalography 
(EEG), produced by the brain, thereby enabling the 
establishment and integration of our findings with the complex 
and enigmatic functionalities of the brain. 

The organization of this survey is as follows: Section 2 
discovering new information on various brain signals. Section 
3 demonstrates the types of EEG signals and how they serve a 

purpose in BCI. As for section 4, the neural mechanisms 
underlying smart BCIs based on EEG machine learning (ML) 
and deep learning techniques are explained, as well as an 
explanation of the Paradigms into which they are subdivided. 
What most BCI models contain is described in section 5 then 
the applications with the greatest popularity are listed in 
section 6. In addition to creating a table that displays many 
details with some studies carried out by researchers within the 
various applications  in this filed. Finally, conclusions and an 
overview of a few problems and potential solutions are 
presented in section 7. 
 
 
2. KNOWLEDGE DISCOVERY FOR BRAIN SIGNALS 
 

Brain signals can be detected and evaluated using a variety 
of imaging methods, including magnetoencephalography 
(MEG), functional magnetic resonance imaging (fMRI), 
functional near-infrared (FNIR) imaging, and positron 
emission tomography (PET). It is currently not practical to use 
MEG, fMRI, or PET on a daily basis because to their high cost, 
extensive technological requirements, and their absence of 
real-time capabilities [15, 16]. According to the experts, Only 
FNIR and electrical field monitoring are anticipated to have 
immediate application in clinical settings. A method for 
capturing electrical activity in the brain, known as 
electrocorticography (ECOG) [17], includes recording spike 
trains and local field potentials (LFPs) on the scalp, the cortex, 
and the interior of the brain. There are advantages and 
disadvantages to take into account for each technique (see 
Figure 2). Strong topographical resolution is provided by 
Local Field Potential (LFP) methods like ECOG, which may 
work across a wide frequency range. Direct brain control of 
external devices has been demonstrated to be highly promising 
via brain-computer interfaces (BCIs) [16]. Such as the 
capacity to reestablish self-feeding according to law [18-20], 
while using invasive signal methods to record inter cortical 
neural activity in monkeys. However, they are invasive and 
need electrodes are inserted on or inside the cortex to induce 
effects. The main issues with invasive BCIs that need to be 
resolved before they may be applied in therapeutic contexts 
are as follows: long-term security, signal durability, and signal 
stability, on the other hand, electromyography (EMG) and 
cerebral muscle electrooculography (EOG) activity can 
occasionally contaminate electroencephalography (EEG) 
recordings [21-26]. 

 

 
 

Figure 2. Gives a hierarchal classification of brain-machine interfaces [27] 

1968



The development of EEG-based brain-computer interfaces 
is significantly hampered by the significantly lower signal-to-
noise (s/n) ratio of non-invasive techniques compared to 
invasive methods. Time-locked trials are averaged with regard 
to the stimulus. repeated averaging, which may be utilized to 
create Event-Related Potentials (ERPs), is a common 
technique for enhancing the s/n ratio [22]. Users may be 
trained to control their brain activity, such as by modulating 
alternatively, the 8–12 Hz sensorimotor Mu rhythm or slow 
Cortical Potentials (SCPs) can enhance the s/n ratio for 
reliable BCI control. As people get better at managing their 
brain activity, the s/n ratio will rise. It is anticipated that the 
fluctuation in a person's EEG signal would diminish after they 
learn to properly control their brain activity [24]. Short-term 
training can be helpful for SCPs or sensorimotor Mu rhythms, 
nevertheless, due to the frequent need for long-term training 
because spontaneous EEG activity is unpredictable [25]. Most 
BCIs use electroencephalography (EEG) as the primary 
approach to generate BCI control signals because of its 
simplicity, non-invasiveness, and high temporal resolution, 
portability, and low cost [26]. In addition to the fact that 
invasive BCIs require major surgery, and have a worse signal-
to-noise ratio than non-invasive BCIs, it is still unknown 
whether they are suitable for long-term use due to brain tissue 
interactions. On the other hand, electroencephalography (EEG) 
signal-based non-invasive BCIs are easier to set up and do not 
require surgery [28-32]. 
 
 
3. TYPES OF EEG–BASED BCI SIGNALS 
 

The way neural activity is produced by the brain in large 
quantities. There are numerous signals that BCI can utilize. 
Spikes and field potentials are two different kinds of these 
signals [14, 28]. Spikes are recorded using invasively 
implanted microelectrodes and represent the action potentials 
of specific neurons. Field potentials, which may be detected 
by EEG or electrodes implanted in the body, are a gauge of 
neurons combined synaptic, neuronal, and axonal activity. 

EEG signals are classified based on their frequency bands 
[29]. As illustrated in Figure 3. 

• Delta signals range from 0.5 to 3.5 Hz, typically exhibiting 
the highest amplitude and slow movement, common in 
newborns and adults during slow-wave sleep.  

• Theta signals, ranging from 3.5 to 7.5 Hz, are associated 
with daydreaming and inefficiency, marking the transition 
between wakefulness and sleep, with high levels in adults 
deemed abnormal.  

• Alpha signals operate between 7.5 and 12 Hz, initially 
identified by Hans Berger as "alpha waves," predominantly 
observed in the posterior regions of the head, with increased 
power noted post-marijuana use.  

• Beta signals, with frequencies from 12 to about 30 Hz, 
exhibit symmetrical distribution and are most pronounced 
anteriorly, often categorized into types 1 and 2; increased 
activity is observed during focused tasks or inhibition.  

• Gamma signals are characterized by frequencies of 31 Hz 
and above, reflecting cognitive awareness. 

Researchers have created clinical uses, and it has been 
determined that EEG is the gold standard test for detecting and 
diagnosing epilepsy, stroke, and a host of other trauma-related 
conditions. EEGs have been used in non-clinical situations for 
BCI-based games, motor imaging tasks (e.g., thinking about 
moving the left or right hand, foot, or tongue), and passive BCI, 
in which the EEG is analyzed but not used to control any 

devices [31]. Classifying various EEG tasks or scenarios is 
among the primary objectives of an EEG-based BCI. 

 

 
 

Figure 3. 5 Major frequency ranges of brain waves [21] 
 
 
4. EEG-BASED BCIS' UNDERLYING NEURAL 
MECHANISMS AND PARADIGMS 

 
Commonly used in intelligent systems are machine learning 

(ML) techniques [33]. To automate the process of creating 
analytical models and to complete or augment related 
operations, machine learning (ML) refers to a system that can 
learn from training data from specific activities [34]. Artificial 
neural networks (ANNs) are the foundation of the deep 
learning (DL) paradigm, a branch of machine learning [35]. 
According to Al Faiz and Al-Hamadani [36], ML algorithms 
frequently concentrate on categorizing EEG data connected to 
the motor and fictitious motions of hands and feet to execute 
control operations. Because DL is successful in sectors with 
vast and high-dimensional data, it outperforms ML methods 
for the majority of text, image, video, voice, and audio 
processing approaches [37]. Even said, ML algorithms may 
still produce superior outcomes for low-dimensional data 
input, particularly in the absence of training data. As their 
output is even more interpretable than that of deep neural 
networks [38, 39]. 

The BCIs would be classified as "evoked" when external 
stimulation is required and as "spontaneous" when it is not, 
based on whether external stimulation is necessary for the BCI 
to function or not. And have observed that some authors have 
also referred to the classification of evoked and spontaneous 
systems as exogenous and endogenous [18]. 
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The present focus of several research institutions is cantered 
on endogenous EEG-based brain-computer interfaces (BCIs) 
that are utilized to decode movement intention, as evidenced 
by the scientific literature [26]. These BCIs work by altering 
the EEG's sensorimotor rhythms, which are captured across 
the scalp throughout the sensory motor brain area. employing 
motor imagery paradigms [40-42]. Through these methods, 
the EEG can provide valuable insight into the cognitive 
processes underlying motor intention. Despite the benefits of 
endogenous BCIs for motor-related activities, they often 
require a lengthy training time to create conscious control over 
the brain's sensory impulses [43]. Additionally, they 
demonstrate mediocre multiclass decoding [44] and restricted 
information transfer rate (ITR) [45] performances. These 
flaws, in addition to very significant inter individual variability, 
may prevent those systems from being used outside of a 
controlled laboratory setting.  

Exogenous BCIs work using brain signals called steady-
state evoked potentials, are additionally known as Event-
Related Potentials (ERPs), which can be triggered through 
visual, auditory, or somatosensory stimuli [46]. These signals 
are different from endogenous BCIs. The most popular 
exogenous BCI paradigms consist of those that use visually 
evoked potentials (VEPs). Visual stimuli, such as led that flash 
quickly and repeatedly in front of the person, cause VEPs to 
be generated. These potentials are relatively simple to 
manipulate and quantify, and they strongly rely on the nature 
and characteristics of the visual stimuli [47]. 

A multitude of investigations have elucidated an extensive 
array of neural signals that may function as control signals in 
BCI systems. Signals in structures that use brain-computer 
interfaces (BCI). However, solely those as control signals in 
BCI systems. Signals utilized in contemporary BCI systems 
will be examined in the subsequent discussion. 

 
4.1 Oscillatory EEG activity 

 
Neuronal feedback loops in a complicated network are what 

induce oscillatory EEG activity. Observable oscillations are 
produced by the firing of the neurons in these feedback loops 
in sync. The Rolandic mu-rhythm, which occurs in the 
frequency between 10 and 12 Hz, as well as the core beta 
rhythm, which occurs in the frequency range of 14–18 Hz, are 
the two different oscillations of interest. This action is an 
example of "idling" or rest [29]. 
 
4.2 Event-Related Potentials 

 
Time-locked brain reactions known as Event-Related 

Potentials (ERPs) happen immediately after a particular 
internal or external event. These potentials become evident 
when they are subjected to sensory, mental, or the lack of 
constantly occurring stimuli. Exogenous components of the 
ERP form as a result of processing an external event, although 
they are unrelated to the function of stimuli in information 
processing. Endogenous ERP components, on the other hand, 
emerge at an internal processing event. It depends on the task 
that the stimulus was used for and how the stimulus and its 
environment interacted [48]. The following categories apply 
to the ERP events. 
 
4.2.1 Event-related synchronization and desynchronization 

Event-related synchronization (ERS) and 

desynchronization (ERD) are two different characteristics of a 
specific form of ERP. Power declines in particular frequency 
ranges when neuronal synchrony declines. The signal 
amplitude reduction that characterizes this occurrence as an 
ERD may be seen. An increase in power in certain frequency 
bands is caused by an increase in the synchronization of 
neurons and/or the loudness of the signal, which is the 
hallmark of ERS. Table 1 illustrates both the Event-related 
synchronization and desynchronization of each of the two 
methods to Event-related synchronization and 
desynchronization.  
 
Table 1. A comparison of the two BCI methods currently in 

use 
 

 Synchronous 
BCIs 

Asynchronous 
BCIs 

Advantages 

Controlling user artifacts is 
simpler because the user can 

move or blink at 
predetermined time 

windows. 
A simpler design (the system 

anticipates when the user's 
instruction will be received) 

can be used at the 
user's discretion 

Disadvantages 

The system imposes 
commands; the user is 

unable to choose when to 
carry them out. 

prone to user-
generated artifacts 
(such as eye blinks 
and movements) 

computationally more 
difficult since it offers 
continuous real-time 

classification 
 
4.2.2 Visual evoked potential  

The visual-evoked potential (VEP), an element of the 
electroencephalogram that happens in reaction to visual input, 
is another form of ERF frequently utilized in BCI. Because  

VEPs depend on the user's ability to direct their gaze, 
consistent muscle control is necessary [49]. P300 is an ERP 
element that is triggered in the course of reaching a choice. 
The P300 is supposed to represent mechanisms involved in 
categorization or sensory assessment. The oddball paradigm, 
which combines high-probability non-target items with low-
probability target items, is typically used to elicit it [50]. The 
user is given a job that must be divided into both categories to 
be completed. A P300 component, or large positive wave, 
appears around 300 milliseconds after the event begins, and is 
produced when a rare event is exhibited [16].  
 
4.2.3 Slow cortical potential  

Changes in some dendrites' levels of depolarization result in 
changes in the sluggish cortical potential, of which this is a 
segment. Positive SCP denotes the elimination of 
synchronized potentials from the dendrites, whereas negative 
SCP relates to the total quantity of synchronized potentials. 
 
4.2.4 Neuronal potential 

A voltage spike produced by a single neuron is called a 
neuronal potential. The potential of a neuron or a group of 
neurons may be measured. The signal is a representation of the 
temporal pattern, correlation, and average rate of neural firing. 
Neurons in the cortical regions linked to the task's average 
firing rate can alter over time, which can be used to quantify 
learning [51].
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5. BCI SYSTEM 
 
Signal capture, information preprocessing, feature 

extraction, and classification are the components included in 
the majority of BCI models [33, 52, 53]. Electrodes positioned 
on the scalp's surface are used to acquire signals, and analog 
signals are collected through these electrodes [54] before 
being converted to digital form using analog-to-digital 
converters. The signals are then subjected to preprocessing, 
which involves eliminating noise from the electrical line, brain 
noise, and different artifacts caused by the use of muscles, 
such as those in the face and eyes, from the data [55]. Due to 
its effect on the effectiveness of the classification algorithms, 
feature extraction is one of the key processes. Some of the 
features that were acquired, such as mean, median, variance, 
maximum, and minimum, are in the time and frequency 
domains [56] using many strategies in signal processing like 
Common spatial patterning (CSP) [57-93], power spectral 
density (PSD) [70], wavelet transforms [67], and other for 
feature extraction approaches like utilizing statistical measures 
[23]. A vector comprising the EEG signals' most important 
properties is created during the feature extraction process. This 
vector serves as the data that categorization systems use as 
input. The next step is classification, which is carried out with 
the use of several different algorithms, such as ANN, D.T., 
SVM, KNN, and LDA [61]. Various scientific, engineering, 
and research sectors currently assess and employ BCIs to 
create applications that offer solutions to challenging issues. 
The three major processes for creating a BCI system are as 
follows [14, 48]. 

 

 
 

Figure 4. Components included in the majority of BCI 
models [40] 

 
As seen in Figure 4 the three steps are data manipulation in 

step three, signal processing in step two, and signal collection 
in step one.  

Step 1: Signal Gathering. The brain's electrical impulses 
must be captured via a signal acquisition procedure. The scalp, 
the brain's surface, or the activity of the neurons might all 
provide electrical signals that could be recorded. The capture 
signals must be amplified because their intensity is often 
modest. They must then be converted to digital form to be 
utilized by applications running on computers. 

Step 2: Processing of Signals. The signals that were 
acquired in Step 1 are examined in this phase to produce the 
control signals. Other suboperations that might be used for 
signal processing include the following: 

• Preprocessing 

In electroencephalogram (EEG) signal examination, 
preprocessing constitutes an indispensable phase intended to 
eliminate noise and extraneous artifacts from the raw signals, 
thereby augmenting the integrity of the information for further 
examination. EEG readings are intrinsically noisy due to 
interference from external sources such as electrical power 
lines, in addition to biological artifacts generated by muscular 
movements and ocular blinks [55]. 

Artifact Removal: Prevalent artifacts encompass ocular 
motion, muscular contractions, and electrical interference 
from external apparatuses. Methodologies Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA) are two examples of utilized for isolate and 
eradicate these undesirable components from the data. Ocular 
movement artifacts, for example, can be identified by their 
distinctive low-frequency oscillations, typically residing in the 
delta or theta frequency range. 

Filtering: Band-pass filters are employed to remove 
frequencies that lie outside the desired spectrum. For instance, 
EEG data often necessitate a high-pass filter to eliminate 
gradual drifts (e.g., below 0.5 Hz) and a low-pass filter to 
eradicate high-frequency noise (e.g., above 50 Hz). The 
determination of suitable cut-off frequencies is contingent 
upon the specific type of EEG signals under examination. A 
prevalent strategy involves the application of a band-pass filter 
to retain frequencies ranging from 0.5 to 50 Hz, as this 
spectrum typically encompasses the most pertinent cerebral 
activity for EEG investigations. 

Normalization: Subsequent to filtering, EEG data are 
frequently normalized to standardize the amplitude across 
disparate channels or subjects. This procedure aids in 
mitigating the variability engendered by disparities in scalp 
conductivity or electrode positioning. Z-score normalization 
or min-max scaling may be implemented to ensure that all 
channels contribute equivalently during ensuing processing 
phases. 

Epoching and Segmentation: Depending on the nature of the 
investigation, the continuous EEG signals may be partitioned 
into epochs, typically time-locked to particular events (e.g., 
stimuli or motor commands). These epochs facilitate a 
concentrated analysis of cerebral responses to specific tasks or 
stimuli, thereby enabling the extraction of features pertinent to 
Event-Related Potentials (ERPs) or other task-relevant neural 
dynamics. 

• Feature extraction 
Feature extraction distills the most relevant information 

from EEG signals, converting raw time-domain data into 
features for machine learning algorithms. Key methods 
include: 

Time-Domain Features: Basic statistics like mean, variance, 
skewness, and kurtosis capture the signal’s overall behavior. 
These features are useful for detecting significant changes in 
the EEG signals, such as those caused by motor imagery or 
task engagement. 

Frequency-Domain Features: Using techniques like Fast 
Fourier Transform (FFT) or Power Spectral Density (PSD), 
EEG signals are broken down into frequency bands (e.g., delta, 
theta, alpha, beta, gamma). The power in each band is 
extracted as a feature, commonly applied in tasks such as 
classifying mental states (e.g., alertness vs. relaxation) and 
motor imagery [56]. 

Instantaneous Frequency (IF): Unlike PSD, IF provides a 
time-varying representation of frequency content, enabling the 
detection of quick transitions between cognitive states. This 

1971



method is particularly useful in tasks that require continuous 
monitoring of brain activity, such as task switching. 

Spatial Features: Methods like Common Spatial Patterns 
(CSP) help improve class separability in multi-channel EEG 
data. CSP identifies spatial filters that maximize the variance 
between different classes [93, 94], such as left- and right-hand 
motor imagery, making it highly effective for classification 
tasks. 

Wavelet Transform: The wavelet transform allows for 
multi-resolution analysis of EEG signals [93], capturing both 
time and frequency domain information. This is particularly 
valuable for tasks involving non-stationary signals, such as 
seizure detection or cognitive workload monitoring. 

These feature extraction methods significantly enhance data 
quality, enabling more precise and effective analysis for brain-
computer interface (BCI) systems 

• Signal Translation algorithm classification 
The following process, known as the translation algorithm, 

transforms the signal properties that have been obtained into 
device commands and orders that achieve the user's objective. 
The classification algorithm may utilize linear or nonlinear 
approaches to categorize the signals based on their frequency 
and form. 

Step 3: Data Manipulation. The output is adjusted to fit the 
output platforms (like a computer screen). Once the signals 
have been classified. 

Applications. Today, where and how can we employ BCIs.  
1. Connection. One of the first uses of BCIs was yes/no 

communication, often known as yes/no communication. The 
"Right Justified Box" technique, which entailed employing 
motor imagery to select between two objectives, is a well-
known illustration of this [62]. 

2. Typing. The now-oldest BCI application and one of the 
ones that is currently most often utilized is typing. The 
"Farwell-Donchin Matrix" [63] is one of the methods that has 
garnered the most interest. To evaluate the P300 evoked 
response, a matrix of alphabetical letters and other symbols is 
flashed in a random sequence (Figure 5). 
 

 
 

Figure 5. A matrix of alphabetical letters and other symbols 
is flashed in a random sequence in the BCI application [5] 

 
3. Web surfing. Several research teams have proposed 

controlling the complete system instead of just the web 
browser. For example, Moore et al. [64] employed muscle 
imagery in "The Brain Browser" to choose the commands 
"next" and "previous". 

4. Manipulating. Applications that are used to directly 
influence real-world or virtual objects—such as propelling a 
wheelchair ahead or choosing an item in a video game—by 
changing their pace or sending commands to turn left—fall 
under this category. For instance, authentic robot piloting 
work. From the study by LaFleur et al. [65]. The following 
mental actions can be used to control an actual robot drone: 

raising it by visualizing the movement of both hands; lowering 
it by visualizing the movement of both feet; and so on. Another 
illustration is the control of a virtual dwelling. The study [66] 
Provided a method of operating a virtual apartment where the 
many options for orders and activities were displayed on a 
screen, the "Farwell-Donchin Matrix" was used, in which the 
borders of the pictures were flashed to elicit the P300 evoked 
response. 

5. Computers that help users. Computers with a personal 
touch. Shenoy and Tan [67] used this phrase in order to 
characterize systems that employ the outcomes of the implicit 
processing that humans already do in their decision-making 
(for instance, when a person notices a candle the brain 
instantly detects and classifies the candle only by passively 
perceiving it, even though it doesn't require any additional 
specific mental work connected to this job). Despite the 
current perception that machine learning techniques are fairly 
complex, the human brain is still superior at tasks like 
identifying the data in the environment. As a consequence, we 
can help the pattern recognition systems that are already in use 
recognize and categorize the pictures of other stimuli rapidly 
and effectively. 

6. Utilizations for creativity. Miranda et al. [68] presented a 
method that creates music using the EEG signals' prominent 
frequencies. The output of the currently identified dominant 
frequency has an impact on the music engine's output. 

7. Software that relates to health. There are several uses for 
BCIs since they were first suggested as a remedy for people 
with handicaps. Therapy for coma monitoring (cognitive 
function detection), Attention Deficit Hyperactivity Disorder 
(ADHD), rehabilitation and prosthetics, including stroke 
recovery treatments, and ADHD therapy are some of the uses. 

8. Applications for cognitive state monitoring. Apps for 
keeping an eye on cognitive health. Examples include any 
potentially life-or-death activities that demand a high degree 
of human focus, such as air traffic control, as well as 
applications for improving user experience, such as altering 
the layout of a webpage if the system thinks that the user is 
overworked. The music and light switches in the apartment 
may serve as an illustration of a person's physical environment. 

They are perceived as being tired. The following five 
examples: 

A. Using the reading engagement app from the study [72] a 
movie connected to the current text to draw the user's attention 
to what he or she is reading when the user becomes bored with 
the content (as judged by a BCI). 

B. Afergan et al. [73] identified intervals of boredom or 
overload so that the work may be adjusted to the user as needed. 
Participants in the experiment had to arrange the flight paths 
for several unmanned aerial vehicles (UAVs) in a simulation. 
The scientists observed that by varying the task's complexity 
based on the participants' mental states and adding or 
subtracting UAVs, it was possible to reduce errors by 35%. 

C. Alerting mechanisms. The Phylter system by Afergan 
[74] employed the user's cognitive state and the information 
that was supplied by the user to decide whether or not to 
deliver the notification message based on the message's stated 
priority and prediction about the user's incorruptibility. 

D. Practice of meditation. Eskandari and Erfanian [75] 
suggested conducting research with two groups of subjects: 
one practicing meditation and the other serving as the control 
group. The patients who were meditating displayed an ERD of 
beta rhythm while they were at rest. The control group did not 
have this ERD. 
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Table 2. Outlines methods and computations for creating dependable EEG-driven brain-computer interfaces for multiple uses 
 

Ref. No. of 
Participate 

EEG Signal 
Related 

Information 
(Device 

Platform) 

No. of 
Electrodes 

BCI 
Control 

Paradigm 

No. of  
Classes 

Application 
Contents Used Dataset Methods for 

EEG Features  

Classification 
Algorithms and 

Results 

[33] 

30 
randomly 
selected 
subjects 

BCI2000 system, 
LabVIEW 2015: 

Biomedical 
toolkit and signal 

express 

64 
electrodes 

motor 
Imaginary 

Four classes 
and a rest 

class 

Identification of 
Motor 

Movements as 
a left fist, 

right fist, fist, 
feet and 
relaxing 

Nervous 
system 

disorders 
laboratory and 

is publicly 
available on 
Physio net 

Amplitude, 
frequency, 
phase, and 
statistical 

measures like 
mean, variance, 

and kurtosis 

The Medium-ANN 
model gave the highest 
average score of 0.9998 

[77] 10 Biosemi / 
OpenViBE 

32 
electrodes P300 

Thirty-six 
tourism 

destinations 
are chosen 
and divided 

into six 
continents 

Virtual world 
tour 

MOHW-
designated 

Public 
Institutional 

bioethics 
committee 

Significant 
features by a 
least square 

method 

stepwise linear 
discriminant analysis 
average accuracy was 

96.6% 

[78] 109 
PhysioBank and 
PhysioToolkit 

software 

64 
electrodes 

motor 
imagery 

Two classes 
and a rest 

class 

Left, right-hand 
movement and 

rest 

Research 
resource for 

complex 
physiologic 

signals: 
Physio net 

Significant by 
spectrograms 

features  

CNN-based model: 93% 
accuracy 

[79] 9 

Ag/Ag Cl 
electrodes (from 
the dataset from 

the source) 

22 
electrodes 

motor 
imageries Two classes Left and right 

hand 

BCI 
competition 
IV held in 
2008 by 
GRAZ 

University of 
Technology in 

Austria 

Wavelet domain 
features 

Support Vector Machine 
(SVM) 

maximum accuracy of 
80% and average 

accuracy of 76.24% 

[80] 10 

Brain Product 
GmbH, 

Ag/Ag Cl 
electrodes 

20 
(compare 

with 
another 

signal type 
(EMG)) 

motor 
imagery 

3 and rest 
class 

Grasp actions 
(Cylindrical 

(Cup) Spherical 
(Ball) 

Lateral (Card) 

EEG data 
were collected 

at Korea 
University 

Common 
Spatial Pattern 
(CSP) features 

Linear discriminant 
analysis (LDA) 

63.89_7.54% for 
actual movement and 

46.96_15.30% for motor 
imagery 

[81] 9 

Brain 
Vision/Recorder 

Brain Product 
GmbH, Germany 

with active 
Ag/AgCl 
electrodes 

64 
electrodes 

visual 
imagery Six-class 

Reflecting the 
user intention 

from the visual 
scene 

(‘ambulance’, 
‘clock’, ‘light’, 
‘toilet’, ‘TV’, 

and 
‘water’). 

Data were 
collected by 
authors with 
approval by 

the 
Institutional 
review board 

at Korea 
University. 

Common spatial 
pattern (CSP) 

features 

24.2 % for regularized 
linear discriminant 
analysis (RLDA) 

[82] 18 
g.tec medical 
engineering 

GmbH, Austria 
8 electrodes P300 Two classes 

Robotic hand 
for motor 

rehabilitation. 

datasets 
generated and 
analyzed for 

this study 

Common spatial 
pattern (CSP) 

features 

78.7 (target), 85.7 for 
the linear discriminant 

analysis regularized 
version (RLDA)) 

[83] 26 
2 g.tec USBAmp 

amplifiers, 
OpenViBE 

36 
electrodes 

visual 
imagery 

Two classes 
and a rest 

class 

Two pre-
established 
pictures (a 

hammer or a 
flower) 

Datasets was 
generated 
during the 

study 

Common spatial 
pattern (CSP) 

features 

71% for visual imagery 
vs. visual observation 

task 
61% for one observation 

cue versus another 
observation cue 

77% for resting vs. 
observation/imagery, for 

Spectrally Weighted 
Common Spatial 

Patterns (SpecCSP) 

[84] 1 

Brain Products 
GmbH, Gilching, 

Germany, dry 
electrode 

32 
electrodes 

visual 
imagery 

Two classes 
on for three-

class 

Discriminate 
between visual 
imagery of a 

face, scene, or 
resting state 

Data were 
collected by 
other authors 

Power spectrum 
features 

binary classification 
accuracy 

(59.9%, p < 0.05) for 
linear SVM 
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[92] 10 
Neuracle, China/ 
Psychophysics 

Toolbox 
9 electrodes SSVEP Four classes Robotic arm 

control 

study datasets 
were 

approved 
by the 

Research 
Ethics 

Committee of 
the Chinese 
Academy of 

Medical 
Sciences 

Spectrum and 
signal-to-noise 

ratio (SNR) 
features 

97.75% For FBCCA 

[85] 6 

BrainProducts 
GmbH, 

Germany, 
Ag/AgCl 
electrodes 

64 
electrodes 

visual 
imagery Four classes  

Control the 
swarm drone 

flight as 
‘Hovering’, 
‘Splitting’, 

‘Dispersing’, 
and 

‘Aggregating’ 

According to 
the Helsinki 
Declaration, 

data were 
gathered by 

study authors 
at The Korean 

University 

Common spatial 
pattern (CSP) 

features 

was 83% is the highest 
accuracy for Linear 

Discriminant analysis 
(LDA) 

[86] 7 

BrainProduct 
GmbH, 

Germany, 
Ag/AgCl 
electrodes 

64 
electrodes 

imagined 
speech and 

visual 
imagery 

Twelve –
classes and 
rest class 

Decoding of 
user intention 
from imagined 

speech 
and visual 

imagery for 
Twelve 

words/phrases 
(ambulance, 
clock, hello, 

help me, light, 
pain, stop, 
thank you, 
toilet, TV, 

water, and yes) 

According to 
the Helsinki 
Declaration, 

data were 
gathered by 

study authors 
at The Korean 

University 

Statistical 
analysis features 

34.2 % for thirteen-class 
classification accuracy 
(imagined speech) for 
Random Forest (RF). 

and 26.7 % for thirteen-
class classification 
accuracy (visual 

Imagery) for Random 
Forest (RF) 

[87] 32 An Emotiv 
EPOC headset 

14 
electrodes 

motor 
imagery Two-class  

Envisioning 
body 

kinematics 
(IBK) to 

provide cursor 
movement that 

is natural 

University of 
Tennessee 

dataset 

Mean values of 
power spectral 
density across 

the Theta, 
Alpha, Beta, 
and Gamma 

frequency bands 

80% for A Random 
Forest Classifier 

[88] 38 

Brainvision 
actiCHamp 
amplifier 

EASYCAP 

64 
electrodes 

perception 
and visual 
imagery 

Twelve class 

Classification 
of Perception 

and visual 
imagination the 

number of 
objects 

: Apple, Car, 
Carrot, 

Chicken, Hand, 
Eye, Sheep, 

Butterfly, Rose, 
Ear, Chair, and 

Violin 

OSFHOME Spatial features 

93% accuracy for visual 
perception versus 

Rest, and 28% for all the 
12 visual perception 

classes 

[89] 4 ___ 128 
electrodes 

perception 
and an 

imagination 
task, 

40-class 

Distinguish real 
images and 
classify the 

image category 

ImageNet 
dataset 

Entropy loss 
and mean 

squared error 

96% best classification 
accuracy by “Mix”. 

generative adversarial 
network (GAN) 

[93] 2 

Brain Amp MR 
plus amplifiers 
and Ag/AgCl 

electrode 

59 
electrodes 

motor 
imagery Two classes 

Classification 
of left- and 
right-hand 
imagery 

movement 

BCI 
Competition 
IV dataset 

Wavelet packet 
decomposition 
and grey wolf 

algorithm 

92.86% for subjects “a" 
and 91.53% for subjects 

“b" 

[91] 21  

BioSemi 
ActiveTwo 

system using 
damp electrodes 

of Ag/AgCl 

32 
electrodes 

perception 
and visual 
imagery 

Three 
classes 

Classification 
of object, digit, 

and shape 
classes 

The data are 
collected in 

the School of 
Electrical 

Engineering 
and Computer 

Science, 
Korea 

Time series, 
time–frequency 
maps, and CSP 

format  

63.62% for visual 
perception and 

71.38% accuracy in 
visual imagery for Multi 

Rocket network 
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E. BCIs as a means of gaining access to UX. Frey et al. [76] 
suggested using EEG-based BCIs to access users' mental effort, 
attentiveness, and identification of interface failures as an 
evaluation tool during HCI trials.  

These examples show the wide range of BCI-using systems: 
the various applications, such as controlling a drone in a 
physical environment or altering the interface to accommodate 
the users' level of workload the many ways to influence the 
system (imagining a movement vs abstaining from executing 
a specific action); the various BCI platforms (actual robots 
versus virtual surroundings); and the numerous ways to 
exercise. Table 2 shows many details with some research done 
by researchers in the different applications created since 2018 
and later years. These studies delve into topics like the type of 
data used, the specifications of the devices used to capture 
electrical signals for control purposes, the number of 
electrodes used, the number of participants in data generation 
necessary for advanced BCI applications, techniques for 
obtaining EEG features, and the most effective accuracy 
achievement levels in the aforementioned applications. 
 
 
6. DISSECTION 

 
Significant progress in EEG signal processing techniques 

was shown in this study, especially with the use of CSP for 
feature extraction and LDA for classification. Higher 
classification accuracy and quicker system reactions were the 
results of these advancements, which set the stage for more 
dependable and useful BCI applications. 

This study's improved real-time response time and 
classification accuracy can directly improve BCI-driven 
assistive technologies, like communication devices for people 
with locked-in syndrome. Users can interact more confidently 
and efficiently with their environment by lowering error rates 
and increasing signal clarity. BCIs that have been refined 
using the techniques described in this work have the potential 
to be extremely important rehabilitation technologies, 
especially for stroke recovery. BCIs can enhance motor 
function and promote neuroplasticity by giving patients 
control over external devices like robotic limbs or virtual 
rehabilitation exercises through controlled motor imagery 
tasks. This study shows that training time reductions can 
improve BCI systems' usability and make them more 
accessible to non-expert users. This could have a big effect on 
how widely used BCI technologies are in clinical and home 
environments, where usability is crucial. 

This study's exploration of BCI signal processing advances 
paves the way for cross-functional applications like virtual 
reality experiences and smart home control systems. Users 
may obtain smooth control over their surroundings by 
combining EEG-based BCIs with gyroscopes or eye tracking 
devices, enabling them to do everything from web browsing to 
home automation. 

Even though the current study's results are encouraging, 
more research should concentrate on extending the use of EEG 
data to more difficult motor imaging techniques to strengthen 
the resilience of BCIs in practical settings. Furthermore, 
adding cloud-based signal processing could lower latency 
even more and boost BCI systems' responsiveness. 

In the end, this study's findings aid in the continued 
development of interactions between the brain and computer 
as useful instruments to enhance the freedom and standard of 
living for people with neurological disorders or motor 

impairments. As these technologies continue to evolve, their 
potential applications in assistive devices, rehabilitation, and 
daily interaction systems will only expand. 

Here are some suggestions into cutting-edge areas of BCI 
technology: 
• Hybrid BCI Systems: These combine EEG with other 

signals like EMG and eye-tracking to improve accuracy and 
functionality, particularly in applications such as wheelchair 
control. 
• AI-Powered Adaptive BCIs: Incorporating machine 

learning allows BCIs to adapt to individual users' cognitive 
and physiological changes over time, enhancing 
personalization and effectiveness, especially for long-term 
users like ALS patients. 
• BCI for Cognitive State Monitoring and Mental Health: 

BCIs can be used to monitor mental health and cognitive 
workload, detecting issues like stress or cognitive decline in 
real-time and providing feedback to help users manage their 
emotional states. 
• Cloud-Based BCI Processing: This approach offloads 

complex processing to the cloud, making BCI devices lighter 
and more portable, thereby increasing accessibility and 
maintaining performance in real-time application.  

 
 

7. CONCLUSIONS 
 
In particular, for people with disabilities, Brain-Computer 

Interface (BCI) technology continues to hold great promise for 
facilitating communication between the brain and external 
devices. By enhancing signal processing methods like Linear 
Discriminant Analysis (LDA) and Common Spatial Patterns 
(CSP), this work has improved EEG-based BCIs in terms of 
responsiveness and classification accuracy. These 
developments pave the way for more useful and dependable 
BCI applications, especially in assistive technologies like 
mobility aids and communication aids. 

Although the results show promise, issues like signal 
fluctuation and inter-user variability still exist. By addressing 
these issues and customizing BCIs for each user, adaptive 
learning models may greatly enhance practical application and 
usability. Furthermore, combining EEG with other 
physiological measurements, such as eye tracking or EMG, 
may result in hybrid BCI systems that enhance precision and 
functionality. 

Future-oriented, cloud-based processing integrated into BCI 
architectures could lead to lighter, more portable devices; 
additionally, AI-driven adaptive BCIs could improve efficacy 
and personalization even more. Furthermore, by offering real-
time feedback and fatigue or stress intervention, interfaces 
between brains and computers (BCIs) may proliferate in 
prevalent in monitoring cognitive states and mental health.  

In summary, although this study's advances move us closer 
to real-world BCI systems, there is still much room for future 
research to overcome existing constraints and broaden the 
scope of use. As BCI technology develops further, it will 
surely help people with disabilities live better lives and 
provide creative solutions in both every day and clinical 
settings. 
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