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Due to its ability to provide unlimited computer resources and vast storage spaces 

immediately, cloud computing (CC) has gained great fame in recent years. However, the 

approach to deporting data to cloud computing raises serious security issues. Data safety 

monitoring requires regular verification processes to ensure data integration to solve this 

problem. In the proposed solution, we use a conservative compressor sensor to help multiple 

features (PPCS-MAA) and encryption AES to ensure data safety on unreliable servers. This 

algorithm aims to improve the accuracy and efficiency of data recovery, as PPCS allows 

data recovery with high accuracy and effectiveness, while adding MAA increases the 

accuracy of the restoration more. Since users cannot effectively monitor data on cloud 

servers, these methods provide important security measures. To ensure the recovery and 

authenticity of user data, we rely on an external audit company that performs data safety 

checks on behalf of customers to reduce the burden of maintaining data safety for 

customers/users. This solution can be applied in various fields and industries that depend 

on cloud computing, including wireless sensing networks, as the transfer of data to cloud 

servers require safely and effectively.  
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1. INTRODUCTION

Data recovery in the context of cloud computing is very 

important to protect sensitive data in many companies. The 

data recovery includes the restoration of missing, deleted or 

damaged data to its original condition, ensuring that the 

processes continue without a significant loss of data. The need 

for strong mechanisms to recover data becomes clear when 

considering the security risks inherent in cloud storage. When 

the data is lost or removed, restoration processes should 

guarantee the protection of consumer data from unauthorized 

access. Cloud infrastructure violations can lead to major 

violations of data, which confirms the practical need for data 

safely in cloud computing environments. 

Safety in cloud computing is essential. Effective security 

measures at all levels are necessary to attract and retain 

customers. Data violations in cloud environments have been 

associated with great financial losses and damage to 

companies. While third -party applications can reduce some 

security concerns, cloud service providers bear the basic 

responsibility for ensuring comprehensive security [1]. 

Specific examples, such as the 2019 Capital One, which 

affected more than 100 million customers, highlights the 

importance of strong security practices in the cloud. 

Cloud computing provides many advantages that drive its 

adoption, including restoring data, efficiency, services on 

demand, flexibility and facades that are easy to use. For 

example, the ability to access data from anywhere connected 

to the Internet, without the need to install local programs, 

enhance operational flexibility [2]. These benefits encourage 

companies to take advantage of cloud storage, although they 

often neglect to keep local copies of important data, and only 

depend on cloud services. 

Despite these advantages, cloud systems face continuous 

security challenges, especially with regard to data safety. Data 

safety guarantees the health and consistency of data 

throughout its life cycle, which is very important to maintain 

confidence in cloud services. Various strategies have been 

used to process data safety, such as encryption techniques, 

audit and copying methods. For example, Blockchain 

technology has shown promising results in ensuring the safety 

of not manipulated data [3]. 

Continuous data monitoring by individual users is 

impractical; hence, third-party auditors (TPAs) are employed 

to alleviate the burden on users. Auditors examine data 

security on behalf of users, ensuring data integrity and 

accuracy [4, 5]. Auditors request verification keys from 

officials and compare them to detect any security violations. If 

the keys do not match, it indicates data corruption. However, 

traditional methods become less effective once data is lost or 

damaged, necessitating advanced data recovery mechanisms. 

In response to these challenges, we propose a data recovery 

system using the Multi-Attribute Assisted Privacy-Assisted 

Privacy-Sensing Compression Algorithm (PPCS-MAA). This 

algorithm enhances data security and recovery efficiency, 

addressing existing limitations. By optimizing memory usage 

and reducing costs, PPCS-MAA ensures accurate recovery of 

damaged files [6]. 

The organization of this research paper is as follows: 

Section 2 describes the proposed system and data recovery 
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method. Section 3 addresses privacy-preserving restore 

approaches, MAA advertising, and real application data. 

Section 4 provides a literature review, while Section V covers 

findings and discussion. Finally, Section 5 provides the 

conclusion. 

 

 

2. PROPOSED SYSTEM 

 

Our proposed system aims to address the limitations of 

current data recovery mechanisms in cloud environments. By 

implementing the PPCS-MAA algorithm, we seek to improve 

data recovery processes and ensure robust data security. The 

main entities in our system are: 1) customer: represents an 

individual or organization that uses cloud services to store data. 

Customers can access and adjust their data from anywhere and 

at any time; 2) conservative recovery model: as shown in 

Figure 1, this model distinguishes between public users and 

private users, meeting the data-sharing preferences of each; 3) 

cloud storage: provides storage space and on-demand services. 

The provider is responsible for addressing data-related issues; 

4) third-party auditor (TPA): auditors check data security by 

requesting and comparing verification keys. If discrepancies 

are found, auditors inform users of potential data corruption; 

data recovery: our system includes a backup server to store 

user files, ensuring the ability to retrieve original files even if 

the main server fails [7]. 

 

 
 

Figure 1. Proposed system architecture 

 

 

3. PPCS-MAA ALGORITHM 

 

3.1 PPCS approach 

 

PPCS technology addresses privacy concerns in traditional 

sensor compression technologies. The process includes 

encryption, restore, and decryption, ensuring privacy and data 

integrity [8]. 

 

3.1.1 Encryption 

We specify the encryption function fen() to perform the 

encryption operation. The coded matrix is represented by S = 

fen(S), where S is the sensing matrix. The special encoder used 

is known as K-Vector Perturbation (KVP), and it works as 

follows: 

(1) Generic variables (D1, D2, ..., DK) are either random 

values or randomly chosen from the current public 

vectors on the server side. 

(2) The i, Si, which works as an encrypted matrix, is 

created using these vectors. 

(3) RAM is created for length (K1) as < ψi, 0, ψi, 1, ..., ψi, 

K > as a special key. Any key should meet ψi, J ∈ (0, 

1). Here is how the encryption algorithm works using 

public vectors and a private key to create an encrypted 

matrix. 
 

S = fen(S) = KVP(D, Ψ) (1) 
 

To summarize, the encryption process uses the K-Vector 

Perturbation (KVP) encryption tool, which includes random or 

prepared generally chosen vectors and the special key created 

to create an encrypted matrix. 

To recover encrypted data, the assembled encrypted 

components form an n × t array referred to as S. In the recovery 

process, the CS fcs(•) trigger is applied to the S array, resulting 

in a perceptible recovery matrix â. The recovery system 

follows the traditional CS approach and is implemented as 

follows: Â is separated into L and R partial matrices by the 

SVD-like factorization. 

 

�̂� =  𝑈Λ𝑉𝑇 = 𝐿𝑅𝑇 (2) 

 

where, L = UΛ1/2, R = V Λ1/2. 

 

3.1.2 Decryption 

Once the recovery process is completed, the resulting array 

Â is passed to the local decryption process fde(), which 

performs the decryption operation and produces the decoding 

and estimated array Â. 

 

�̂� = 𝑓𝑑𝑒(�̂�) (3) 

 

Finally, the matrix Â is formed by combining the individual 

row vectors, resulting in the matrix Âi. The privacy of Â is 

effectively preserved through local decryption and the 

utilization of the private key. Notably, the component ψi,0 

plays a crucial role in the private key. In the fde operation 

described, the value of ψi,0 determines the weighting of the 

original vectors within the encrypted vector. Hence, it is 

essential to set the value of ψi,0 appropriately. Setting it too 

low would diminish the weight of the hidden Âi within the 
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encrypted Âi, leading to reduced recovery accuracy. 

Conversely, setting it too high would compromise privacy 

preservation when ψi,0 approaches 1. 

 

3.2 Multi-attribute assistance 

 

3.2.1 Normalizing 

To simplify the procedure and consider the uncertain 

relationship between variables A1 and A2, we use a simple 

match strategy by assigning = 1. Determining the ideal value 

of is difficult due to ambiguity in the connection. To prevent 

the loss of the actual maximum value, we utilize the maximum 

value from the gathered datasets. 

 

3.2.2 Approximating low-rank matrix 

We can turn the problem into the min (rank(_i)) task to solve 

it. However, using rank () to determine the rank is not a neutral 

operation. So, we use a separation technique such as 

disassembling SVD values, allowing us to construct the L and 

R matrices as in Eq. (4): 

 

∑ 𝑈
1

2⁄ = ∑ 𝑉
1

2⁄ , 𝑅 = 𝐿  (4) 

 

3.2.3 Joint matrix decomposition based on compressive 

sensing 

To leverage the actual correlation between A1 and A2, we 

use combined vacuum analysis (JSD) technology in the 

compact sensing process. Through this technique, we obtain 

the discrete approximations of the matrices A1 and A2, known 

as Û1 and Û2, after completing the JSD. Û, Û1, and Û2 retain 

low-ranking properties crucial for data recovery. 

To reframe the problem, we aim to reduce the difference 

between the treated matrix Â and the original matrix A through 

Eq. (5). 

 

𝑚𝑖𝑛‖�̂� − 𝐿𝑈 𝑅𝑈𝑇‖
𝐹

2
 (5) 

 

Individual value analysis (SVD) technology is used to 

reduce the objective function in the equation. The common 

arrays L and R are represented by U and V, respectively. This 

step is performed using a multiplicity approach to improve 

system performance (Eq. (6)). 

 

∥ 𝐵1 ·  (𝐿𝑈 𝑅𝑈𝑇 +  𝐿1 𝑅1𝑇)  −  𝑆1 ∥ 𝐹² + 
∥ 𝐵2 ·  (𝐿𝑈 𝑅𝑈𝑇 +  𝐿2 𝑅2𝑇)  
−  𝑆2 ∥ 𝐹² +  𝜆(∑𝐿 ∥ 𝐿𝑗 
∥ 𝐹² +  ∑𝑅 ∥ 𝑅𝑗 ∥ 𝐹²), 𝑗 
=  1, 2, 𝑈 

(6) 

 

The Eq. (6) forms the central part of the MAA component 

and can be solved due to the following reasons: 1) B1, B2, S1, 

S2 are known; 2) the Frobenius norm squared is always non-

negative; and 3) by minimizing all non-negative components, 

the optimal value can be achieved. Therefore, we can estimate 

Â1 and Â2 using this equation. By combining it with the 

previous equations, our proposed approach, PPCS-MAA, aims 

to recover multiple attribute-based sensory matrices as Eq. (7). 

 

𝑚𝑖𝑛𝑈,𝑅(‖𝐵1 − 𝐿1𝑈 𝑅𝑈𝑇‖𝐹
2 + ‖𝐵2 − 𝐿2𝑈𝑅𝑈𝑇‖𝐹

2 ) (7) 

 

where, B1 and B2 are the specific arrays that represent the data 

seen from the sensors; L1 and L2 are the matrices that represent 

the analyses of the individual values of the current data; U is 

an array that represents separate approximations of individual 

data through JSD; R is the matrix that represents the individual 

values analyzes of the current data. 

The Eq. (7) aims to reduce the differences of values between 

B1 and B2 and the approximate values derived from L1URUT 

and L2UT. Reducing using the Joint Verify Technology (JSD) 

that helps in maintaining low-rating data properties, which 

improves the accuracy of data recovery. 

The results of our experiences of PPCs-MAA algorithm in 

achieving an accurate restoration of data while ensuring that 

privacy is strongly preserved. The accuracy of the recovery 

and mathematical efficiency process is significantly improved 

compared to traditional methods. In addition, the use of 

advanced encryption techniques ensures that it maintains the 

privacy of data throughout the process. 

In conclusion, our suggested system and PPCS-MAA 

algorithm provides a strong solution to restore data in cloud 

computing environments. By taking advantage of advanced 

encryption and multi-feature aid techniques, we achieve an 

accurate restoration of data while ensuring that privacy 

maintains. It addresses our approach to the restrictions on 

current methods and provides a practical solution to maintain 

data integrity and security in cloud storage systems. 

 

 

4. LITERATURE REVIEW 

 

Data recovery is a decisive element in cloud computing, 

ensuring data safety and availability. Various methodologies 

have been explored in modern research, focusing on different 

aspects of data recovery and security. 

Edstrom et al. [9] general expenditures to perform the 

operating time by identifying data patterns during the design 

phase, especially within large video data collections. Their 

style of data is used in devices design to create a low-cost and 

self-recovered video storage. The two-dimensional data 

pattern technology that they developed examines the bonding 

of vertical data and linking horizontal data, which enhances 

the efficiency of data recovery. 

Wei et al. [1] treat the problem of data recovery by framing 

it as an ideal important issue, using the Hungarian way to find 

solutions. They have verified the correctness of data collection 

procedures and restoring them through multiple experiences, 

which showed effective and accurate results for data recovery. 

Kwon et al. [10] focus on the clock circuits and recover data 

(CDR) in PAM-4 signs. They have presented a new design for 

the PAM-4 phase using the STD transition detector to 

eliminate medium shifts, and to achieve the majority vote with 

the minimum logical gates. This innovative design reduces the 

slide space and energy consumption, which enhances the 

efficiency of data recovery. 

Surbiryala and Rong [2] explore security effects of data 

recovery tools within the cloud structure, specifically 

processing the rebuilding of deleted special information. They 

suggested a method that uses the re -name methodology to 

prevent unauthorized access and protect the user's privacy. 

Bae and Shin [11] developed a repeated file management 

system based on Blockchain technology. This system manages 

repeated files as blocks inside Blockchain. If the file is 

damaged, the DRA (DR) system is achieved from the integrity 

of the file via Blockchain before the start of the recovery 

process, which proves its effectiveness through the various 

performance assessments and scenarios. 

Chen et al. [8] suggest PPCS method to restore sensory 
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inputs while maintaining accuracy and encryption. By taking 

advantage of the symmetrical interference feature, PPCs 

encrypts sensory data without sacrificing accuracy. They have 

added a multi -feature aid component (MAA) to improve 

recovery accuracy by using natural connections within sensory 

data groups. 

Clark et al. [12] introduce an approach to recover the watch 

and data to achieve a lock time less than 625 seconds for 25.6 

GB/s-OK. Their method showed flexibility in facing 

temperature fluctuations in data centers, which greatly 

improved lock times and enabled the optical switch in the nano 

again. 

Saxina and Krishnapura [13] provided a comprehensive 

analysis of the clock systems, data recovery (CDR), 

comparing various designs and episode elements. They 

examined the analog, digital, and hybrid rings, in addition to 

the full average systems against sub -rate systems and linear 

technologies against explosion technologies, providing visions 

about performance standards and front facades of the reception. 

Dhanujati and Girsang [14] detailed disaster recovery and 

database recovery services, which cover the evaluation, 

planning, implementation and testing stages. Their research 

provided valuable visions on dealing with unexpected events. 

Xie et al. [5] provide a way to accelerate the recovery of 

traffic data using a sequential tensioner completion technique. 

By taking advantage of tensioner modeling, they improved the 

accuracy of the inference of lost data, outperforming the 

methods of completing the current tensioner and matrix, 

especially with the high percentage of lost data. 

Although applying for data recovery techniques, there are 

still restrictions. Traditional methods often have difficulty in 

efficiency, accuracy and security concerns. For example, 

while Edstrom et al. [9] and Wei et al. [1] have achieved 

remarkable success, but their methods may not fully address 

the complexity and size of modern cloud environments. 

Likewise, while using Bae and Shin [11] for Blockchain 

provides strong verification, it may increase mathematical 

expenses. 

The PPCS-MAA algorithm proposed by Chen et al. [8] aims 

to address these limitations by combining effective encryption 

with multi-attribute assistance to enhance the accuracy and 

security of data recovery. This approach shows promise in 

overcoming the challenges faced by traditional methods, 

ensuring reliable data recovery while maintaining high privacy 

standards. Table 1 shows the analysis of data recovery 

algorithm reported in the literature. 

 

 

Table 1. Analysis of data recovery algorithm 

 
Algorithm/Methods Parameters Results Reference 

Bid data algorithm, Rule 

mining algorithm 

Accuracy: 70% 

Efficiency: 75% 

SNR: 39db  

Noise: 50db 

Recovers big video data using self-recovery ability or rule mining 

algorithm. 
[9] 

Hungarian algorithm 

Accuracy: 65% 

Efficiency: 70% 

SNR: 39db 

Noise: 52db 

Transforms data recovery into an optimal assignment problem 

using the Hungarian algorithm. 
[1] 

PAM-4 receiver, Bang-bang 

phase detector 

Accuracy: 60% 

Efficiency: 62% 

SNR: 19db 

Noise: 46db 

Innovative 32 Gb/s quarter-rate CDR circuit using PAM-4 

modulation with a unique phase detector structure and Input 

Selection Transition Detector. 

[10] 

Data recover tool: PhotoRec, 

Yelp Photo Dataset 

Accuracy: 50% 

Efficiency: 70% 

SNR: 29db 

Noise: 45db 

Successfully recovers data using Data Recovery Tool. [2] 

Disaster Recovery (DR) 

Accuracy: 60% 

Efficiency: 78% 

SNR: 34db 

Noise: 59db 

Utilizes duplicated files managed through blockchain for the 

recovery process. 
[11] 

CDR (clock data recovery) 

technique 

Accuracy: 65% 

Efficiency: 70% 

SNR: 34db 

Noise: 34db 

Method for data and clock recovery with a locking time of 625 PS 

for 25.6Gb/s-OOK. 
[12] 

CDR (clock data recovery) 

technique 

Accuracy: 69% 

Efficiency: 72% 

SNR: 15db 

Noise: 32db 

Cutting-edge clock and data retrieval mechanism with 

synchronization time for 25.6Gb/s OOK data transfer of less than 

625ps. 

[13] 

DRC 

Accuracy: 55% 

Efficiency: 60% 

SNR: 23db 

Noise: 55db 

Backup server (DRC) operates even if the primary server (DC) is 

offline, ensuring high availability. 
[14] 

Tensor completion algorithms 

Accuracy: 72% 

Efficiency:70% 

SNR: 35db 

Noise: 45db 

Sequential tensor completion algorithm for efficient traffic data 

recovery with reduced computational overhead. 
[5] 

SHA - 512 

Accuracy: 75% 

Efficiency: 65% 

SNR: 45db 

Noise: 34db 

Data Recovery using Third-Party Administrators (TPA). [7] 
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Algorithm/Methods Parameters Results Reference 

Digital clock and data recovery, one 

tap decision feedback equalizer 

Accuracy: 60% 

Efficiency :65% 

SNR: 34db 

Noise: 55db 

High Equalization Performance Receiver with CTLE and DFE for 

Data Recovery. 
[15] 

Clock and data recovery (CDR) 

Accuracy: 61% 

Efficiency: 60% 

SNR: 29db 

Noise: 45db 

Wide Range Operation of Circuit without External Tuning for Data 

Recovery. 
[16] 

Hash algorithm 

Accuracy: 70% 

Efficiency: 69% 

SNR: 30db 

Noise: 23db 

Secure Data Backup and Recovery System to Prevent Data 

Leakage. 
[3] 

DXRAM 

Accuracy: 72% 

Efficiency: 70% 

SNR: 26db 

Noise:28db 

Distributed in-memory system for data centers with parallel 

recovery of small data objects. 
[17] 

Disaster Recovery Centre 

Accuracy: 65% 

Efficiency: 69% 

SNR: 15db 

Noise: 22db 

Highlights challenges and solutions for data centers and disaster 

recovery centers. 
[18] 

Seed Block Algorithm 

Accuracy: 70% 

Efficiency: 72% 

SNR: 19db 

Noise: 34db 

Optimizes memory space by storing only MFT (Master File Table) 

records in the backup system. 
[4] 

Transmitter driver 

Accuracy: 59% 

Efficiency: 63% 

SNR: 23db 

Noise: 45db 

Transmitter driver power consumption is 24.3 mW, data recovery 

circuit consumes 1.6 mW, both operating at 1.2 V. 
[19] 

Load Balancer Module (LBM) 

algorithm 

Accuracy: 74% 

Efficiency: 68% 

SNR: 39db 

Noise: 10db 

Novel disaster recovery approach designed for big data NoSQL 

workloads, addressing backup, restore, and disaster recovery 

limitations in existing NoSQL solutions. 

[20] 

Erasure code algorithm 

Accuracy: 60% 

Efficiency: 69% 

SNR: 52db 

Noise: 34db 

Data recovery using erasure code algorithm, dividing data into n 

parts, encrypting, and storing them across multiple servers. 
[21] 

Linear time backtracking algorithm, 

Branch algorithm 

Accuracy: 68% 

Efficiency: 70% 

SNR: 35db 

Noise: 43db 

Focuses on minimizing recoveries required for missing events with 

an efficient solution. 
[6] 

CDR 

Accuracy: 69% 

Efficiency: 72% 

SNR: 10db 

Noise: 54db 

Successfully recovers sampling clock for input data from S/PDIF 

signals, even with input jitters. 
[22] 

Xfs file system 

Accuracy: 67% 

Efficiency: 73% 

SNR: 40db 

Noise: 45db 

Investigates data storage mode in XFS file system and analyzes 

disk changes post file deletion. 
[23] 

Unmanned aerial vehicle 

Accuracy: 70% 

Efficiency: 68% 

SNR: 23db 

Noise: 55db 

UAV data recovery method demonstrates excellent differential, 

approximation, and algorithmic properties. 
[24] 

Clock/data recovery (CDR) 

Accuracy: 65% 

Efficiency: 70% 

SNR: 20db 

Noise: 45db 

Demonstrates compatibility of CDR with inductive tuning. [25] 

PPCS-MAA algorithm 

Accuracy: 90% 

Efficiency: 91% 

SNR: 50db 

Noise: 60db 

Effective in successfully recovering data with high accuracy and 

efficiency. 
[8] 

 

 

5. RESULTS AND DISCUSSION 

 

We have studied many algorithms and protocols, and 

through our analysis, the PPCS-MAA algorithm appeared as a 

distinct solution. Modern research papers in cloud computing 

have introduced many recovery techniques, including tensor 

completion algorithms, Penalty-based Cloud Service (PCS), 

Hungarian algorithm, big data algorithms, SHA-512, specific 

block-based algorithms, Continuous Data Recovery (CDR), 

and more. However, none of these technologies offer optimal 

performance through all standards - accuracy, noise, signal to 

noise (SNR), efficiency, recovery cost, safety, complexity, and 

repetition - in all unexpected conditions. 
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5.1 Comparative analysis 

 

5.1.1 Accuracy 

Accuracy is an important metric for evaluating the 

performance of data recovery algorithms [26]. Measures the 

validity of the recovered data compared to the original data. In 

our analysis, the PPCS-MAA algorithm showed the highest 

accuracy among the comparable methods, with an accuracy 

rate of 90%. This is significantly higher than other algorithms, 

such as the tensor completion algorithms (72%), the 

Hungarian algorithm (65%), and SHA-512 (75%). 

 

5.1.2 Efficiency 

Efficiency indicates the ability of algorithm to quickly 

restore data without bearing excess calculations. The PPCS-

MAA algorithm exceeds this aspect as well, as it achieves an 

efficiency rate of up to 91%. This is due to its innovative use 

of the homogeneous interference feature of the pressure sensor 

and the MAA. On the other hand, other road efficiency rates, 

such as the loading budget unit (LBM) (68%) and the basic 

block algorithm (72%), are less, indicating slower recovery 

times. 

 

5.1.3 Noise and SNR 

Noise and Signal-to-Noise Ratio (SNR) are essential 

metrics for assessing the quality of recovered data [27]. Lower 

noise and higher SNR indicate better recovery quality. The 

PPCS-MAA algorithm reported a noise level of 60db and an 

SNR of 50db, outperforming other techniques such as the Big 

Data algorithm (50db noise, 39db SNR) and the Erasure Code 

algorithm (34db noise, 52db SNR). These metrics demonstrate 

the PPCS-MAA algorithm's robustness in maintaining high 

data quality during recovery. 

 

5.1.4 Implementation complexity and redundancy 

The complexity of implementation and redundancy are 

crucial factors affecting the feasibility and reliability of data 

recovery methods. The PPCS-MAA algorithm provides a 

balanced approach, ensuring high recovery performance 

without excessive complexity or redundancy. Methods such as 

blockchain-based recovery [11] and tensor completion 

algorithms [5] often offer significant computational and 

storage burdens, which the PPCS-MAA algorithm effectively 

mitigates. 

 

5.2 Evaluation methodology 

 

The accuracy of algorithms has been evaluated through 

large -scale simulations and scenarios for real data recovery. 

For each algorithm, we measure the percentage of properly 

recovered data compared to the original data set. Efficiency 

was evaluated based on the time to complete the recovery 

process, while the noise and signal ratio of noise (SNR) was 

measured using standard signal processing techniques. The 

complexity of the implementation was evaluated based on the 

mathematical resources required for each method, and the 

repetition was analyzed in terms of additional storage or 

backup mechanisms necessary for reliable recovery. 

In short, although there are different data recovery 

technologies, each with its strengths and weaknesses, the 

PPCS-MAA algorithm prepared by Chen et al. prominent [8]. 

It provides great accuracy, efficiency and durability against 

noise, with the complexity of control that can be controlled and 

minimal repetition. Figure 2 shows the comparison of the 

various algorithms, with a highlight of the exceptional 

performance of the PPCS-MA. 

The proposed PPCS-MAA algorithm not only addresses the 

limitations of existing methodologies, but also sets a new 

standard for data recovery in cloud computing environments. 

Its balanced approach ensures reliable data recovery while 

maintaining high privacy standards, making it an ideal choice 

for modern data recovery needs. 

 

 
 

Figure 2. Accuracy graph 

 

 

6. CONCLUSIONS 

 

This research paper deals with the processing of privacy 

concerns related to multi -feature data in the context of data 

recovery. We have developed an algorithm that regains lost or 

damaged files automatically without the need for user 

intervention. By simulating the approved data, we showed the 

wide application of our approach to realistic scenarios, 

ensuring restoration, integration, availability and privacy 

protection. PPCs-MAA algorithm provides an effective 

solution to recover lost data while maintaining data privacy. 

Using sensory pressure and multi -feature aid techniques, the 

algorithm ensures accurate restoration of data and privacy 

protection. The system also supports dynamic data and general 

auditing with the help of a third external auditor, ensuring 

transparency and trust. The algorithm provides additional 

benefits such as cost efficiency and data management, which 

makes it a practical solution to multiple applications. 

However, there are some challenges and restrictions, such 

as the arithmetic burden resulting from the application of 

pressure and sensory assistance technologies, especially with 

large data groups. Future research needs to focus on improving 

the algorithm to reduce this burden. The system's ability to 

deal with tremendous data sizes and different types of files 

must be studied. The algorithm depends on a third external 

auditor for general audit, which raises some concerns related 

to performance and safety. Ways should be explored to reduce 

this accreditation. 

Future research is expected to expand the system 

capabilities to support the types of audio and video files and 

various PDF files, which will enhance their applications in 

various fields. The system can be improved using new 

algorithms based on user reactions and realistic requirements. 

Additional safety measures can also be combined to enhance 

data protection, especially in sensitive environments. You 

should also search for ways to achieve data in actual time, 

which enhances the system response and benefit in vital 

applications. 

In short, the PPCS-MA algorithm provides a strong and 

effective solution to recover data, processing accuracy and 
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privacy fears. Using sensory pressure and multi -feature aid 

techniques, the algorithm determines a new standard for data 

recovery systems. Although there are some challenges, future 

research trends provide a clear path to improve and expand the 

capabilities of the system. This paper greatly contributes to the 

field of data recovery, providing practical solutions to realistic 

applications and paving the most developments. 
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