

Recognition of the Sound of the Lonchura Maja Bird and the Threat of House Sparrows

Using Edge Impulses Based on a Custom Deep Neural Network to Protect Rice Plants

Aeri Rachmad1* , Eko Setiawan2 , Abdul Wahib Hasbullah3

1 Department of Informatics, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia
2 Department of Natural Resources Management, Faculty of Agriculture, University of Trunojoyo Madura, Bangkalan 69162,

Indonesia
3 Department of Electrical Engineering, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia

Corresponding Author Email: aery_r@trunojoyo.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290509

ABSTRACT

Received: 11 October 2023

Revised: 11 June 2024

Accepted: 31 July 2024

Available online: 24 October 2024

 The presence of birds can be used as a biological indicator related to the quality of

environmental health in development. However, the presence of pest birds is a threat to

farmers. This paper employs edge machine learning regarding audio recognition of birds

Lonchura Maja and the sound of birds of house sparrow, which can be applied to a low-

power microcontroller. We also train another nearby bird sound of turtledove, which is often

seen around the rice fields on Bangkalan, to act as noise or background sound; we test the

reliability of four machine learning (ML) algorithms, then embed them in the

microcontroller RP2040 and connect. The first machine learning model is a custom deep

neural network (CNN) 1D with two layers, and the second model uses transfer learning-

based architecture. The Edge Impulse embedded platform learning machine is used to

conduct training and testing. The resulting learning model was then implemented as an

Arduino Library, as an Unoptimized float (32-bit) and Optimized integer quantization (8-

bit). The estimated values produced by the microcontroller are evaluated in 4 cases, using

the EON compiler and Tensor Flow Lite. In this paper, the custom 1D CNN model provides

the best accuracy value, with 87.4% accuracy during training and 84.59% accuracy on

testing, and it uses very efficient resources, 66.2 Kbyte Flash memory and 11.8 Kbyte Peak

RAM.

Keywords:

audio recognition, bird sound, aves,

Lonchura Maja, RP2040 Connect, custom

deep neural network, Edge Impulse

1. INTRODUCTION

Pest birds are a threat to farmers, because they form colonies

and attack in large numbers, ranging from hundreds to

thousands. Researchers have developed various tool to scaring

bird, including the use of sensors [1], timers, and detection

techniques. It is important for these tools to work effectively

in rice fields or as bird scarer as this affects battery power

consumption and other resources. In previous research, a

detection technique using movement and camera monitoring

was proposed [2], in other research it has also been made

which has not been proven to be effective, while other research

uses an image object detection technique that uses two (2) high

resolution cameras [3] which is certainly is an option that

requires complex computing and of course has implications to

power or battery used [4]. And we all know, equipment to

repel pest birds sold on the market still operates on 12v voltage,

it is very rare to use 5v low voltage and minimum power

consumption [1, 3, 5].

Birds serve as critical ecological indicators, reflecting the

overall environmental health. Nevertheless, the presence of

pest birds poses a threat to farmers. The cacophony of bird

sounds in rice fields can be utilized to gauge the population of

bird pests such as Lonchura Maja and house sparrows, making

it a valuable parameter for audio recognition [6].

In today’s life, various applications of artificial intelligence

(AI) are known. however, tasks such as taking photos,

checking the weather, and so on require expensive AI models

and internet connection. Generally, Little ML calculations

work similarly to normal AI intelligence, with models

prepared on a cloud directory or computer client. Figure 1 and

Figure 2 illustrate the technology requirements for cloud ML,

edge ML, and Tiny ML [7], including algorithms, hardware,

and so on.

Figure 1. Miniscule of implementing ML [8-12]

Ingénierie des Systèmes d’Information
Vol. 29, No. 5, October, 2024, pp. 1755-1762

Journal homepage: http://iieta.org/journals/isi

1755

https://orcid.org/0000-0002-4322-2944
https://orcid.org/0000-0003-4821-1213
https://orcid.org/0009-0008-2119-5149
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290509&domain=pdf

Tiny ML technology collects sensor data and processes it

into Convolutional Neural Networks at the micro- or nano-

level. A microcontroller operates the neural network and may

also be equipped with hardware accelerators. Processes are

moved to deep neural networks using GPUs, multi-core CPUs,

and TPUs for complex cases.

In Artificial Intelligence, models have also been developed

directly from raw data with low processing [13], including in

the classification of bird sound [14]. From 2016, the reliability

of Convolutional Neural Network (CNNs) consistently

outperformed other classifications in classifying bird sounds

in BirdCLEF [15]. In another study, Okan Kücüktopcu et al.

[16], created a bird sound monitoring tool based on sound

recognition using a Tiva C microcontroller, where the price of

the board is more than 41$, which in our opinion is not yet

efficient if used in our place besides that the development

board is also not sold here.

Figure 2. Tiny ML with layered approach

In this study a feasibility test was carried out on the

application of ML audio recognition of the house sparrow

sounds and Lonchura Maja pest birds. This would be the first

step for a low -power sound detection system, certainly can

be applied in remote settings. The methodology used the bird

audio recognition model is described in section 2. in section 3,

the performance of each model will be tested using both 1D

CNN and transfer learning, while the comparison of resource

use and model reliability is discussed in section 4, and the

analysis of various performances is presented in section 5.

2. MATERIAl AND METHOD

It is now possible to incorporate machine learning

algorithms into limited microcontroller resources using

software tools and using frameworks. Therefore, we use Edge-

Impulse studio on this paper [17].

2.1 Edge Impulse studio

Edge Impulse software give an easier AI developers on data

collecting or data importing, train and testing machine learning

models, and implement it to the embedded device. Edge

Impulse Studio uses the TensorFlow Lite interpreter and Keras

to train neural network models, and scikit-learn for classical

machine learning models. The studio provides 2 options for

designing models, 1. Simple GUI interface with visual layer

mode, and 2. Expert display which is intended for those who

require advanced optimization in Keras expert mode.

Additionally, in terms of model optimization, Edge Impulse

Studio provides the Edge Optimized Neural (EON) feature

which is a powerful tool for optimizing and effectively running

NN by reducing RAM and Flash usage. When embedded in a

microcontroller, TensorFlow Lite was proven to have no effect

on accuracy values and inference time. The EON compiler

includes its own compiler to compile neural networks to C++

code, and if we use TensorFlowLite (TFlite), we need an

interpreter, but the weakness of EON is that it is not easy to

update instantly [18].

In this paper, five classes of audio classification models

were created, and then trained on a 1D CNN model and two

transfer learning models. These model were then embedded in

an Arduino RP2040 Connect microcontroller which has an

internal PDM microphone. The reliability of the four models

is evaluated and compared using the TFlite and EON

deployment option using both representation of quantized and

floating point.

2.2 Data set

The hardware used for collecting sampling data is the

Arduino Nano RP2040 Connect which was specially

developed for building Artificial Intelligence (AI) models. It

contains a 32-bit ARM Cortex M0+ processor that operates at

133MHz. This module has equipped by 264KB SRAM, and a

16MB Flash memory chip for extra storage. The RP2040

Connect is also equipped with an internal microphone for

developing audio recognition or sound activation, as shown in

Figure 3.

Figure 3. Arduino RP2040 Connect

When taking samples, this device is connected to a

computer using a Micro USB cable. The computer must has

connected to the edge-impulse CLI and edge-impulse studio

software, as shown in Figure 4.

The sound samples recorded according to the Edge Impulse

GUI image above consist of 2 sources, namely the first is a

sound sample in the rice fields and the second is a sound

sample in a room or studio by placing sparrows and doves in a

cage, while sparrows were recorded when they Enter the house

area, semi-open building and even the mosque.

Figure 5 and Figure 6 illustrate that samples are taken

in .wav audio format with a length of 3 seconds, with an

average sample size of 46.9 KB, so the total dataset occupying

the Edge Impulse cloud drive is 56.28 Mbytes.

Once connected, samples can be taken, by selecting the

sensor to be used. In this study, samples were taken using the

Arduino RP2040 Connect internal PDM microphone, with a

rate of 8Ksa/second for the 1D CNN Model and with a rate of

16Ksa/second for MobileNet data processing.

Micro Usb

Cable

1756

Figure 4. The process of connecting the Edge Impulse CLI

with the device with a USB cable

Figure 5. Graphical user interface display of Edge-Impulse

when sampling audio sound

Figure 6. Block diagram of Edge Impulse

2.3 Models

Once the necessary information in the form of bird sounds

and noise sounds is gathered, the next step is to prepare a

suitable model. The Edge-Impulse studio, with its user-

friendly interface, allows for easy handling of blocks

graphically and also facilitates group Brain Keras Block

learning. The results of the design are conveniently stored on

the edge drive. The model is designed by starting to set up

scale, channel, and FFT settings, making the process

straightforward and manageable.

In the Edge-Impulse tool, the processes start from creating

a training data set; the training data set is generated using a

split process. Train data and test data are provided in five

classes. Training data and test data will be in the ratio of 80/20.

Data pre-processing was carried out using spectral analysis.

The following steps extracted features on the training dataset,

followed by classification. Then, classification will be carried

out using the NN classifier and the Keras method. The final

step is to test the model (if the results are not satisfactory,

retrain the model), followed by creating a model to be

embedded in hardware (microcontroller RP2040 Connect).

2.4 Running inferences

One way to run impulse is to use the Arduino IDE. Impulse

can be run on the Arduino library, a package file containing all

the signal processing blocks, configuration, and learning

blocks in one package. Deployment using Raspberry RP2040

Connect is used with an Arm-based Arduino Development

Board with 264 kB RAM and low power consumption; this

device is also equipped with onboard Bluetooth, WIFI, 6-axis

IMU accelerometer, gyroscope, temperature sensor, RGB

LED, and microphone.

3. MAIN RESULTS

3.1 Pre-process and data acquisition

The result of the audio signal segmentation stage is a crucial

step in our work, yielding 735 sound samples in .wav format,

with rates of 8Ksa/s and 16Ksa/s, each audio split every 3

seconds. These results are then divided into two groups, the

data training group and the data testing group. This division is

pivotal in determining which data will be used as training data

for the Tiny ML neural network model and which data will be

used for testing, underscoring the importance of your role in

this process.

The data set consists of 1,200 audio data resulting from

sound segmentation. 960 sound data will be taken as data

training, and the remaining 240 data will be used as test data.

The composition of the distribution of training data and test

data can be seen in Table 1.

Table 1. Subgroup number of audio data training and testing

Class Audio Category Training Testing

Lonchura Maja

House Sparrow t1

House Sparrow t2

Turtledove

192

192

192

192

48

48

48

48

Quiet 192 48

3.2 Feature extraction

Figure 7 shows the feature extraction process aims to obtain

a vector that characterizes an object. The basic principle is to

reduce the size of the data, without losing important

information that characterizes an object. In this research, the

MFCC coefficient 15 will be used, so that characteristic

vectors with dimensions of 15×240 will be produced for each

category.

On MFCC, in addition to our number of coefficients, the

1757

number of filters needs to be set at 32 and the FFT length 256.

Figure 7. Feature extraction on GUI result

3.3 Model performance

Bird sound classification models using Convolutional

Neural Networks have been used in previous research and

proven to be reliable [11, 12], so in this paper model design in

a custom CNN 1D 2 Layer, given dense 10 Neuron design was

used, which is shown in the Figure 8.

The model contains 2 layers of CNN 1D, the 1st layer is 1D

Convolutional NN 16 neuron, then followed the 2nd layers of

1D CNN 32 neuron, given dropout 0.25, then flattening, a

dense layer 10 neuron, and final layer of 5 neurons (5 classes).

The model was iterated by 100 epochs and given learning rate

of 0.008. CNN models were trained using a cross-entropy loss

and the Adam optimizer, but on MobileNet model by default

use the Nadam optimizer and also cross-entropy loss.

From the Confusion Matrix (Table 2), the highest

inferencing accuracy value is obtained in the Audio Bird of

Turtledove, which is worth 88.9%; the 2nd highest accuracy

value is the result of the sound sample of the Lonchura Mada

audio class, which is with an accuracy value of 84.3%. The

value the 3rd highest sound class accuracy is the sound of the

sparrow type_tone 1 83.3%, followed by the 4th best accuracy

value is the sound class house sparrow bird of the type_tone 2

(Sparrow Sound During Calls) 82,8%, and Quiet Environment

(No Sound Sparrow Detected) class audio accuracy 72,2%.

The accuracy value of all the experiment results meets the

standard Deep Learning requirements, where the F1 Score

number that is a reference of good value is 0.7 or the accuracy

value of at least 70%

In other Confusion Matrix (Table 3), the same model

implemented with the 10 Neuron Dense Layer a little impact

on the addition of the accuracy of the bird house sparrow

Type_sound 1 and the audio house sparrow Type_Sound 2

sound class, but a little reduces the accuracy level in Sound

class of Bird Lonchura Mada, this reduction is not too

significant. Because it is still above the Robotics Standard

Insurance threshold, especially in general, precisely with with

the addition of a dense layer improves the entire inference

value.

MobileNet has also been widely used in bird sound

applications in various studies such as Incze et al. [19], also

Saad et al. [14], This model was chosen because its size is

relatively small, making it possible to embed it in edge devices.

In this paper, the MobileNet V1 0.1 and MobileNet V2 0.35

models were used using input of 16Ksa/second. We implement

a dense layer of 128 neurons in MobileNet experiment, the

final output will be 5 neurons. Additionally, the model was

iterated over 100 epochs, and the learning speed was 0.008

seconds for the CNN model and 0.01 seconds for MobileNet.

The accuracy value during validation was 72.7% and during

testing 62.43% on MobileNet V1, while the accuracy value of

the MobileNet V2 model was 82.2% when testing 80.79%.

The classification results are given in Table 4 and Table 5.

We can see from the four models that the uncertain

classification values tend to be high (CNN 1D 13.9% and

18.1%, MobileNet V1 48.7%, MobileNet V2 20.8%). This

problem can be overcome by providing more training data.

However, due to the limitations of Edge Impulse's free license,

the accuracy value in this research is not the primary objective.

Models that have not yet been optimized will be considered

against adequate resource capabilities.

Figure 8. Model preset on Edge Impulse

Table 2. Confusion Matrix for classification on testing using deep custom CNN 1D

 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain

Lonchura Mada 84.3% 3.7% 0.9% 3.7% 0.9% 6.5%

House Sparrow t1 0% 83.3% 0% 0% 0% 16.7%

House Sparrow t2 0% 1.0% 82.8% 5.1% 0% 11.1%

Quiet 0% 6.9% 0% 72.2% 2.8% 18.1%

Turtledove 0% 0% 0% 8.3% 88.9% 2.8%

F1 Score 0.91 0.80 0.90 0.76 0.90

1758

Table 3. Confusion Matrix for classification on testing using CNN 1D 10 Neuron

 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain

Lonchura Mada 79.6% 6.5% 0.9% 9.3% 0% 3.7%

House Sparrow t1 0% 100% 0% 0% 0% 0%

House Sparrow t2 0% 2.0% 85.9% 7.1% 0% 5.1%

Quiet 0% 5.6% 1.4% 77.8% 1.4% 13.9%

Turtledove 0% 0% 0% 8.3% 88.9% 2.8%

F1 Score 0.89 0.87 0.91 0.76 0.93

Table 4. Confusion Matrix for classification on testing using MobileNet V1

 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain

Lonchura Mada 52.8% 5.6% 2.8% 5.6% 0% 33.3%

House Sparrow t1 15.4% 35.9% 0% 0% 0% 48.7%

House Sparrow t2 3.0% 0% 76.8% 1.0% 0% 19.2%

Quiet 1.4% 2.8% 0% 65.3% 1.4% 29.2%

Turtledove 0% 0% 0% 0% 75% 25%

F1 Score 0.65 0.46 0.85 0.75 0.84

Table 5. Confusion Matrix for classification on testing using MobileNet V2

 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain

Lonchura Mada 82.4% 5.6% 0.9% 2.8% 0% 8.3%

House Sparrow t1 0% 100% 0% 0% 0% 0%

House Sparrow t2 0% 0% 84.8% 3.0% 0% 12.1%

Quiet 2.8% 6.9% 0% 69.4% 0% 20.8%

Turtledove 0% 0% 0% 8.3% 66.7% 25%

F1 Score 0.89 0.88 0.91 0.76 0.80

4. ANALYSIS

When using Edge Impulse, there are two options: the first is

to create a code library with various programming language

options, and the second is to generate binary code that

functions as firmware. In this research, the Arduino Library

was chosen to be embedded into the Arduino RP2040 Connect

board. Arduino RP2040 Connect board has an ARM Cortex

M0+ clock speed of up to 133MHz 32-bit, 264 kB SRAM, 16

MB Flash memory, and high-performance energy efficiency.

Additionally, it is also equipped with a 6-axis Inertial

Measurement Unit (IMU), gyroscope, PDM, temperature

sensor, WIFI, and Bluetooth 5.0.

Arduino libraries are built for each model (1D CNN and

MobileNet) using the EON or TFLite in quantized (8-bit) and

floating-point (32-bit) representations. The research results are

plotted using four different values per model.

To ensure that the architectural model we use can work well

on the targeted embedded chip, namely the RP2040 connect,

it is necessary to compare the inference of each architectural

model, especially how much the model uses memory (SRAM)

and how much Storage utilization (Flash), for that we have

previously also conducted similar research using other types

of Tiny ML with slightly smaller SRAM and flash capacities,

namely the Seeeduino NRF52840 Sense [20], so based on the

results of this research, we then made it a reference again on

the ML RP2040 Connect board, of course with adjustments to

the calculation of larger memory and RAM capacity, although

this has a small effect, but the ML RP2040 Connect Board here

is easier to get than the Seeeduino Board, let alone the Tiva C.

Deployment to Edge Impulse calculates memory usage and

time per inference for each model based on deployment board

options. This software provides both unoptimized float models

(F) and quantized models (Q) using EON or TensorFlowLite

interpreters. The Arduino libraries for the four models can be

downloaded and embedded separately to measure the board's

reliability. Table 6 shows the results of the inference values for

the RP2040 Connect microcontroller.

Figure 9 shows the results of the classification accuracy of

training process on each models architecture where all model

representing the accuracy in the training process moves up at

each epoch.

Figure 10 shows loss chart of training process on each

model’s architecture where all model representing the loss in

the training process decrease at each epoch.

Table 6. The deployed classification model result inference

on Raspberry RP2040 Connect

 Quantized

(EON)

Float

(EON)

Quantized

(TFLite)

Float

(TFlite)

CNN 1D

RAM (KB) 11.8 K 11.8 K 11.8 K 11.8 K

Flash (KB) 41.6 K 64.4 K 62.5 K 91.3 K

Accuration(%) 82.07% 81.79% 82.07% 81.79%

Time (ms) 841 ms 1004 ms 841 ms 1004 ms

CNN 1D 10 Neuron

RAM (KB) 11.8 K 11.8 K 11.8 K 16,2 K

Flash (KB) 45.0 K 77.3 K 66.2 K 104.4 K

Accuration(%) 84.59% 84.31% 84.59% 84.31%

Time (ms) 844 ms 1004 ms 844 ms 1004 ms

MobileNet V1 0.1 128 Neuron

RAM (KB) 37.0 K 54.9K 37.8K 70.8K

Flash (KB) 117.8K 230.9K 159.4K 275.4K

Accuration(%) 61.86% 62.43% 61.86% 62.43%

Time (ms) 489 ms 1607 ms 489 ms 2189 ms

MobileNet V2 0.35 128 Neuron

RAM (KB) 216.3K 399.9K 205.3K 488.5K

Flash (KB) 730.2K 2.2M 833.4K 2.2 M

Accuration(%) 77.97% 80.79% 77.97% 80.79%

Time (ms) 1457 ms 9633 ms 1457 ms 9633 ms

1759

Figure 9. Accuracy chart on training process

Figure 10. Loss chart on training process

5. DISCUSSION

System performance using embedded machine learning and

the experiments that have been carried out are influenced by

different factors. The accuracy value of the custom 1D CNN

model is 3.52% higher than MobileNet V2 in unoptimized 32-

bit float and 6.6% high in 8-bit quantized. This difference in

accuracy usually occupies more memory and takes longer to

infer. However, in this research, the two models use different

sampling frequencies (where 1D CNN allows using 8Ksa/sec

and MobileNet with it is MFE feature extraction requires a

minimum of 16Ksa/sec) so that better accuracy values are

obtained with the 1D CNN model without sacrificing memory

and inference time.

In some cases of unoptimized float, it seems not possible to

implement the MobileNet-V2 model to Raspberry RP2040

Connect chip without quantization because it requires 1.85

times and 1.51 times the available RAM for the

TensorFlowLite models and EON, Even though the Flash

memory size is available 86.25% of the total memory in

floating point on both TensorFlowLite and EON. Meanwhile,

with its unoptimized float, even the 1D CNN model still

occupies not more than half of the available space (RAM or

Flash) for both the Edge Optimized NN model and the

TensorFlowLite model. However, for optimal embedding,

microcontroller machine learning algorithms focus on the 8-

bit optimized model.

After optimization, the MobileNet V2 model size reduces

Flash by a factor of 1.89, and The MobileNet V1 compressed

by a factor of 1.48 for TensorFlowLite and EON. RAM usage

consumes more than 50% of resources while using

MobileNetV2, with a decrease after optimation of a factor of

1.84 for the Edge Optimized NN and 2.38 for the

TensorFlowLite. However, if using the MobileNet V1 model,

it is still possible to do inference on board using both quantized

and float-32 options. There is no memory footprint reduction

value on the 1D CNN model after optimation (Q). Still, it

reduces Flash memory usage by 36.59% for TensorFlowLite

and reduces Flash memory usage by 41.79% for EON.

The optimation of the CNN model in the research did not

reduce the memory footprint but reduced the use of Flash;

however, in the experiments we conducted, there was an

increase in accuracy after quantization; 1D CNN after

quantization, we found accuracy increased by 0.28%,

MobileNet on the other hand reduced accuracy by 0.57% after

quantization due to a decrease in the required memory

footprint. Memory footprint requirements in the ratio of Flash

usage and available RAM are depicted in sixteen different

cases visualized in Figure 11 and Figure 12.

In this paper, the accuracy values with various combinations

of learning rates on Figure 13, the accuracy values of the

MobileNet V1 model tend to be lower than other models. Even

when compared with MobileNet V2, as the comparison carried

out by Tan et al., the difference in accuracy values between the

two versions of the transfer learning model can be 4% to

21.9% [21]. We also found a difference in accuracy of around

16.11% to 18.36% in this study where the Mobilenet V2 model

had accuracy values that tended to be better, although not as

good as the 1D CNN model. The custom 1D CNN model

provides the best accuracy result value of 87.4% accuracy

during training, and 84.59% on testing. As seen in Figure 13

and Figure 14, 1D CNN shows the highest accuracy results

when the learning rate value is 0.008 second.

According to the result of TensorFlowlite or EON (Edge

Optimized NN) on model deployment and time inference, we

know clearly that TensorFlowLite requires more resources

than Edge Optimized NN. However, the disadvantage of using

Edge Optimized NN is that it is difficult to change the model,

contrary to TensorFlowLite. Edge Optimized NN does not

impact the accuracy or inference time because it still runs

TensorFlowLite in the background [22]. The accuracy test

results for both models show that the deep 1D CNN model has

a generally higher accuracy value; however, the inference time

for the Edge Optimized NN and TensorFlowLite 8-bit

quantized(Q) models appears to be alike. The MobileNetV1

model has a time difference of 355 ms, with MobileNetV1

optimized through quantization having a faster inference time

than 1D CNN. In the MobileNetV2 model, there is a difference

of 613 ms, using MbileNetV2 after quantizing having a lagged

inference time compared to CNN 1D.

From all the experiments and running inferences carried

out, it can be concluded that using 8 Khz audio 1D CNN 2

layers with an Edge Impulse framework and then embedding

it on the low-power Arduino RP2040 Connect board is more

than enough to detect the sound of Lonchura Mada birds and

house sparrow birds to support the work of automatic bird

repellents in rice fields. With this optimization, the use of

excess resources, such as the use of batteries or excess power,

can be reduced. Farmers' losses due to bird attacks are also

expected to impact Rp significantly. 2040-connect is also

relatively easy to buy here; if we want to make a cheaper bird-

1760

repellent tool with an internal PDM microphone, we can also

embed the results of this inference model on the super cheap

Seeed Studio NRF52840 Sense microcontroller, which in

terms of specifications is only slightly different from the

RP2040-Connect. However, the weakness of this embedded

system is that it takes work to update instantly.

Figure 11. Ratio of RP2040 Connect memory usage for

CNN 1D and MobileNet models using Edge Optimized NN

and TensorFlowlite interpreter in unoptimized float-32 (F)

and quantized(Q)

Figure 12. Ratio of RP2040 Connect RAM usage for CNN

1D and MobileNet models using Edge Optimized NN and

TensorFlowLite interpreter in unoptimized float-32(F) and

quantized(Q)

Figure 13. Accuracy result chart based on given learning rate

on training process

Figure 14. Accuracy result chart based on given learning rate

on testing process

6. CONCLUSIONS

This series of experiments shows that a custom 1D CNN

model has been created using Edge Impulse with a sample

audio frequency of 8Ksa/second with MFCC feature

extraction. The classification of the sound of the rice pest birds

Lonchura Maja and sound of the rice pest bird house sparrow,

which is carried out using a custom method using embedded

machine learning, produces sound recognition that allows it to

be embedded in the small microcontroller RP2040 Connect.

This microcontroller is very efficient in power consumption.

The 1D two-layer CNN method provides voice recognition

accuracy of 87.4% on training and 84.59% on testing using

66.2 Kbyte Flash memory with 11.8 Kbyte Peak RAM.

Suppose you use the MobileNet V2 models for almost the

same accuracy value. In that case, you need a Flash memory

size that is 13 times larger and a RAM size that is around 17

times larger due to the MFE feature extraction requiring a

significant sample frequency of 16Ksa/second. Therefore, it is

only possible to embed it on this RP2040 Connect board using

the MobileNet V2 Model with the quantized option.

ACKNOWLEDGMENT

We extend our heartfelt thanks to the Faculty of Agriculture

and the Faculty of Engineering at the University of Trunojoyo

Madura - Indonesia for enabling scientists to complete this

research. We also express our gratitude to the investigative

team at the Multimedia and Networks Laboratory for

supporting the relevance and impact of this research.

REFERENCES

[1] Bana, M.S., Rahmawati, D., Joni, K., Ulum, M. (2021).

Rancang bangun alat pengusir tikus dan burung pada

tanaman padi. J-Eltrik, 2(1): 53.

https://doi.org/10.30649/j-eltrik.v2i1.53

[2] Abubakar, S.M., Ahmed, S. (2023). A smart and secure

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o
p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o
p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o
p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o
p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o
p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o
p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o
p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o
p
ti

m
iz

ed
CNN 1D CNN 1D 10

neuron

MobileNet V1 MobileNet V2

R
at

io
 o

f
F

la
sh

 m
em

o
ry

 u
sa

g
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o

p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o

p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o

p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o

p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o

p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o

p
ti

m
iz

ed

E
O

N
 Q

u
an

ti
ze

d

E
O

N
 U

n
o

p
ti

m
iz

ed

T
F

L
it

e
Q

u
an

ti
ze

d

T
F

L
it

e
U

n
o

p
ti

m
iz

ed

CNN 1D CNN 1D 10

Neuron

MobileNet V1 MobileNet V2

R
at

io
 O

f

R
A

M
 U

sa
g
e

0
20
40
60
80

100

A
c
c
u

r
a
c
y
 (

%
)

0.001 0.003 0.005 0.008 0.01

1761

agricultural system using IoT. In 2022 OPJU

International Technology Conference on Emerging

Technologies for Sustainable Development (OTCON),

Raigarh, Chhattisgarh, India, pp. 1-6.

https://doi.org/10.1109/OTCON56053.2023.10113901

[3] Muminov, A., Jeon, Y.C., Na, D., Lee, C., Jeon, H.S.

(2017). Development of a solar powered bird repeller

system with effective bird scarer sounds. In 2017

International Conference on Information Science and

Communications Technologies (ICISCT), Tashkent,

Uzbekistan, pp. 1-4.

https://doi.org/10.1109/ICISCT.2017.8188587

[4] Chéour, R., Khriji, S., Kanoun, O. (2020).

Microcontrollers for IoT: Optimizations, computing

paradigms, and future directions. In 2020 IEEE 6th

World Forum on Internet of Things (WF-IoT), New

Orleans, LA, USA, pp. 1-7. https://doi.org/10.1109/WF-

IoT48130.2020.9221219

[5] Anil, L., Khandetod, Y.P., Mohod, A.G., Dhande, K.G.,

Aware, S.V. (2023). Development of solar PV powered

and wind operated deterrent system. Pharma Innovation

Journal, 12(10): 530-535.

[6] Pérez-Granados, C., Traba, J. (2021). Estimating bird

density using passive acoustic monitoring: A review of

methods and suggestions for further research. Ibis,

163(3): 765-783. https://doi.org/10.1111/ibi.12944

[7] Viswanatha V., Ramachandra A.C, Prasanna, R.,

Kakarla, P.C., PJ, V.S., Mohan, N. (2022).

Implementation of tiny machine learning models on

arduino 33-ble for gesture and speech recognition. Electr.

arXiv preprint arXiv: 2207.12866.

https://doi.org/10.48550/arXiv.2207.12866

[8] Yu, W., Zhao, C. (2020). Broad Convolutional Neural

Network based industrial process fault diagnosis with

incremental learning capability. IEEE Transactions on

Industrial Electronics, 67(6): 5081-5091.

https://doi.org/10.1109/TIE.2019.2931255

[9] Song, J., Cho, Y., Park, J.S., Jang, J.W., Lee, S., Song,

J.H., Lee, J.G., Kang, I. (2019). 7.1 An 11.5 TOPS/W

1024-MAC butterfly structure dual-core sparsity-aware

neural processing unit in 8nm flagship mobile SoC. In

2019 IEEE international solid-state circuits conference-

(ISSCC), San Francisco, CA, USA, pp. 130-132.

https://doi.org/10.1109/ISSCC.2019.8662476

[10] Li, B., Najafi, M.H., Yuan, B., Lilja, D.J. (2018).

Quantized neural networks with new stochastic

multipliers. In 2018 19th International Symposium on

Quality Electronic Design (ISQED), Santa Clara, CA,

USA, pp. 376-382.

https://doi.org/10.1109/ISQED.2018.8357316

[11] Najafi, M.H., Lilja, D.J., Riedel, M. (2018).

Deterministic methods for stochastic computing using

low-discrepancy sequences. In 2018 IEEE/ACM

International Conference on Computer-Aided Design

(ICCAD), San Diego, CA, USA, pp. 1-8.

https://doi.org/10.1145/3240765.3240797

[12] Yang, L., Jiang, W., Liu, W., Edwin, H.M., Shi, Y., Hu,

J. (2020). Co-exploring neural architecture and network-

on-chip design for real-time artificial intelligence. In

2020 25th Asia and South Pacific Design Automation

Conference (ASP-DAC), Beijing, China, pp. 85-90.

https://doi.org/10.1109/ASP-DAC47756.2020.9045595

[13] Dai, W., Dai, C., Qu, S., Li, J., Das, S. (2017). Very deep

Convolutional Neural Networks for raw waveforms. In

2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), New Orleans,

LA, USA, pp. 421-425.

https://doi.org/10.1109/ICASSP.2017.7952190

[14] Saad, A., Ahmed, J., Elaraby, A. (2022). Classification

of bird sound using high-and low-complexity

Convolutional Neural Networks. Traitement du Signal,

39(1): 187-193. https://doi.org/10.18280/ts.390119

[15] Goëau, H., Glotin, H., Vellinga, W.P., Planqué, R., Joly,

A. (2016). Lifeclef bird identification task 2016: The

arrival of deep learning. In CLEF: Conference and Labs

of the Evaluation Forum, 1609: 440-449.

https://hal.science/hal-01373779/file/16090440.pdf.

[16] Kücụ̈ktopcu, O., Masazade, E., Ünsalan, C., Varshney,

P.K. (2019). A real-time bird sound recognition system

using a low-cost microcontroller. Applied Acoustics, 148:

194-201. https://doi.org/10.1016/j.apacoust.2018.12.028

[17] Edge Impulse. https://edgeimpulse.com, accessed on Apr.

7, 2024.

[18] Diab, M.S., Rodriguez-Villegas, E. (2022). Performance

evaluation of embedded image classification models

using Edge Impulse for application on medical images.

In 2022 44th Annual International Conference of the

IEEE Engineering in Medicine & Biology Society

(EMBC), Glasgow, Scotland, United Kingdom, pp.

2639-2642.

https://doi.org/10.1109/EMBC48229.2022.9871108

[19] Incze, A., Jancsó, H.B., Szilágyi, Z., Farkas, A., Sulyok,

C. (2018). Bird sound recognition using a Convolutional

Neural Network. In 2018 IEEE 16th international

symposium on intelligent systems and informatics

(SISY), Subotica, Serbia, pp. 000295-000300.

https://doi.org/10.1109/SISY.2018.8524677

[20] Hasbullah, A. W. Setiawan, E. Rachmad, A. (2023).

Evaluasi Keandalan Model Rekognisi Suara Burung

Hama Menggunakan Platform Edge Impulse Pada

Mikrokontroller Low Power. Jurnal Teknik Elektro dan

Komputer TRIAV, 10(2): 69-75.

https://doi.org/10.21107/triac.v10i2.22448

[21] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,

Howard, A., Le, Q.V. (2019). MnasNet: Platform-aware

neural architecture search for mobile. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), Long Beach, CA, USA, pp. 2815-2823.

https://doi.org/10.1109/CVPR.2019.00293

[22] Jongboom, J. (2020). Introducing EON: Neural networks

in up to 55% less RAM and 35% less ROM.

https://www.edgeimpulse.com/blog/introducing-eon.

1762

