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 The presence of birds can be used as a biological indicator related to the quality of 

environmental health in development. However, the presence of pest birds is a threat to 

farmers. This paper employs edge machine learning regarding audio recognition of birds 

Lonchura Maja and the sound of birds of house sparrow, which can be applied to a low-

power microcontroller. We also train another nearby bird sound of turtledove, which is often 

seen around the rice fields on Bangkalan, to act as noise or background sound; we test the 

reliability of four machine learning (ML) algorithms, then embed them in the 

microcontroller RP2040 and connect. The first machine learning model is a custom deep 

neural network (CNN) 1D with two layers, and the second model uses transfer learning-

based architecture. The Edge Impulse embedded platform learning machine is used to 

conduct training and testing. The resulting learning model was then implemented as an 

Arduino Library, as an Unoptimized float (32-bit) and Optimized integer quantization (8-

bit). The estimated values produced by the microcontroller are evaluated in 4 cases, using 

the EON compiler and Tensor Flow Lite. In this paper, the custom 1D CNN model provides 

the best accuracy value, with 87.4% accuracy during training and 84.59% accuracy on 

testing, and it uses very efficient resources, 66.2 Kbyte Flash memory and 11.8 Kbyte Peak 

RAM.  
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1. INTRODUCTION 

 

Pest birds are a threat to farmers, because they form colonies 

and attack in large numbers, ranging from hundreds to 

thousands. Researchers have developed various tool to scaring 

bird, including the use of sensors [1], timers, and detection 

techniques. It is important for these tools to work effectively 

in rice fields or as bird scarer as this affects battery power 

consumption and other resources. In previous research, a 

detection technique using movement and camera monitoring 

was proposed [2], in other research it has also been made 

which has not been proven to be effective, while other research 

uses an image object detection technique that uses two (2) high 

resolution cameras [3] which is certainly is an option that 

requires complex computing and of course has implications to 

power or battery used [4]. And we all know, equipment to 

repel pest birds sold on the market still operates on 12v voltage, 

it is very rare to use 5v low voltage and minimum power 

consumption [1, 3, 5]. 

Birds serve as critical ecological indicators, reflecting the 

overall environmental health. Nevertheless, the presence of 

pest birds poses a threat to farmers. The cacophony of bird 

sounds in rice fields can be utilized to gauge the population of 

bird pests such as Lonchura Maja and house sparrows, making 

it a valuable parameter for audio recognition [6]. 

In today’s life, various applications of artificial intelligence 

(AI) are known. however, tasks such as taking photos, 

checking the weather, and so on require expensive AI models 

and internet connection. Generally, Little ML calculations 

work similarly to normal AI intelligence, with models 

prepared on a cloud directory or computer client. Figure 1 and 

Figure 2 illustrate the technology requirements for cloud ML, 

edge ML, and Tiny ML [7], including algorithms, hardware, 

and so on. 

 

 
 

Figure 1. Miniscule of implementing ML [8-12] 
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Tiny ML technology collects sensor data and processes it 

into Convolutional Neural Networks at the micro- or nano-

level. A microcontroller operates the neural network and may 

also be equipped with hardware accelerators. Processes are 

moved to deep neural networks using GPUs, multi-core CPUs, 

and TPUs for complex cases. 

In Artificial Intelligence, models have also been developed 

directly from raw data with low processing [13], including in 

the classification of bird sound [14]. From 2016, the reliability 

of Convolutional Neural Network (CNNs) consistently 

outperformed other classifications in classifying bird sounds 

in BirdCLEF [15]. In another study, Okan Kücüktopcu et al. 

[16], created a bird sound monitoring tool based on sound 

recognition using a Tiva C microcontroller, where the price of 

the board is more than 41$, which in our opinion is not yet 

efficient if used in our place besides that the development 

board is also not sold here. 

 

 
 

Figure 2. Tiny ML with layered approach 

 

In this study a feasibility test was carried out on the 

application of ML audio recognition of the house sparrow 

sounds and Lonchura Maja pest birds. This would be the first 

step for a low -power sound detection system, certainly  can 

be applied in remote settings. The methodology used the bird 

audio recognition model is described in section 2. in section 3, 

the performance of each model will be tested using both 1D 

CNN and transfer learning, while the comparison of resource 

use and model reliability is discussed in section 4, and the 

analysis of various performances is presented in section 5. 

 

 

2. MATERIAl AND METHOD 

 

It is now possible to incorporate machine learning 

algorithms into limited microcontroller resources using 

software tools and using frameworks. Therefore, we use Edge-

Impulse studio on this paper [17]. 

 

2.1 Edge Impulse studio 

 

Edge Impulse software give an easier AI developers on data 

collecting or data importing, train and testing machine learning 

models, and implement it to the embedded device. Edge 

Impulse Studio uses the TensorFlow Lite interpreter and Keras 

to train neural network models, and scikit-learn for classical 

machine learning models. The studio provides 2 options for 

designing models, 1. Simple GUI interface with visual layer 

mode, and 2. Expert display which is intended for those who 

require advanced optimization in Keras expert mode. 

Additionally, in terms of model optimization, Edge Impulse 

Studio provides the Edge Optimized Neural (EON) feature 

which is a powerful tool for optimizing and effectively running 

NN by reducing RAM and Flash usage. When embedded in a 

microcontroller, TensorFlow Lite was proven to have no effect 

on accuracy values and inference time. The EON compiler 

includes its own compiler to compile neural networks to C++ 

code, and if we use TensorFlowLite (TFlite), we need an 

interpreter, but the weakness of EON is that it is not easy to 

update instantly [18]. 

In this paper, five classes of audio classification models 

were created, and then trained on a 1D CNN model and two 

transfer learning models. These model were then embedded in 

an Arduino RP2040 Connect microcontroller which has an 

internal PDM microphone. The reliability of the four models 

is evaluated and compared using the TFlite and EON 

deployment option using both representation of quantized and 

floating point. 

 

2.2 Data set 

 

The hardware used for collecting sampling data is the 

Arduino Nano RP2040 Connect which was specially 

developed for building Artificial Intelligence (AI) models. It 

contains a 32-bit ARM Cortex M0+ processor that operates at 

133MHz. This module has equipped by 264KB SRAM, and a 

16MB Flash memory chip for extra storage. The RP2040 

Connect is also equipped with an internal microphone for 

developing audio recognition or sound activation, as shown in 

Figure 3. 
 

 
 

Figure 3. Arduino RP2040 Connect 
 

When taking samples, this device is connected to a 

computer using a Micro USB cable. The computer must has  

connected to the edge-impulse CLI and edge-impulse studio 

software, as shown in Figure 4. 

The sound samples recorded according to the Edge Impulse 

GUI image above consist of 2 sources, namely the first is a 

sound sample in the rice fields and the second is a sound 

sample in a room or studio by placing sparrows and doves in a 

cage, while sparrows were recorded when they Enter the house 

area, semi-open building and even the mosque. 

Figure 5 and Figure 6 illustrate that samples are taken 

in .wav audio format with a length of 3 seconds, with an 

average sample size of 46.9 KB, so the total dataset occupying 

the Edge Impulse cloud drive is 56.28 Mbytes. 

Once connected, samples can be taken, by selecting the 

sensor to be used. In this study, samples were taken using the 

Arduino RP2040 Connect internal PDM microphone, with a 

rate of 8Ksa/second for the 1D CNN Model and with a rate of 

16Ksa/second for MobileNet data processing. 

Micro Usb 

Cable 
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Figure 4. The process of connecting the Edge Impulse CLI 

with the device with a USB cable 

 

 
 

Figure 5. Graphical user interface display of Edge-Impulse 

when sampling audio sound 

 

 
 

Figure 6. Block diagram of Edge Impulse 

 

2.3 Models 

 

Once the necessary information in the form of bird sounds 

and noise sounds is gathered, the next step is to prepare a 

suitable model. The Edge-Impulse studio, with its user-

friendly interface, allows for easy handling of blocks 

graphically and also facilitates group Brain Keras Block 

learning. The results of the design are conveniently stored on 

the edge drive. The model is designed by starting to set up 

scale, channel, and FFT settings, making the process 

straightforward and manageable. 

In the Edge-Impulse tool, the processes start from creating 

a training data set; the training data set is generated using a 

split process. Train data and test data are provided in five 

classes. Training data and test data will be in the ratio of 80/20. 

Data pre-processing was carried out using spectral analysis. 

The following steps extracted features on the training dataset, 

followed by classification. Then, classification will be carried 

out using the NN classifier and the Keras method. The final 

step is to test the model (if the results are not satisfactory, 

retrain the model), followed by creating a model to be 

embedded in hardware (microcontroller RP2040 Connect). 

 

2.4 Running inferences 

 

One way to run impulse is to use the Arduino IDE. Impulse 

can be run on the Arduino library, a package file containing all 

the signal processing blocks, configuration, and learning 

blocks in one package. Deployment using Raspberry RP2040 

Connect is used with an Arm-based Arduino Development 

Board with 264 kB RAM and low power consumption; this 

device is also equipped with onboard Bluetooth, WIFI, 6-axis 

IMU accelerometer, gyroscope, temperature sensor, RGB 

LED, and microphone. 

 

 

3. MAIN RESULTS 

 

3.1 Pre-process and data acquisition 

 

The result of the audio signal segmentation stage is a crucial 

step in our work, yielding 735 sound samples in .wav format, 

with rates of 8Ksa/s and 16Ksa/s, each audio split every 3 

seconds. These results are then divided into two groups, the 

data training group and the data testing group. This division is 

pivotal in determining which data will be used as training data 

for the Tiny ML neural network model and which data will be 

used for testing, underscoring the importance of your role in 

this process. 

The data set consists of 1,200 audio data resulting from 

sound segmentation. 960 sound data will be taken as data 

training, and the remaining 240 data will be used as test data. 

The composition of the distribution of training data and test 

data can be seen in Table 1. 

 

Table 1. Subgroup number of audio data training and testing 

 
Class Audio Category Training Testing 

Lonchura Maja 

House Sparrow t1 

House Sparrow t2 

Turtledove 

192 

192 

192 

192 

48 

48 

48 

48 

Quiet 192 48 

 

3.2 Feature extraction 

 

Figure 7 shows the feature extraction process aims to obtain 

a vector that characterizes an object. The basic principle is to 

reduce the size of the data, without losing important 

information that characterizes an object. In this research, the 

MFCC coefficient 15 will be used, so that characteristic 

vectors with dimensions of 15×240 will be produced for each 

category.  

On MFCC, in addition to our number of coefficients, the 
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number of filters needs to be set at 32 and the FFT length 256. 

 

 
 

Figure 7. Feature extraction on GUI result 

 

3.3 Model performance 

 

Bird sound classification models using Convolutional 

Neural Networks have been used in previous research and 

proven to be reliable [11, 12], so in this paper model design in 

a custom CNN 1D 2 Layer, given dense 10 Neuron design was 

used, which is shown in the Figure 8. 

The model contains 2 layers of CNN 1D, the 1st layer is 1D 

Convolutional NN 16 neuron, then followed the 2nd layers of 

1D CNN 32 neuron, given dropout 0.25, then flattening, a 

dense layer 10 neuron, and final layer of 5 neurons (5 classes). 

The model was iterated by 100 epochs and given learning rate 

of 0.008. CNN models were trained using a cross-entropy loss 

and the Adam optimizer,  but on MobileNet model by default 

use the Nadam optimizer and also cross-entropy loss. 

From the Confusion Matrix (Table 2), the highest 

inferencing accuracy value is obtained in the Audio Bird of 

Turtledove, which is worth 88.9%; the 2nd highest accuracy 

value is the result of the sound sample of the Lonchura Mada 

audio class, which is with an accuracy value of 84.3%. The 

value the 3rd highest sound class accuracy is the sound of the 

sparrow type_tone 1 83.3%, followed by the 4th best accuracy 

value is the sound class house sparrow bird of the type_tone 2 

(Sparrow Sound During Calls) 82,8%, and Quiet Environment 

(No Sound Sparrow Detected) class audio accuracy 72,2%. 

The accuracy value of all the experiment results meets the 

standard Deep Learning requirements, where the F1 Score 

number that is a reference of good value is 0.7 or the accuracy 

value of at least 70% 

In other Confusion Matrix (Table 3), the same model 

implemented with the 10 Neuron Dense Layer a little impact 

on the addition of the accuracy of the bird house sparrow 

Type_sound 1 and the audio house sparrow Type_Sound 2 

sound class, but a little reduces the accuracy level in Sound 

class of Bird Lonchura Mada, this reduction is not too 

significant. Because it is still above the Robotics Standard 

Insurance threshold, especially in general, precisely with with 

the addition of a dense layer improves the entire inference 

value. 

MobileNet has also been widely used in bird sound 

applications in various studies such as Incze et al. [19], also 

Saad et al. [14], This model was chosen because its size is 

relatively small, making it possible to embed it in edge devices. 

In this paper, the MobileNet V1 0.1 and MobileNet V2 0.35 

models were used using input of 16Ksa/second. We implement 

a dense layer of 128 neurons in MobileNet experiment, the 

final output will be 5 neurons. Additionally, the model was 

iterated over 100 epochs, and the learning speed was 0.008 

seconds for the CNN model and 0.01 seconds for MobileNet. 

The accuracy value during validation was 72.7% and during 

testing 62.43% on MobileNet V1, while the accuracy value of 

the MobileNet V2 model was 82.2% when testing 80.79%. 

The classification results are given in Table 4 and Table 5. 

We can see from the four models that the uncertain 

classification values tend to be high (CNN 1D 13.9% and 

18.1%, MobileNet V1 48.7%, MobileNet V2 20.8%). This 

problem can be overcome by providing more training data. 

However, due to the limitations of Edge Impulse's free license, 

the accuracy value in this research is not the primary objective. 

Models that have not yet been optimized will be considered 

against adequate resource capabilities. 

 

 
 

Figure 8. Model preset on Edge Impulse 

 

Table 2. Confusion Matrix for classification on testing using deep custom CNN 1D 

 
 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain 

Lonchura Mada 84.3% 3.7% 0.9% 3.7% 0.9% 6.5% 

House Sparrow t1 0% 83.3% 0% 0% 0% 16.7% 

House Sparrow t2 0% 1.0% 82.8% 5.1% 0% 11.1% 

Quiet 0% 6.9% 0% 72.2% 2.8% 18.1% 

Turtledove 0% 0% 0% 8.3% 88.9% 2.8% 

F1 Score 0.91 0.80 0.90 0.76 0.90  
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Table 3. Confusion Matrix for classification on testing using CNN 1D 10 Neuron 

 
 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain 

Lonchura Mada 79.6% 6.5% 0.9% 9.3% 0% 3.7% 

House Sparrow t1 0% 100% 0% 0% 0% 0% 

House Sparrow t2 0% 2.0% 85.9% 7.1% 0% 5.1% 

Quiet 0% 5.6% 1.4% 77.8% 1.4% 13.9% 

Turtledove 0% 0% 0% 8.3% 88.9% 2.8% 

F1 Score 0.89 0.87 0.91 0.76 0.93  

 

Table 4. Confusion Matrix for classification on testing using MobileNet V1 

 
 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain 

Lonchura Mada 52.8% 5.6% 2.8% 5.6% 0% 33.3% 

House Sparrow t1 15.4% 35.9% 0% 0% 0% 48.7% 

House Sparrow t2 3.0% 0% 76.8% 1.0% 0% 19.2% 

Quiet 1.4% 2.8% 0% 65.3% 1.4% 29.2% 

Turtledove 0% 0% 0% 0% 75% 25% 

F1 Score 0.65 0.46 0.85 0.75 0.84  

 

Table 5. Confusion Matrix for classification on testing using MobileNet V2 

 
 Lonchura Mada House Sparrow t1 House Sparrow t2 Quiet Turtle-dove Uncertain 

Lonchura Mada 82.4% 5.6% 0.9% 2.8% 0% 8.3% 

House Sparrow t1 0% 100% 0% 0% 0% 0% 

House Sparrow t2 0% 0% 84.8% 3.0% 0% 12.1% 

Quiet 2.8% 6.9% 0% 69.4% 0% 20.8% 

Turtledove 0% 0% 0% 8.3% 66.7% 25% 

F1 Score 0.89 0.88 0.91 0.76 0.80  

 

 

4. ANALYSIS  

 

When using Edge Impulse, there are two options: the first is 

to create a code library with various programming language 

options, and the second is to generate binary code that 

functions as firmware. In this research, the Arduino Library 

was chosen to be embedded into the Arduino RP2040 Connect 

board. Arduino RP2040 Connect board has an ARM Cortex 

M0+ clock speed of up to 133MHz 32-bit, 264 kB SRAM, 16 

MB Flash memory, and high-performance energy efficiency. 

Additionally, it is also equipped with a 6-axis Inertial 

Measurement Unit (IMU), gyroscope, PDM, temperature 

sensor, WIFI, and Bluetooth 5.0. 

Arduino libraries are built for each model (1D CNN and 

MobileNet) using the EON or TFLite in quantized (8-bit) and 

floating-point (32-bit) representations. The research results are 

plotted using four different values per model.  

To ensure that the architectural model we use can work well 

on the targeted embedded chip, namely the RP2040 connect, 

it is necessary to compare the inference of each architectural 

model, especially how much the model uses memory (SRAM) 

and how much Storage utilization (Flash), for that we have 

previously also conducted similar research using other types 

of Tiny ML with slightly smaller SRAM and flash capacities, 

namely the Seeeduino NRF52840 Sense [20], so based on the 

results of this research, we then made it a reference again on 

the ML RP2040 Connect board, of course with adjustments to 

the calculation of larger memory and RAM capacity, although 

this has a small effect, but the ML RP2040 Connect Board here 

is easier to get than the Seeeduino Board, let alone the Tiva C. 

Deployment to Edge Impulse calculates memory usage and 

time per inference for each model based on deployment board 

options. This software provides both unoptimized float models 

(F) and quantized models (Q) using EON or TensorFlowLite 

interpreters. The Arduino libraries for the four models can be 

downloaded and embedded separately to measure the board's 

reliability. Table 6 shows the results of the inference values for 

the RP2040 Connect microcontroller. 

Figure 9 shows the results of the classification accuracy of 

training process on each models architecture where all model 

representing the accuracy in the training process moves up at 

each epoch. 

Figure 10 shows loss chart of training process on each 

model’s architecture where all model representing the loss in 

the training process decrease at each epoch. 

 

Table 6. The deployed classification model result inference 

on Raspberry RP2040 Connect 

 

 Quantized 

(EON) 

Float 

(EON) 

Quantized 

(TFLite) 

Float 

(TFlite) 

CNN 1D     

RAM ( KB) 11.8 K 11.8 K 11.8 K 11.8 K 

Flash (KB) 41.6 K 64.4 K 62.5 K 91.3 K 

Accuration(%) 82.07% 81.79% 82.07% 81.79% 

Time (ms) 841 ms 1004 ms 841 ms 1004 ms 

CNN 1D 10 Neuron    

RAM ( KB) 11.8 K 11.8 K 11.8 K 16,2 K 

Flash (KB) 45.0 K 77.3 K 66.2 K 104.4 K 

Accuration(%) 84.59% 84.31% 84.59% 84.31% 

Time (ms) 844 ms 1004 ms 844 ms 1004 ms 

MobileNet V1 0.1 128 Neuron   

RAM ( KB) 37.0 K 54.9K 37.8K 70.8K 

Flash (KB) 117.8K 230.9K 159.4K 275.4K 

Accuration(%) 61.86% 62.43% 61.86% 62.43% 

Time (ms) 489 ms 1607 ms 489 ms 2189 ms 

MobileNet V2 0.35 128 Neuron   

RAM ( KB) 216.3K 399.9K 205.3K 488.5K 

Flash (KB) 730.2K 2.2M 833.4K 2.2 M 

Accuration(%) 77.97% 80.79% 77.97% 80.79% 

Time (ms) 1457 ms 9633 ms 1457 ms 9633 ms 
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Figure 9. Accuracy chart on training process 

 

 
 

Figure 10. Loss chart on training process 

 

 

5. DISCUSSION 

 

System performance using embedded machine learning and 

the experiments that have been carried out are influenced by 

different factors. The accuracy value of the custom 1D CNN 

model is 3.52% higher than MobileNet V2 in unoptimized 32-

bit float and 6.6% high in 8-bit quantized. This difference in 

accuracy usually occupies more memory and takes longer to 

infer. However, in this research, the two models use different 

sampling frequencies (where 1D CNN allows using 8Ksa/sec 

and MobileNet with it is MFE feature extraction requires a 

minimum of 16Ksa/sec) so that better accuracy values are 

obtained with the 1D CNN model without sacrificing memory 

and inference time. 

In some cases of unoptimized float, it seems not possible to 

implement the MobileNet-V2 model to Raspberry RP2040 

Connect chip without quantization because it requires 1.85 

times and 1.51 times the available RAM for the 

TensorFlowLite models and EON, Even though the Flash 

memory size is available 86.25% of the total memory in 

floating point on both TensorFlowLite and EON. Meanwhile, 

with its unoptimized float, even the 1D CNN model still 

occupies not more than half of the available space (RAM or 

Flash) for both the Edge Optimized NN model and the 

TensorFlowLite model. However, for optimal embedding, 

microcontroller machine learning algorithms focus on the 8-

bit optimized model. 

After optimization, the MobileNet V2 model size reduces 

Flash by a factor of 1.89, and The MobileNet V1 compressed 

by a factor of 1.48 for TensorFlowLite and EON. RAM usage 

consumes more than 50% of resources while using 

MobileNetV2, with a decrease after optimation of a factor of 

1.84 for the Edge Optimized NN and 2.38 for the 

TensorFlowLite. However, if using the MobileNet V1 model, 

it is still possible to do inference on board using both quantized 

and float-32 options. There is no memory footprint reduction 

value on the 1D CNN model after optimation (Q). Still, it 

reduces Flash memory usage by 36.59% for TensorFlowLite 

and reduces Flash memory usage by 41.79% for EON. 

The optimation of the CNN model in the research did not 

reduce the memory footprint but reduced the use of Flash; 

however, in the experiments we conducted, there was an 

increase in accuracy after quantization; 1D CNN after 

quantization, we found accuracy increased by 0.28%, 

MobileNet on the other hand reduced accuracy by 0.57% after 

quantization due to a decrease in the required memory 

footprint. Memory footprint requirements in the ratio of Flash 

usage and available RAM are depicted in sixteen different 

cases visualized in Figure 11 and Figure 12. 

In this paper, the accuracy values with various combinations 

of learning rates on Figure 13, the accuracy values of the 

MobileNet V1 model tend to be lower than other models. Even 

when compared with MobileNet V2, as the comparison carried 

out by Tan et al., the difference in accuracy values between the 

two versions of the transfer learning model can be 4% to 

21.9% [21]. We also found a difference in accuracy of around 

16.11% to 18.36% in this study where the Mobilenet V2 model 

had accuracy values that tended to be better, although not as 

good as the 1D CNN model. The custom 1D CNN model 

provides the best accuracy result value of 87.4% accuracy 

during training, and 84.59% on testing. As seen in Figure 13 

and Figure 14, 1D CNN shows the highest accuracy results 

when the learning rate value is 0.008 second. 

According to the result of TensorFlowlite or EON ( Edge 

Optimized NN) on model deployment and time inference, we 

know clearly that TensorFlowLite requires more resources 

than Edge Optimized NN. However, the disadvantage of using 

Edge Optimized NN is that it is difficult to change the model, 

contrary to TensorFlowLite. Edge Optimized NN does not 

impact the accuracy or inference time because it still runs 

TensorFlowLite in the background [22]. The accuracy test 

results for both models show that the deep 1D CNN model has 

a generally higher accuracy value; however, the inference time 

for the Edge Optimized NN and TensorFlowLite 8-bit 

quantized(Q) models appears to be alike. The MobileNetV1 

model has a time difference of 355 ms, with MobileNetV1 

optimized through quantization having a faster inference time 

than 1D CNN. In the MobileNetV2 model, there is a difference 

of 613 ms, using MbileNetV2 after quantizing having a lagged 

inference time compared to CNN 1D. 

From all the experiments and running inferences carried 

out, it can be concluded that using 8 Khz audio 1D CNN 2 

layers with an Edge Impulse framework and then embedding 

it on the low-power Arduino RP2040 Connect board is more 

than enough to detect the sound of Lonchura Mada birds and 

house sparrow birds to support the work of automatic bird 

repellents in rice fields. With this optimization, the use of 

excess resources, such as the use of batteries or excess power, 

can be reduced. Farmers' losses due to bird attacks are also 

expected to impact Rp significantly. 2040-connect is also 

relatively easy to buy here; if we want to make a cheaper bird-
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repellent tool with an internal PDM microphone, we can also 

embed the results of this inference model on the super cheap 

Seeed Studio NRF52840 Sense microcontroller, which in 

terms of specifications is only slightly different from the 

RP2040-Connect. However, the weakness of this embedded 

system is that it takes work to update instantly. 

 

 
 

Figure 11. Ratio of RP2040 Connect memory usage for 

CNN 1D and MobileNet models using Edge Optimized NN 

and TensorFlowlite interpreter in unoptimized float-32 (F) 

and quantized(Q) 

 

 
 

Figure 12. Ratio of RP2040 Connect RAM usage for CNN 

1D and MobileNet models using Edge Optimized NN and 

TensorFlowLite interpreter in unoptimized float-32(F) and 

quantized(Q) 

 

 
 

Figure 13. Accuracy result chart based on given learning rate 

on training process 

 
 

Figure 14. Accuracy result chart based on given learning rate 

on testing process 

 

 

6. CONCLUSIONS 

 

This series of experiments shows that a custom 1D CNN 

model has been created using Edge Impulse with a sample 

audio frequency of 8Ksa/second with MFCC feature 

extraction. The classification of the sound of the rice pest birds 

Lonchura Maja and sound of the rice pest bird house sparrow, 

which is carried out using a custom method using embedded 

machine learning, produces sound recognition that allows it to 

be embedded in the small microcontroller RP2040 Connect. 

This microcontroller is very efficient in power consumption. 

The 1D two-layer CNN method provides voice recognition 

accuracy of 87.4% on training and 84.59% on testing using 

66.2 Kbyte Flash memory with 11.8 Kbyte Peak RAM. 

Suppose you use the MobileNet V2 models for almost the 

same accuracy value. In that case, you need a Flash memory 

size that is 13 times larger and a RAM size that is around 17 

times larger due to the MFE feature extraction requiring a 

significant sample frequency of 16Ksa/second. Therefore, it is 

only possible to embed it on this RP2040 Connect board using 

the MobileNet V2 Model with the quantized option. 
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