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Over the past decade, there has been a renewed interest in Artificial Intelligence and its 

diverse frameworks. This research proposed a big data recommendation system that 

leverages two prominent deep learning frameworks which are PyTorch and TensorFlow to 

enhance collaborative filtering (CF) outcomes. The goal is to recommend more relevant 

products to users by incorporating textual review comments and combining various 

attributes. The study explores two recommendation system approaches within each 

framework. In the PyTorch framework, two collaborative filtering models were developed: 

one without incorporating user review text and the other with the inclusion of text from user 

reviews. Similarly, for the TensorFlow framework, two recommendation models were 

created: one without utilizing user review text, and the other with the integration of text 

reviews. The dataset, sourced from the Amazon website, comprised over 600,000 ratings 

and reviews. The outcomes showed significant enhancements by employing the proposed 

text-based method in both PyTorch and TensorFlow frameworks and addressed challenges 

such as dynamic preferences and data sparsity. Finally, the study provides a comparative 

analysis of the advantages and drawbacks of each utilized framework. 
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1. INTRODUCTION

The term big data refers to an extensive volume of data that 

surpasses the capabilities of traditional data management 

methods. Primary sources for generating big data include 

conventional business systems, the Internet, social networks, 

and the Internet of Things [1]. This substantial increase in data 

provides a significant opportunity for scholars and analysts to 

gain a profound understanding of user opinions and interests 

[2]. Therefore, recommender systems (RS) can address the 

challenge of information overload in big data scenarios by 

utilizing user historical data sourced from social networks. In 

data-driven markets, digital platforms, and competitors 

frequently leverage proficient recommendation engines to 

offer valuable suggestions. Consequently, recommendation 

engines have emerged as potent tools for internet companies 

[3, 4]. Fundamentally, recommendation systems are software 

applications that endeavor to recommend the most fitting 

items to individual users. This is achieved by predicting their 

interest in an item based on pertinent information about similar 

items [5]. 

Conventional RS can be constructed by developing a model 

using typical data, which encompasses user, item, and user 

preferences such as ratings [6]. These stated attributes in the 

input data may not provide sufficient information for 

achieving exact outcomes. Relying on single form input data 

lacks the necessary details and is susceptible to noisy data. 

Therefore, it is more favorable to incorporate supplementary 

information into RS to increase accuracy and mitigate 

potential inaccuracies associated with limited data [7]. Thus, 

this study recommends the inclusion of text data to enhance 

accuracy. When dealing with large text data, it is essential to 

employ Natural Language Processing (NLP) techniques as a 

first stage for proficient data examination. The significance of 

NLP has been explored and determined to be essential for the 

effective processing of large-scale data. NLP utilizes various 

methods to interpret uncertainties in human language and 

contains many techniques such as textual summarization, and 

voice recognition [8]. Essentially, the recommendation system 

employs four different filtering types specifically 

collaborative, content-based, demographic, and hybrid [9]. CF 

models evaluate similarities between various users by 

investigating their ratings, and then they make predictions for 

new recommendations based on the relationships between 

users [10]. The two primary categories of CF algorithms are 

memory-based CF and model-based CF. In memory-based 

CF, historical behavioral data is employed to identify potential 

connections between users and items, forming the basis for 

generating recommendations. This type of CF can be further 

classified into two subcategories: user-based CF (UCF) and 
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item-based CF (ICF). Multiple models have been devised for 

both UCF and ICF. UCF models concentrate on identifying 

items favored by similar users and predicting the ratings a 

target user might assign to those items. Conversely, ICF 

models ascertain the similarity between items and utilize the 

ratings provided by the target user to recommend items with 

high similarity. Model-based CF, also known as a learning 

based model, entails defining a parameter model to 

characterize the user-item relationship and subsequently 

optimizing these model parameters. Various machine learning 

algorithms, including matrix factorization, neural networks, 

and clustering algorithms, are grounded in the model-based CF 

approach [11, 12].  Recommendation systems confront a range 

of hurdles and challenges, encompassing issues such as 

accuracy, sparsity, dynamic preferences, cold-start problems, 

scalability, and various other related challenges [13]. 

Moreover, traditional collaborative filtering methods grapple 

with these challenges, particularly the issue of data sparsity. 

This challenge arises because each user only provides ratings 

for a restricted number of available items [14, 15]. 

Furthermore, the user's preferences are distinct and suffer from 

dynamic changes in response to the characteristics of the 

interaction. This uniqueness and dynamism highlight the need 

for adaptive systems that can effectively capture and 

accommodate evolving user preferences. Developing 

mechanisms to continuously monitor and adapt to these 

changing preferences is crucial for enhancing the overall user 

experience and ensuring that recommendations remain 

relevant and personalized over time [16]. Hence, to address 

these problems and mitigate the dynamic preference changes 

and data sparsity issues, employing the proposed text-based 

methods of this study emerges as a viable and effective 

solution.  

In recent times, scholars have started employing Deep 

Learning (DL) with its frameworks are used to enhance the 

capabilities of many fields. This work tests two DL 

frameworks which are PyTorch and TensorFlow in big data 

collaborative filtering recommendation systems. DL models 

with varied operational rules, such as Boltzmann machines, 

stacked auto encoders, and Multi Layer Perceptron, are 

applied to acquire characteristic representations among users 

and items [17]. A deep neural network (DNN) is chosen 

because of its effectiveness in handling scenarios with a high 

level of complexity or a large volume of training data [18]. The 

existence of online reviews and comments on various 

platforms underscores the common use and impact of text as a 

significant medium for users to convey their opinions. 

Considering that text mirrors users' needs and emotions, the 

integration of text mining techniques stands as a powerful 

means to considerably improve the accuracy of 

recommendation systems [19]. Predicting user preferences 

solely through the use of numerical data such as rating can 

pose significant barriers creating challenges in accurately 

capturing the full spectrum of user preferences [20]. Hence, 

numerous researchers have incorporated the use of auxiliary 

data and the integration of information from diverse attributes, 

recognized as effective solutions for addressing challenges 

related to accuracy and sparse data [21]. Therefore, including 

user reviews in this study as input could be advantageous, as 

it provides extra information about the product, aiding in more 

accurate recommendations. Extracting meaningful details 

from the review text also allows for the creation of a more 

comprehensive user-item feature matrix that takes into 

consideration both the ratings and textual information. 

The core contributions of this work can be summarized as 

follows: 

-Combine advanced text-mining and NLP methods with

two famous deep learning frameworks: PyTorch and 

TensorFlow to find an effective recommendation system 

model. 

-Evaluating and comparing the effectiveness of the big data

recommendation system in both PyTorch and TensorFlow 

deep learning frameworks. 

The structure of this article is outlined as follows: Section 2 

explores a thorough examination of the current literature 

concerning recommendation systems, PyTorch, and 

TensorFlow frameworks. Section 3 delivers a complete 

clarification of the deep learning frameworks used, 

specifically PyTorch and TensorFlow. In Section 4, a 

comprehensive depiction of the proposed system architecture 

is provided. Section 5 showcases the experimental results, and 

lastly, Section 6 shows the conclusion of the work. 

2. RELATED WORK

In recent times, a considerable number of scientific articles 

have been published on subjects such as the PyTorch 

framework, TensorFlow framework, big data, and 

recommendation systems. These articles have introduced 

diverse methodologies for constructing proficient models. 

This section will concentrate on examining the most esteemed 

contributions within these domains. 

Omar et al. [22] proposed an innovative big data RS that 

improves CF outcomes by integrating NLP methods and 

managing multiple-attributes. It developed two big data RS 

models using ML algorithm. Both models employed the 

Alternating Least Squares (ALS) algorithmic rule within the 

Spark big data context. The first model did not utilize NLP 

methods, whereas the second model incorporated advanced 

NLP methods by analyzing user-review-comments. A dataset 

comprising more than 3 million ratings and reviews, totaling 

3.1 GB, was collected from the Amazon website. Novac et al. 

[23] presented an analysis of critical aspects that emerge

during the development of neural network applications. The

objective is to assess whether the selection of a library can

influence the overall performance of the system, whether

during training or design. Initially, they compared two widely

used neural network libraries, PyTorch and TensorFlow. The

goal is to select a set of measures that can effectively showcase

the advantages and disadvantages of each library under

consideration. Omar et al. [24] Suggested a prototype RS

hosted on the cloud designed to manage substantial big data

volumes. This system utilizes matrix factorization through

three distinct methods: singular value decomposition (SVD),

ALS implemented with Spark, and DNN leveraging

TensorFlow. Through the optimization of algorithms and

parameters in the ALS and DNN methodologies, the study

effectively tackled the issue of handling extensive

collaborative filtering datasets. The outcomes from these two

methods surpassed the performance of conventional

techniques while maintaining a satisfactory level of

computational efficiency. Liang et al. [25] proposed a novel

recommendation system named deepLTRS, leveraging a deep

generative latent model known as variational auto-encoder

(VAE). The incorporation of topic modeling in the review

segment is achieved through the application of the ProdLDA

algorithm to enhance the quality of topics. The numerical
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experiments conducted on both simulated and real-world 

datasets, provide evidence of the effectiveness of their 

proposed model. Mahon et al. [26] Conducted scalability 

assessments on various prominent deep learning frameworks 

(TensorFlow, Keras, MXNet, and PyTorch) using state-of-the-

art High Performance Computing (HPC) resources. Their goal 

was to compare the efficiency of diverse implementations 

across various hardware architectures, including Central 

Processing Units (CPUs) and Graphics Processing Units 

(GPUs). Nassar et al. [27] proposed a novel collaborative 

filtering recommender system that incorporates multiple 

criteria by combining deep neural network and matrix 

factorization techniques. The model comprises two distinct 

components. The first component utilizes a fused model of 

deep neural network and matrix factorization to estimate 

ratings for various criteria. The second component employs a 

deep neural network to predict the overall rating. Chirodea et 

al. [28] presented a comparison between the PyTorch and 

TensorFlow environments utilized for defining neural 

networks. The aim is to investigate whether the choice of a 

library impacts the overall performance of the system during 

both the training and design phases. This involves analyzing 

the processes involved in creating a neural network, measuring 

outcomes, and monitoring its evolution over epochs. 

Subsequently, advantages and disadvantages are extracted 

from their obtained results. Osman et al. [29] used a sentiment 

based model with added contextual data to tackle domain 

sensitivity. This implies that their new approach combines the 

sentiment based model with contextual data. The test aimed to 

assess the efficiency of the standard rating model, sentiment 

model, and contextual data model. The outcomes showed that 

the proposed contextual information sentiment based model 

performed better than the traditional CF method in terms of 

recommendation accuracy. Sharma et al. [30] utilized natural 

language processing technologies along with CNN to predict 

similar products. In the analysis and recommendation process, 

particular emphasis is placed on the product's text title as a 

significant attribute. CNN is employed to create a feature 

vector from the product images, which is then integrated with 

other vectors for making predictions. For recommendations, a 

comparison of the distance between vectors for all products is 

conducted, suggesting those with the least distance. Abbasi-

Moud et al. [31] proposed a personalized tourism RS that 

tailors suggestions according to individual preferences. User 

reviews sourced from tourism-centric social networks are 

leveraged as a valuable data repository for extracting user 

preferences. These reviews undergo preprocessing, semantic 

grouping, and sentiment analysis to discern travelers' 

preferences. Likewise, reviews gathered from all users 

regarding specific attractions are employed to select the 

primary characteristics of these points of interest. In the end, 

the RS proposed semantically compares a user's preferences 

with the characteristics of attractions to suggest the most 

fitting options.  

 

 

3. PYTORCH AND TENSORFLOW FRAMEWORKS 

 

PyTorch, launched in 2016, is grounded in the principle of 

maintaining a simple API that can be effortlessly customized 

and updated to align with the latest developments in the field 

of artificial intelligence [32]. Overall, PyTorch serves as a 

comprehensive framework for both ML and DL. With its user-

friendly interface, distributed training capabilities, and a rich 

ecosystem of tools and libraries, PyTorch facilitates seamless 

and versatile experimentation, as well as efficient production 

[33]. Additionally, PyTorch, recognized as an emerging 

Python library and framework, executes effective GPU-based 

tensor computations and streamlines the construction of neural 

architectures by offering robust mechanisms for automatic 

gradient computation. A distinctive feature of PyTorch is its 

flexible design, inherently accommodating the creation of 

dynamic neural networks [34]. Moreover, deep learning 

frameworks that are graph-based such as PyTorch typically 

feature an automatic differentiation engine. This engine 

preserves data dependencies in the form of a graph and offers 

an API that allows users to invoke algorithms for exploring the 

mathematical operations history and computing derivatives 

with a single line of code [35]. 

On the other hand, TensorFlow is a flexible and scalable 

software library designed for numerical computations utilizing 

dataflow graphs. This library, along with its associated tools, 

allows users to efficiently program, train, and deploy neural 

networks and other machine learning models. The core 

algorithms of TensorFlow are written in highly optimized C++ 

and CUDA (Compute Unified Device Architecture), which is 

a parallel computing platform and API developed by NVIDIA. 

TensorFlow provides application programming interfaces 

(APIs) in multiple languages, and the Python API stands out 

as the most complete and reliable option. Moreover, one of the 

benefits of TensorFlow is its integration with the Keras 

package [36, 37]. TF supports deep neural networks and a 

diverse range of machine learning techniques, along with 

powerful computational capabilities for managing various 

datasets. It also incorporates unique features for efficient 

memory management and data optimization. Additionally, TF 

is compatible with various operating systems, such as Ubuntu, 

macOS, and Windows, allowing users the flexibility to install 

and run TensorFlow with either CPU or GPU support [38]. 

However, TensorFlow offers a TensorBoard visualization 

API. This tool can exhibit the input and output tensor variables 

at each node. Additionally, it can reveal the dependencies 

between tensor operations through edges [39]. 

 

 

4. PROPOSED RECOMMENDATION DESIGN 

 

This section introduced the design of a book 

recommendation system for big data that employs two deep 

learning frameworks along with natural language processing. 

The proposed framework includes both PyTorch and 

TensorFlow, as illustrated in Figure 1, outlining the overall 

system steps. It is clear that the framework involves nine 

distinct steps: 

Step 1: Google Colab Pro Plus which is known as a paid 

Jupyter notebook platform that operates entirely in the cloud, 

has been utilized in this work. 

Step 2: Acquiring the dataset, which is about 1 gigabyte and 

includes over 650,000 rows of user reviews and ratings 

obtained from the Amazon website which enables the 

researchers to use the data for scientific intentions.  

Step 3: Generally, the original data may comprise many 

irrelevant attributes that do not impact the efficiency of the 

recommendation system. To expedite the processing time, all 

these non-essential attributes are removed. 

Step 4: To enhance the accuracy of the utilized models 

while dealing with unstructured datasets, various 

preprocessing techniques have been implemented. These 
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encompass tasks such as data cleaning, data normalization, 

feature extraction, etc. 

Step 5: The proposed study encompasses two deep learning 

frameworks. The first one utilizes the PyTorch framework, 

while the second employs the TensorFlow framework. In this 

phase, the essential environments and dependencies for both 

approaches were installed to build the models. 

Step 6: Both frameworks employed a DNN algorithm with 

a batch size of 64 and 10 epochs. However, the training dataset 

size is 80 % and the remaining is used for the testing set. In the 

case of PyTorch, two models were proposed: the first model 

excluded NLP methods, while the second model integrated 

NLP methods, considering the texts written by users along 

with the other relevant attributes such as user ID and product 

ID. The same procedure was mirrored for the TensorFlow, one 

model incorporating NLP techniques and the other without. 

The integration of the texts in both frameworks has been done 

by using the column of the text comments in the dataset with 

the other traditional columns which are always used in the 

recommendation system. Because the mentioned text column 

consists of rich information that helps the system to 

recommend more accurate items to the users. 

Step 7: After the processing phase, each framework 

produced two recommendation lists, each corresponding to a 

specific model. Additionally, it mentions that a total of four 

recommendation models were constructed. 

 

 
 

Figure 1. The proposed recommendation system using both 

PyTorch and TensorFlow frameworks 

 

Step 8: At this point in the process, an individual evaluation 

is conducted for each list of recommendations. This involves 

a comprehensive examination of the suggested item selections 

within each framework to gauge their effectiveness and 

relevance. The aim is to assess the quality and appropriateness 

of the recommendations provided by each specific model. This 

thorough evaluation contributes to the overall analysis of the 

recommendation system's performance and its ability to meet 

the desired criteria for accuracy and user satisfaction. 

Step 9: A comprehensive assessment was performed to 

scrutinize and compare the outcomes produced by the models 

within each framework. This involved a meticulous 

examination of the recommendations generated by the models 

in PyTorch and a parallel analysis of the models implemented 

in TensorFlow. The purpose of this comparative analysis was 

to discern any disparities in performance, strengths, or 

weaknesses between the two deep learning frameworks. By 

conducting a thorough examination of these aspects, valuable 

insights were gained into the relative effectiveness and 

nuances of the recommendation models, contributing to a 

more informed understanding of their respective capabilities 

and potential areas for improvement. 

 

 

5. RESULT ANALYSIS AND COMPARISON 

 

In the next subsections, the details of the experimentations 

and outcomes are introduced. Subsection 5.1 displays the 

system environment However, subsection 5.2 provides an 

explanation of the dataset. Finally, subsection 5.3 

demonstrates the analysis and comparison of the results. 

 

5.1 System environment 

 

The integrated development environment (IDE) utilized 

throughout this project was Google Colab Pro Plus, featuring 

a Graphical Processing Unit and Tensor Processing Unit run-

time environment. This paid Jupyter Notebook platform 

operates entirely in the cloud, eliminating the need for any 

setup. Leveraging Google Colab enables users to write and 

accomplish code, preserve and share their studies, and get 

influential calculating resources directly through their web 

browsers [40].  

This Framework is projected for scripting and executing the 

Python program codes, offering three designs: a free version 

and two premium options named Colab Pro and Colab Pro 

Plus. The preference for Colab Pro Plus in this context is due 

to its provision of additional resources essential for this work, 

along with a more generous usage-limit compared to the free 

plan. The maximum usage limits for Colab Pro Plus VMware 

are 52 GB RAM, 1TB data storage, and P100- T4-V100 GPU 

usage with 24 hours of session time [41]. 

 

5.2 Dataset explanation  

 

In this work, actual data was utilized to validate the efficacy 

of the proposed approaches. The dataset was sourced from the 

Amazon website, specifically focusing on books. Figure 2 

present the screenshot of the dataset.

 

 
 

Figure 2. A screenshot of the dataset 

1360



Also, the dataset is Demonstrated in a Tab Separated Values 

File (TSV) type, the dataset includes diverse attributes such as 

customer ID, product ID, star ratings, product title, review 

headlines, and review body. Analyzing this extensive dataset 

effectively required the application of feature-extraction and 

various NLP methods to reach satisfactory outcomes. The 

dataset itself is substantial, comprising over six hundred 

thousand user ratings, with a file size of approximately one 

gigabyte, encompassing 650,000 rows.  

 

5.3 Results 

 

As previously noted, the proposed study is partitioned into 

two deep learning frameworks: PyTorch and TensorFlow. The 

deep learning algorithm employed is the DNN algorithm, and 

the data are divided randomly, with 80% allocated for training 

and 20% for testing in both frameworks. It's essential to 

highlight that all tuning procedures such as the number of the 

epochs, batch size, and any other relevant parameters have 

been implemented consistently and fairly for both PyTorch 

and TensorFlow frameworks. In the PyTorch framework, two 

collaborative filtering recommendation system models were 

constructed. The initial model excluded the use of text, while 

the second model incorporated it by considering the review 

text provided by users. A parallel approach was undertaken for 

the TensorFlow framework, where two models were 

developed, one without and the other with the integration of 

the text. Both frameworks were examined to assess the impact 

of incorporating the user's textual review on recommendation 

accuracy. For each model within the frameworks, key metrics 

such as RMSE, MAE, and execution time were computed. 

These metrics serve to assess the performance of the RS and 

provide insights into its accuracy and efficiency. The 

subsequent sections will present the detailed results of the 

PyTorch and TensorFlow frameworks, along with a concise 

comparative analysis between them in two tables. 

 

5.3.1 PyTorch and TensorFlow results 

Two distinct DNN recommendation models were built 

utilizing the PyTorch and TensorFlow frameworks. One 

model integrated the text, while the other model refrained from 

using texts by employing only the traditional deep neural 

network algorithm. Old-style systems only rely on standard 

data such as user, item, and rating which may fall short in 

accuracy. To solve this restriction and enhance correctness, 

incorporating additional information, particularly text data 

becomes vital. Using NLP methods is imperative for the 

efficient analysis of huge text data. The DNN text-based 

models in both frameworks involved the training of 

collaborative filtering on attributes containing user-item-

rating triplets and user text reviews.  

In general, all the DNN and DNN Text-Based models in 

both frameworks underwent experimentation with five 

different types of optimizers: Stochastic Gradient Descent 

(SGD), Root Mean Squared Propagation (RMSprop), 

Adaptive Gradient Algorithm (Adagrad), Adaptive Moment 

Estimation (Adam), and AdaMax. Consequently, Adam was 

identified as the optimal parameter among all the mentioned 

optimizers. It yielded the best results and achieved the highest 

scores in both frameworks. The results from both frameworks 

demonstrate that the DNN text-based model surpassed the 

DNN model that did not incorporate texts across all the metrics 

employed. Fortunately, there was a reduction in both RMSE 

and MAE in the text-based models. There are several reasons 

for performance improvement in models with NLP techniques 

such as Data Interpretation, Extraction of meaningful features 

from the text, and Understanding user preferences deeply. 

These differences can significantly impact the practical 

application of recommendation systems and increase the 

relevancy of the overall system. Table 1 demonstrates the 

results of the frameworks for all the proposed models. 

 

Table 1. Results of the frameworks for all the constructed 

models 

 
Framework Type of Methods RMSE MAE Time in Min. 

PyTorch 

DNN 0.44 0.30 17.56 

DNN with 

Text-based 
0.32 0.20 30.11 

TensorFlow 

DNN 0.68 0.58 13.17 

DNN with 

Text-based 
0.35 0.24 21.43 

 

5.3.2 Comparison between the frameworks 

After implementing both approaches, it becomes imperative 

to compare them to identify the optimal model and framework. 

These comparisons focus on time efficiency and other metrics 

such as RMSE and MAE. The findings reveal that text-based 

models in both frameworks outperform those without text, 

albeit with a longer computational time for model building. 

Moreover, the models utilizing the PyTorch package exhibit 

slightly greater accuracy than their TensorFlow counterparts 

in both text-based and traditional models.  

 

 
 

Figure 3. Frameworks comparison on DNN models 

 

 
 

Figure 4. Framework comparison on DNN text-based  

 

However, model building in PyTorch takes more time, 

consumes more GPU resources, and requires more memory 

than in TensorFlow. In summary, the results suggest that 

integrating text in recommendation systems for big data can 

lead to significant improvements in accuracy, effectively 

addressing challenges such as dynamic preferences and data 

sparsity associated with CF. Figure 3 compares the results of 

DNN models between PyTorch and TensorFlow, while Figure 

4 contrasts the results of DNN text-based models in both 
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frameworks. On the other hand, Figure 5 illustrates the 

variations in execution time among the models in the 

frameworks. 

When it comes to dealing with big data, both PyTorch and 

TensorFlow have strengths and considerations that may 

influence the choice of framework. Table 2 presents a 

comparison of their advantages and limitations in general. On 

the other hand, Table 3 demonstrates their advantages and 

limitations in the context of handling big data. Both PyTorch 

and TensorFlow can manage big data, but TensorFlow 

distinguishes itself with its robust ecosystem, comprehensive 

tools, and substantial support for distributed computing in 

large-scale environments. The decision to opt for PyTorch or 

TensorFlow in big data projects hinges on particular 

requirements, the team's familiarity with the frameworks, and 

the preferences of the development team. 

 

 
 

Figure 5. Frameworks execution time 

 

Table 2. General advantages and limitations of the frameworks 

 
Criteria PyTorch TensorFlow 

Ease of use 
Known for its dynamic computational graph, making it 

more intuitive and Pythonic. Easier to debug and understand 

Has a steeper learning curve due to its static 

computational graph but is well-suited for production 

environments 

Flexibility 
Offers dynamic computational graphs, making it more 

flexible for dynamic models and experimentation. 

Primarily uses static computational graphs, which can be 

less flexible for certain dynamic models 

Community 

support 

Growing community with a focus on research and 

experimentation. Extensive support in the research 

community 

Larger and more established community with widespread 

industry adoption, providing extensive resources and 

libraries 

Deployment 

Generally considered better for research and 

experimentation. Deployment can be simpler with the use of 

the TorchScript 

Strong support for deployment in production 

environments, especially with TensorFlow Serving and 

TensorFlow Lite 

Visualization 
Limited visualization tools, but integration with libraries 

such as Matplotlib is common 

TensorBoard provides comprehensive visualization tools 

for monitoring and debugging. 

Popularity Gaining popularity, especially in the research community 
Widely popular and extensively used in both research and 

industry 

Ecosystem A growing ecosystem with various extensions and libraries 
A mature and extensive ecosystem with a wide range of 

tools, libraries, and community-contributed projects 

 

Table 3. Advantages and limitations of the frameworks in the context of textual big data 

 
Criteria PyTorch TensorFlow 

Coding style More complex than TensorFlow Easy to write codes with less complexity 

Text processing 
Supports text processing efficiently but it has 

some complexity with the preprocessing 

Supports text processing efficiently without any complexity in 

the preprocessing phase 

Using optimization 

Algo. 
It has some complexity Less complex 

Ease of use in big data 

PyTorch has a relatively straightforward API, 

making it accessible for researchers and 

practitioners, but may require additional setup 

for distributed computing in big data 

TensorFlow's comprehensive ecosystem includes tools such as 

TensorFlow Extended (TFX) and TensorFlow Data Validation 

(TFDV) for end-to-end deployment, making it a strong choice 

for large-scale data 

Integration with big 

data tools 

PyTorch has integration options with big data 

tools, but may not be as seamlessly integrated 

as TensorFlow with tools for data processing 

TensorFlow has better integration with various big data tools 

and frameworks, making it well-suited for end-to-end big data 

pipelines and deployments 

Their results in our 

system 
Slightly better than TensorFlow Somewhat less accurate 

Their time performance 

in our system 

Needed a slightly extended period of 

computational time 
Required a shorter amount of time than PyTorch 

 

 

6. CONCLUSION 

 

This research introduces a recommendation system for big 

data, utilizing two prominent deep learning frameworks which 

are PyTorch and TensorFlow to enhance collaborative filtering 

outcomes. The primary objective is to provide users with more 

relevant product recommendations and examining multiple 

deep learning frameworks. Hence, to test the performance of 

the frameworks, the study built two recommendation system 

models within each framework. In the PyTorch framework 

methodology, two collaborative filtering models were created 

using DNN algorithms, one with incorporating user textual 

review data and another model without the text. Similarly, for 

the TensorFlow framework, two recommendation models 

were created, one with integrating text data and one without. 

The dataset, sourced from the Amazon website, included over 

600,000 records. The results showed significant enhancements 

when applying the suggested text-based models in both 

PyTorch and TensorFlow frameworks, effectively addressing 

challenges related to dynamic preferences and data sparsity in 
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collaborative filtering recommendation. Additionally, a 

comparative analysis of the advantages and drawbacks of each 

framework was provided in the results section. While both 

PyTorch and TensorFlow can handle big data, TensorFlow 

often stands out due to its robust ecosystem, comprehensive 

tools, and extensive support for distributed computing in large-

scale environments. However, TensorFlow is noted for its ease 

of use in implementing optimization algorithms. On the other 

hand, PyTorch exhibits slightly higher accuracy than 

TensorFlow in both proposed models. But, model construction 

in PyTorch requires slightly more time. Ultimately, the choice 

between PyTorch and TensorFlow for big data projects 

depends on specific requirements such as the familiarity of the 

development team, and their preferences. Future work will 

concentrate on using a bigger dataset with applying a few 

optimization algorithms such as Optuna, Swarm, Bee, and Bat 

to gain more accurate recommendation system. 
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