
Dynamic Malware Pattern Analysis with Rapid Node Behaviour Analysis Using Self

Replication Model for Network Intrusion Detection

Ragini Mokkapati* , Venkata Lakshmi Dasari

School of Computer Science and Engineering, VIT-AP University, Amaravathi 522237, India

Corresponding Author Email: raginimokkapati@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290432 ABSTRACT

Received: 23 October 2023

Revised:21 March 2024

Accepted: 2 June 2024

Available online: 21 August 2024

Advanced machine learning and artificial intelligence-based malware identification and

categorization activities in real time are the primary emphasis of Malware Analysis and

Intrusion identification in Cyber Physical Systems, along with the time sequence output of

observed activity. Malware and other cyber threats have prompted the development of

numerous static and behavior based detection approaches. These cyber security solutions

show promise on large datasets, but they aren't reliable or resilient enough for real-world

detection. Problems like virus detection and the identification of malevolent behavior

highlight the critical need for improved cyber security solutions based on artificial

intelligence. For those who utilize the internet, malware has become an enormous issue.

The application is executed in a secure virtual environment and its actions are tracked in

real-time to facilitate dynamic malware detection. A lot of people utilize API sequence

analysis to find out if the software that is currently running is dangerous. While existing

systems do consider API names and usage frequencies, feature mining of API sequence

falls short, making it possible for some malware to evade detection. The two mainstays of

dynamic analysis now in use either modify the virus itself or use an elevated component to

execute the analysis. In contrast to the latter, which usually causes a discernible

performance overhead, the former is instantly identifiable by even the most sophisticated

malware. One of the most important steps in avoiding cyber assaults is developing new

cyber security methods to detect hostile nodes before they communicate. Traditional

dynamic malware detection models need to monitor the nodes more keenly for deep pattern

analysis and eradicating nodes that cause malicious actions in the network. This research

proposes a Dynamic Malware Pattern Analysis with Rapid Node Behaviour Analysis using

Self Replication Model (DMPA-RNBA-SRM) for Network Intrusion Detection in the

network. The normal patterns will be allowed into the network and the patterns of the nodes

that are unusual are not allowed temporarily. The Pattern analysis and updating is performed

and the detected patterns are analyzed and if they are malicious in nature, they will not be

allowed into the network. The self replication model will be triggered when a unusual

pattern is detected and required actions are performed in the network. The proposed model

dynamic pattern analysis and detection is high when compared to traditional models.

Keywords:

intrusion detection, dynamic malware

analysis, node behaviour, normal patterns,

unusual patterns, network security

1. INTRODUCTION

All computer-reliant networks and systems are increasingly

vulnerable to malware attacks. The number and sophistication

of newly released malicious software has increased

dramatically in recent years, according to security researchers

[1]. Malware caused over $1.8 trillion in losses in 2021, with

more software vulnerabilities discovered than the year before,

2.2 million more malware signatures generated, 673 million

more attacks reported [2]. Although half of all malware

samples are merely repackaged versions of known malware, it

is interesting to note that these samples still evade existing

commercial-off-the-shelf antivirus software by using static

signature-based techniques that are susceptible to code

obfuscation and polymorphism [3]. In contrast, dynamic

detection methods bypass such safeguards as code obfuscation

and polymorphism by mimicking a process's behavior at

runtime [4]. Typical dynamic techniques include system call

scheduling and flow diagrams. Methods that rely on the

sequence of system calls to develop a model of behavior. Four

known issues with these approaches exist: the processing

overhead of logging system calls; a substantial false alarm rate;

the capacity to make a decision only after assessing the

complete record of the processing procedure of a process and

the ease that they can be bypassed by simply restructuring the

system calls or adding insignificant system calls to invalidate

the sequence that recursive methods rely on [5].

The intricacy and innovation of malware have grown

throughout the years, despite the fact that it has existed since

the early days of computing. Malicious software poses risks to

private users, corporations, public services, governments, and

security organizations; the most recent wave of ransomware

has brought this issue into sharp focus. It is critical to identify

malicious behavior as soon as possible, ideally before it does

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1591-1601

Journal homepage: http://iieta.org/journals/isi

1591

https://orcid.org/0000-0002-6790-0586
https://orcid.org/0000-0003-2020-314X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290432&domain=pdf

harm, in order to safeguard these institutions and the public

from malware attacks. But knowing what to search for can be

challenging, particularly when dealing with previously unseen

spyware.

Static and dynamic analysis methods, when applied to

questionable files, can reveal useful information about the

file's effect on the hosting system and, depending on the rules

established by the approach, can assist establish if the file is

harmful. Malware authors employ a variety of tactics to evade

static analysis, such as code obfuscation, dynamic code

loading, encryption, and packing. However, dynamic analysis

can still uncover more about the files being analyzed, leading

to improved detection capabilities. Although dynamic analysis

outperforms static analysis, the methods and tools currently

available for dynamic analysis have their limitations, and no

one tool can account for every possible facet of malware

behavior.

Software designed to carry out an attacker's malevolent aim

is what we mean when we speak about malware detection [6].

Eliminating malicious software is a formidable challenge for

researchers in the area of network security. As a result of

poorly thought-out technological security countermeasures

and software flaws, attackers are becoming increasingly adept

at evading detection [7]. While antivirus software attempts to

match incoming code with a database of known bad

applications, NIDS [8, 9] examines network data and protocols

at a granular level to detect suspicious or destructive activities.

Because of its ability to hijack hosts, steal data, erase files, and

disrupt network services, malware poses a significant threat to

cyber security. Consequently, a great deal of research on

malware analysis has focused on the host-based environment.

Malware signatures are identifying patterns that malicious

software leaves behind that antivirus software uses to protect

users [10]. The amount of malware has grown substantially

after obfuscation techniques were introduced and open source

tools were widely available. Therefore, it is necessary to shift

focus from identifying malware signatures and to study its

behavior is required [11]. Malware detection relies heavily on

being able to identify individual harmful characteristics.

Malware detection will be faster and cheaper to maintain with

this approach. The malware detection strategies are shown in

Figure 1.

Figure 1. Malware detection models

Due to the complexity of analyzing infected machines,

system logs, and malware files for indicators of compromise

and potential goals, a reliable metric is needed for malicious

characteristics detection [12]. Malware samples that have been

compromised and classified by multiple anti-virus providers

can be compiled on sites like VirusTotal [13]. However, the

security sector has seen that several antivirus vendors employ

various malware labels [14]. Using supplementary tools, such

as on-demand detection methods like function call analysis,

may show the malicious code's execution behavior [15]. For

instance, they provide entry to the Application Programming

Interface (API) and the system resources it provides. Previous

studies have shown that malicious code often operates by

carrying out a predetermined list of commands [16]. If a piece

of code produces and writes files, for instance, that could be

interpreted as malevolent behavior. The NIDS model is shown

in Figure 2.

Figure 2. NIDS model

Devices inserted during scenario creation are just one

example of the new cyber risks brought about by the lightning-

fast development of networking, computing, sensing, and

control systems. More and more, contemporary vehicles,

medical equipment, and smart industrial systems are breaking

down due to external hazards and inefficient operations.

Turning on the system's built-in self-healing feature is

essential for maintaining service quality [17]. We want to

conduct a state-of-the-art analysis to identify the areas where

cyber-physical systems could benefit from self-healing

through machine learning, with the aim of improving security

and preventing breakdowns [18]. In this study, the three main

components of computer systems' self-healing capabilities—

fault warning, dynamic malware detection, and fault auto-

remediation—are outlined. These factors must be carefully

considered in order to incorporate self-healing features. To

fully benefit from these characteristics, one must be familiar

with the underlying self-healing theories [19]. Cyber-physical

system self-healing capabilities promise to be an exciting new

research topic for the creation of cutting-edge IT. Self-

organization and repair capabilities in cyber-physical systems

could improve system security and user satisfaction [20]. A

self-healing technology deployed on a power grid, for example,

would repair damage or threats automatically, allowing

communities to continue receiving power and vital services to

remain operational despite disruptions [21].

As digital technologies become increasingly integrated into

many sectors of the global economy, including trade,

manufacturing, healthcare, and government, so too will the

number and sophistication of attacks on computer systems and

networks. One aspect of this risk is cyber attacks, both

individual and governmental [22]. They targeted anyone who

stayed indoors during the COVID-19 pandemic lockdowns, as

well as schools, businesses, hospitals, and other places of

employment [23]. Research into self-healing computer

systems has become increasingly significant in recent years as

broad use of digital technology has left communities more

susceptible to damaging cyber-attacks [24]. Cyber-physical

systems must be protected from intruders, and this has

prompted an examination of the most up-to-date approaches to

1592

this problem [25]. Industry 4.0 equipment, which includes

cyber-physical systems, are Internet-enabled upgrades from

the earlier, less intelligent gadgets of Industry 3.0. One

example of the shift from manual repairs to self-repairing

software used to safeguard cutting-edge systems nowadays

[26]. There is a shift toward automating the protection process

via self-healing in networks in an effort to cut expenses. The

self healing model in networks is shown in Figure 3.

Latency, bandwidth, and scalability issues plague the

majority of self-healing system installations. In order to

improve network security and address issues, this study

proposes a standardized architecture for dynamic malware

detection and a self-healing model [27]. Innovative cyber

security systems are necessary to identify hostile nodes before

they interact, which is a crucial step in averting cyber assaults

[28]. Traditional dynamic malware detection approaches

necessitate closer node monitoring in order to exclude nodes

causing harmful network activity through in-depth pattern

analysis. Dynamic Malware Pattern Analysis with Rapid Node

Behaviour Analysis utilizing Self Replication Model is

proposed in this research for Network Intrusion Detection. The

regular patterns will be admitted to the network, while the

abnormal patterns of the nodes will be blocked for the time

being.

Figure 3. Self healing model

2. LITERATURE SURVEY

With the help of the IoT, we can pave the way for a world

where everything is online and can share information in real

time. When combined, the IoT, 5G, and AI open the door to

smart city and smart factory applications. Threats to the

security of IoT infrastructure, applications, and devices have

multiplied in tandem with the IoT's stratospheric ascent in

popularity. There have been several lines of inquiry on the best

ways to safeguard Internet of Things devices from malicious

malware. The dynamic nature of IoT malware makes it

difficult to keep up with static analysis, even though it can rely

on current models to detect harmful IoT code. An intelligent

method for detecting common and unique IoT malware, called

dynamic analysis for IoT malware detection (DAIMD), was

presented by Jeon et al. [1] to safeguard IoT devices from harm.

In a layered cloud environment, DAIMD can use a

convolutional neural network (CNN) model to learn about IoT

malware and do dynamic assessments. The dynamic analysis

of DAIMD in a nested cloud environment can be used to

extract features of IoT malware from memory, networks,

virtual file systems, processes, and system calls. The CNN is

employed to classify and train the behavior images of IoT

malware by transforming the retrieved and processed behavior

data into visuals. In order to lessen the impact of malware

assaults on Internet of Things devices, DAIMD analyzes and

learns from data on the behaviors that these devices

dynamically generate.

Malware is becoming an increasingly serious threat to

computers in the current era. Code obfuscations are only one

example of how malware writers use a plethora of complex

features to build new malware and evade current malware

detection techniques. Classifying new malware variants with

similar characteristics into the right families is still quite

difficult, even when the classifier is trained with known

variants from the same family. One of the challenges in

establishing a more universal method for identifying malware

is recognizing and extracting features that are distinctive to

each type of malware. The diversity of malware makes it

challenging to design features that improve the classifier's

generalizability. Due to their reliance on static signature-based

techniques or dynamic behavior-based methodologies,

traditional malware detection technologies are incapable of

analyzing and detecting advanced and zero-day malware. By

using a visualization method where malware is represented as

2D visuals, Roseline et al. [2] offered a strong machine

learning-based anti-malware solution to these problems. In

order to achieve better results than deep learning methods, the

suggested system is built on a multilayered ensemble approach.

It is possible to use the proposed method with reduced model

complexity and avoid hyperparameter adjustment and

backpropagation.

Although smartphones were Android's original intended

users, the platform has already spread to various kinds of

mobile devices. There has been a meteoric rise in the

production of varied, pervasive, and complex Android

1593

malware due to the platform's open architecture and APIs,

which allow for the hosting of third-party programs. Bibi et al.

[3] demonstrated an Android method for multi-class malware

detection using Cuda and the Gated Recurrent Unit (GRU). To

test the efficacy of the method, it was applied to Android apps

drawn from cutting-edge datasets. Accuracy, precision, recall,

F1-score, and other standard performance evaluation measures

were used in conjunction with our own DL-driven

architectures and test procedures to thoroughly analyze the

suggested method's performance. Despite a small decrease in

speed efficiency, the GRU-based malware detection system

excels at identifying malware, with a detection rate of 98.99%.

A billion dollars' worth of demand has resulted from the

technological revolution that smart devices powered by

Android have brought about in raising people's standard of

living. Even if the Android market is all the rage, the

widespread and potentially dangerous mobile virus has made

the popular Android platform a prime target for cybercriminals.

Because it may be constructed on any executable file extension

and imitate real third-party programs, multivector malware is

extremely difficult to detect. Haq et al. [4] presented an

intelligent multi-vector malware detection mechanism that is

very effective and powered by hybrid deep learning (DL). This

mechanism simplifies a complex and crucial matter. The

approach used Bidirectional Long Short-Term Memory

(BiLSTM) and Convolutional Neural Networks (CNNs) to

efficiently detect chronic infections. Not only were state-of-

the-art hybrid DL-driven architectures and benchmark DL

algorithms used to assess the efficacy of the proposed

technique, but so were publicly available datasets and standard

performance indicators. Additionally, cross-validation proves

that the suggested framework is efficient in detecting

irregularities quickly and accurately.

As an integral part of cyber-physical-social systems,

computing at the cloud's edge is gaining prominence in many

parts of the globe. When it comes to cloud computing,

virtualization is a game-changer. It lets us quickly deploy

computing workloads by transferring virtual machines (VMs),

hence cloud security is super important. In an infrastructure as

a service (IaaS) environment, Gan et al. [5] presented a way to

stop malware from spreading among virtual machines (VMs).

Initially, a dynamical propagation model was used to examine

the impact of antivirus software on virtual machines (VMs)

and other important elements involved in the spread of

malware. To get insight into the spread of malware in an

infected cloud environment, the author conducted a theoretical

analysis of the model using differential dynamics. To test the

strategy's viability and efficacy, several numerical simulations

are run.

The massive volume of industrial IoT malware, which

includes new kinds of advanced persistent threats and forms of

obfuscation, is one of the most critical security challenges in

today's linked world. A powerful platform for detecting

Android malware apps in IIoT, Fed-IIoT was introduced by

Taheri et al. [6]. The participant side generates data due to two

dynamic poisoning attacks, one using a generative adversarial

network (GAN) and the other a federated GAN. On the server

side, the author keeps an eye on the global model and shapes

it into a robust collaboration training model by avoiding

anomalies in aggregation using a GAN network (A3GAN) and

refining two GAN-based countermeasure algorithms. One

major benefit of Fed-IIoT is that it enables devices to

discreetly and securely communicate with one other as part of

the IIoT. The author conducted tests on three separate IoT

datasets, each with its own unique set of characteristics.

Astrocytes are endogenous cannabinoid retrograde

messengers that have been demonstrated in many studies to

connect with neuronal presynaptic receptors and postsynaptic

spines. A circuit for self-repairing neuron networks based on

memristors was introduced by Hong et al. [7]. This circuit

mimics the biological self-repair mechanism of astrocytes by

mimicking changes in neurotransmitters at a given threshold.

The following components make up the proposed circuit,

which collectively mimic the brain's astrocyte-neuron network:

This is broken down into four sections: One module increases

the likelihood of synaptic information release in neurons;

another module detects network problems; a fourth module

increases the likelihood of release in the astrocyte-neuron

circuit. When the PR is low due to a malfunctioning synapse,

the neuron module is practically silent. An automatic

malfunction detector is built into the circuit. A process similar

to that carried out physiologically by astrocytes can be used to

restore injured neurons by increasing the PR of nearby healthy

neurons. The broken circuit can be repaired using this

technique. As the virtual circuit showed, a circuit's self-healing

capacity grows in proportion to the number of neurons it

contains. However, when an astrocyte-neuron network has

more injured neurons, its capacity to heal itself decreases, and

its performance plummets. The robots' functionality and

dependability were greatly enhanced by the self-repairing

circuit.

With the dual objectives of rectifying the logical network

topology and sustaining synchronization within the physical

mobile robot formation, Liu et al. [8] took a robotics-centric

approach to the self-repair problem in their study. The authors

propose a self-repairing method based on gradients that relies

solely on local interactions between coupling robots.

Incorporating a method for gradient production and diffusion

that can consistently disperse gradients throughout the robot

formation is the first stage in achieving decentralized

optimization of the repair path. Following an introduction to

the recursive self-repairing approach and the suggested

gradient distribution, the self-repairing problem is

demonstrated to be solved by means of a number of self-

repairing rules, each with its own associated control

mechanism. The approach has been tested and proven to

enhance robot formation coordination and repair path quality

through both theoretical and practical measurements. Results

from both theoretical and practical investigations corroborate

the viability and efficiency of the suggested approach.

The introduction of vehicle ad hoc networks (VANETs) has

allowed for an increasing diversity of automobile applications.

Throughput and multiplexing of routing routes are usually

more important to applications than delay and effective

forwarding rate. It is difficult to establish dependable multihop

forwarding circuits in VANETs in real time because of factors

like inconsistent topological information, unconnected

networks, high churn rates, etc. In their proposal of an ant

colony optimization (ACO) based self-healing routing strategy

(SR), Liu et al. [9] aimed to assist VANETs in keeping up with

the latest developments in research and development. An

innovative feature of SR, the ACO algorithm finds the optimal

routes in terms of latency and connectivity. Everyone agrees

that the RBA is the best way to measure transportation

efficiency. Fuzzy logic systems could be useful in determining

the RBA from the PDR and delay, which could be

computationally expensive. If you want to increase throughput,

lengthen the optimum path, and reduce the time and effort

1594

needed to reestablish a path after a break in its continuity, this

article advises fixing at crossings and in the road.

An adaptive smart building that can repair itself in response

to external stimuli has a two-pronged approach to energy

management, as detailed by Akbari-Dibavar et al. [10]. In

addition to connecting to the city's primary power grid, the

state-of-the-art building also features its own diesel generator

and photovoltaic panels. Software for managing energy use

ought to be intelligent enough to allocate resources

strategically. Bilevel programming starts by using MTR

predictions to prioritise component failures. First, we use

stochastic programming to account for the uncertainty of faults.

Then, we use robust optimization to deal with the

unpredictability of real-time market prices. After significant

problems have been identified, we use this two-stage hybrid

robust-stochastic software technique to figure out the bid/offer

in both the day-ahead and actual time energy markets.

Ultimately, GAMS's optimization model is mixed-integer

linear programming after additional linearization.

3. PROPOSED MODEL

By identifying the node's actions, users can ensure that the

communication channels are being constantly monitored. It

will aid in identifying the malicious nodes that are impeding

communication. The primary goal is to identify the nodes that

are the root of the packet loss problem and eliminate them.

Congestion refers to the total breakdown in communication

that selfish nodes might generate [29]. Disruptions to the

network can occur when individual nodes alter their behavior.

To stop it, just take out the bad actor from the network.

Because of this, neighboring nodes will be slammed with more

work. An unstable and underperforming network is the direct

effect of the disconnected node [30]. By identifying the

malicious nodes, the network can gain confidence with

behavioral prediction. This prediction method's key benefit is

that it can identify malevolent nodes from selfish ones and

kick them off the network if they are the source of transmission

failures [31].

Quality of Service (QoS) is becoming more important to

service providers as self-healing functions enable the network

environment to recover from failure scenarios that may occur

within software, networks, or hardware components of the

system. Overload, intrusion, misconfiguration, and other

complex failures in various parts of the network are the root

cause of the problem that hinders the network's correct

performance. Recent studies have shown that systems with

built-in self-healing capabilities can reduce the societal and

economic impact of these breakdowns [32]. The integration of

a fault-solving method library, a twin model system, and a

deep learning (DL) algorithm into a network to create a self-

healing mechanism is one of several proposed solutions. In

order to implement intrusion detection in the cyber-physical

system, the DL algorithm must be built using datasets obtained

from the fault-solving library and thereafter deployed.

Traditional malware protection relies on scanning specified

areas for known virus signatures; to incorporate self-healing

capabilities, one must first undergo intrusion detection. Once

this is complete, the fault classification process can begin, and

the fault-solving library can provide a workable mitigation

solution.

Despite the fact that the conventional method is necessary

for safeguarding against known threats, it does not provide any

defense against zero-day vulnerabilities, which are brand-new

attacks for which no security patch has yet been provided.

Their signature has not yet been recognized by anti-virus

programs, thus the nature of the attack is yet unknown.

Because of their inability to learn and adapt on their own, such

systems rely on periodic external upgrades to keep their

distinctive knowledge base current. One of the most pressing

questions in cyber security is whether or not a system can

proactively identify and respond to previously unknown

threats, thereby limiting any potential damage and, ideally,

eliminating them altogether. For this reason, a wide variety of

AI procedures, such as anomaly detection, are frequently used.

Both the false-negative and false-positive error rates of the

detection techniques should be kept to a minimum. Existing

attacks can cause serious harm to the system if they go

undetected. False positives occur when a legitimate action is

incorrectly labeled as malicious by the system, prompting

countermeasures that can do as much financial and operational

damage as an undetected attack.

Figure 4. Proposed model framework

In addition to detecting and blocking attacks, a self-healing

system may fix any harm that has been done. Finding

intrusions using dynamic patterns is the goal of this research,

which employs pattern recognition and intrusion detection.

Intrusions are detected, sequence patterns are formed, and

environmental events are monitored. The algorithm checks for

a correlation between past behaviors and potentially harmful

environmental signs when they are discovered. Instances of a

system are alerted and the system's defenses are activated

when they notice a sequence of potentially dangerous events.

Commonly, "non-self detection" describes the process of

finding intrusions in negative selection. This is due to the fact

that the algorithm shares many similarities with how a live

thing distinguishes its own cells from those of an outside

source. To create non-self entities that cannot be separated

from self entities using similarity testing is the core idea. A

new entity is considered foreign to the system when it is

compared to one of these non-self entities. The proposed

model framework is shown in Figure 4.

Since it is possible to run each detector comparison on its

own host, the detection approach is inherently portable. If

hosts so desire, they can even employ their own sensors. Since

negative selection is mainly an intrusion detection approach, it

can be used even if no prior knowledge of intrusions is known.

1595

A network of detectors is self-learning because it will evolve

over time when some no longer function and new ones are

added depending on the traffic of recent events. It is possible

to monitor self-entities in order to track detector changes and

vice versa. Reliable computers have communicated with one

another to issue a warning. Every system in the network is

alerted whenever a single machine detects and identifies an

attack. They check their pasts to see whether they've

encountered something similar or if a certain prefix of the

sequence of events seems familiar, since an attack might still

be in its early stages. This makes sense because the same

malicious pattern could originate from different places or

employ several variables on each computer, increasing the

diversity of events that could be matched. When one machine's

sequence only partially matches another's sequence, the

system should advise administrators of a potential hazard but

keep executing all other orders to prevent overreaction. If there

is a database like this, it may be used to compare the updated

timeline to a potentially harmful sequence. As soon as any

potentially harmful sequence occurs inside that time frame, a

protective mechanism is initiated. Normal communication is

maintained in the absence of a match. This research proposes

a Dynamic Malware Pattern Analysis with Rapid Node

Behaviour Analysis using Self Replication Model (DMPA-

RNBA-SRM) for Network Intrusion Detection in the network.

The normal patterns will be allowed into the network and the

patterns of the nodes that are unusual are not allowed

temporarily. The Pattern analysis and updating is performed

and the detected patterns are analyzed and if they are malicious

in nature, they will not be allowed into the network.

Initially consider the network that contains nodes as a list

{N1,N2,……..,NK} where k is the total number of nodes in the

WSN. The nodes that are considered in the network will be

allocated with a label of values that are used for node

authentication and recognition. This label helps in detection of

each node in the network. The node label allocation is

performed as:

𝑇𝑐𝑜𝑛𝑠𝑡[𝐾] =∑𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒(𝑖)

𝐾

𝑖=1

𝜔[𝐾] =∑𝑔𝑒𝑡𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟(𝑖) + 𝑛𝑜𝑑𝑒𝑟𝑎𝑛𝑔𝑒(𝑖)

𝐾

𝑖=1

𝑁𝑙𝑎𝑏𝑒𝑙[𝐾] = ∑
∑ 𝑔𝑒𝑡𝑛𝑜𝑑𝑒𝑎𝑑𝑑𝑟(𝑖)𝑘
𝑖=1

𝐾
+ 𝑇𝑐𝑜𝑛𝑡(𝑖) + 𝜔(𝑖)

𝐾

𝑖=1

+ 𝑟𝑎𝑛𝑑(𝑖)

Here Tconst is the time constant captured at every node

registration, ω is the node properties and rand() is used to

generate a random number for each node at label allocation.

Consider a traffic pattern set {TP1,TP2,…….TPN} where

there can be N traffic frames to communicate. Each traffic

pattern is analyzed for detection of change in the network

traffic data. The traffic pattern analysis is performed as:

𝑇𝑟𝑎𝐷𝑎𝑡𝑎[𝐾] =∏
∑ 𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑖) + 𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)𝑘
𝑖=1

𝐾

𝐾

𝑖=1

+max(𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖)))

+ min(𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖)))

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐴𝑛𝑎𝑙𝑦[𝐾] =∑max(𝑇𝑟𝑎𝐷𝑎𝑡𝑎(𝑇𝑃(𝑖)))

𝐾

𝑖=1

−min(𝑇𝑟𝑎𝐷𝑎𝑡𝑎(𝑇𝑃(𝑖)))

+ lim
𝑖→𝐾

(µ(𝑖) +
𝛽(𝑖)

𝐾 − 1
)
2

Here µ represents the normal sequences detected in data

analyzed in the nodes that are authorized. β represents the

changes in the pattern sequences in the data frames.

The node behaviour is analyzed for changes in the network

traffic. The node behaviour represents the actions in the

network. The node behaviour analysis is performed as:

𝑁𝑜𝑑𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟[𝐾]

=∑
𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟(𝑖)

𝐾

𝐾

𝑖=1

+ 𝑠𝑖𝑚𝑚(𝛽(𝑖), 𝛽(𝑖 + 1))

− min (𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖))) + 𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)

𝑁𝑆𝑡𝑎𝑡𝑢𝑠[𝐾]

=∑𝛿(𝑁𝑜𝑑𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟(𝑖, 𝑖 + 1))

𝐾

𝑖=1

+max(𝑇𝑃(𝑖, 𝑖 + 1))

+ 𝑟𝑎𝑛𝑔𝑒(𝛽(𝑖)) {
𝑁𝑆𝑡𝑎𝑡𝑢𝑠 ← 1𝑖𝑓(𝛽(𝑖) > 𝑇ℎ)
𝑁𝑆𝑡𝑎𝑡𝑢𝑠 ← 0𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here δ is the status of the node behaviour among the nodes

and the Th represents the threshold limit of changes in the

similarity.

With a dynamic investigation, previously unseen malware

can be found. By executing it on a network system, IT security

experts can observe malware's activity without worrying about

infecting their own networks or systems. This type of analysis

is crucial in a world where malware is always evolving

because it gives full visibility into the danger and what drives

it. Let dynamic malware patterns set {MW1,MW2,……MWP}

where p is the total malware patterns detected.

𝑀𝑎𝑙𝑃𝑎𝑡[𝐾] =∑𝑔𝑒𝑡𝑟𝑎𝑛𝑔𝑒(𝑀𝑊𝑖)

𝐾

𝑖=1

+max(𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑖, 𝑖 + 1))

Dynamic malware prediction is performed by analyzing

each node traffic patterns and the changes in the patterns are

detected. The nodes which are causing the malicious actions

in the network are identified and then the nodes will be

removed using the self healing model. The dynamic malware

pattern analysis is performed as

𝐷𝑦𝑛𝑀𝑎𝑙[𝐾]

=∑
∑ 𝑔𝑒𝑡𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑖)𝐾
𝑖=1

𝑙𝑒𝑛(𝐾)
+max(𝑀𝑊𝑖 , 𝑀𝑊𝑖+1)

𝐾

𝑖=1

+
𝑀𝑎𝑥(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖, 𝑖 + 1))

𝑙𝑒𝑛(𝐾)
𝑠𝑖𝑚𝑚(𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑛𝑜𝑑𝑒(𝑖, 𝑖 + 1)))

In a self-healing network, problems are resolved

automatically, without the need for human involvement. A

network automation tool can detect and repair any kind of

network issue or security violation in real time. While there

1596

are many possible implementations of self-healing networks,

the vast majority of them include receiving an alarm that

causes your network to take corrective action. The malware is

entirely eradicated from the network once the self-healing

model examines every pattern and fixes it. The self healing

model operations and the nodes causing the malicious actions

are listed as:

𝑆𝑒𝑙𝑓𝐻𝑒𝑎𝑙[𝐾] =∏
𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)

𝐾
+ 𝜏 (𝑟𝑚 (𝐷𝑦𝑛𝑀𝑎𝑙(𝑛𝑜𝑑𝑒(𝑖))))

𝐾

𝑖=1

+ 𝑟𝑚(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖) − 𝑛𝑜𝑑𝑒(𝑁𝑙𝑎𝑏𝑒𝑙(𝑖))

𝑀𝑎𝑙𝐴𝑙𝑎𝑟𝑚[𝐾] =∑
∑ 𝑑𝑖𝑓𝑓(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))𝐾
𝑖=1

𝑙𝑒𝑛(𝐾)

𝐾

𝑖=1

+ 𝛾(𝑠𝑖𝑚𝑚(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖. 𝑖 + 1)))

𝑆𝑒𝑙𝑓𝑅𝑒𝑙𝑖𝑐𝑎[𝐾] =∑∏𝑔𝑒𝑡𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))

𝐾

𝑖=1

𝐾

𝑖=1

+ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑆𝑒𝑙𝑓𝐻𝑒𝑎𝑙(𝑖))

+ min(𝑠𝑖𝑚𝑚(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))

− max (𝑠𝑖𝑚𝑚(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1)))

+ 𝑚𝑎𝑥𝐴𝑙𝑎𝑟𝑚(𝑛𝑜𝑑𝑒(𝑖))

Here τ is the model that generates the copies of the code in

the network systems, rm is used to remove the specified node

that has malware patterns, γ is the models for triggering the

alarm for self replication model to activate self healing model.

4. RESULTS

Wireless sensor networks differ from their wired

counterparts in that they consist of a dispersed collection of

motes that possess the self-organizing quality. Because of their

unique architecture, intruder detection algorithms for wireless

sensor networks must account for the limited processing

capacity and high energy consumption of the former. Due to

their extremely high cost per mole, localization-based

approaches for intrusion detection employing pattern analysis

are not practical. There are often a few distinct types of

intrusion detection systems.The public signature method of

misuse detection uses low resources but is susceptible to

attacks that have not been made public. Intrusion detection can

find both known and undiscovered hazards by comparing the

subject's typical behavior with its reported activity. If the

nodes conduct is inconsistent with the estimated or projected

one, the system must issue a report. The log and audit files of

some models may need tweaking before they can be used with

wireless sensor networks to their full potential.

Behavioral prediction provides a generic paradigm for

predicting nodes' actions based on their routing. Behavior

probability estimation is a tool that can be used to boost

network confidence. Trustworthy category nodes can be

formed to help identify malicious nodes and to build

confidence between nodes that are far away. Remember that

network traffic can interrupt connections while keeping an eye

on the pattern of activities. Conventional communication

networks rely on reliable routing algorithms to ensure node

resilience. For WSN routing to work, faraway nodes must

prove their reliability. Managing the forward node is critical to

completing the routing procedure in this WSN. The pattern of

activity in a WSN is determined by analyzing the process of

node packet delivery. The main reason to use this technique is

the ability to control node development at the location. This

method uncovers harmful attacks and builds trust between

distant nodes. In the event that an unreliable node is identified,

the reliable ones will need to adjust their configurations. If a

node's harmful actions impact the entire network, we call it a

failure node. How every node will behave is hard to predict.

Returning the system to normalcy requires early detection of

the rogue node. But if the node is egocentric, then it needs to

be on its own. This research proposes a Dynamic Malware

Pattern Analysis with Rapid Node Behaviour Analysis using

Self Replication Model (DMPA-RNBA-SRM) for Network

Intrusion Detection in the network. The normal patterns will

be allowed into the network and the patterns of the nodes that

are unusual. The proposed model is compared with the

traditional Dynamic Analysis for IoT Malware Detection with

Convolution Neural Network (DA-IoT-MDCNN) Model and

Intelligent Vision-Based Malware Detection and

Classification Using Deep Random Forest Paradigm (IVMD-

RFP).

The proposed model is implemented in python and executed

in Google Colab. The proposed model considers the dataset

from the link https://www.kaggle.com/c/malware-

detection/data. The system configurations are Intel I5

processor, 8GB RAM, 1TB HDD, 3.70 GHz. I created this

dataset as an outcome of my research into android security and

machine learning. The information was gathered by a

procedure that included making a binary vector of permissions

utilized for every application examined, where 1 indicates

usage and 0 indicates non-usage. In addition, the

malware/benign samples were categorized by "Type"; one

sample was classified as malware and the other was not.

The proposed model performs gathering of complete node

information for all the nodes in the network. The nodes

information is maintained for node identification and future

communications with the nodes. The Node Registration Time

Levels of the proposed and traditional models are shown in

Table 1 and Figure 5.

When a link, file, or connection is made or acquired over

the network that raises suspicion, it is considered malware

traffic. Malicious traffic is a security risk that can compromise

computer or the security of a organization. There are several

methods and technologies available for detecting malicious

network activity. Monitoring network activity for suspicious

patterns, abnormalities, or known signatures of threats is

where IDS and IPS come in handy. The Table 2 and Figure 6

represents the Traffic Pattern Analysis Accuracy Levels of the

proposed and traditional models.

Table 1. Node registrations

Nodes Considered in

the Network

Models Considered

DMPA-RNBA-

SRM Model

DA-IoT-

MDCNN

Model

IVMD-RFP

Model

50 10.3 14.7 19.1

100 10.7 15.2 19.4

150 11 15.8 19.7

200 11.3 16.3 20.1

250 11.7 16.7 20.5

300 12 17 21

1597

Table 2. Traffic pattern analysis

Nodes

Considered in

the Network

Models Considered

DMPA-

RNBA-SRM

Model

DA-IoT-

MDCNN

Model

IVMD-

RFP

Model

50 97.6 91.5 93.7

100 97.8 92 94

150 98 92.5 94.2

200 98.1 93 94.5

250 98.3 93.5 94.6

300 98.4 94 95

Figure 5. Node registration time levels

Figure 6. Traffic pattern analysis accuracy levels

Table 3. Node behavior analysis

Nodes

Considered in

the Network

Models Considered

DMPA-

RNBA-SRM

Model

DA-IoT-

MDCNN

Model

IVMD-

RFP

Model

50 97.6 94.2 91

100 97.9 94.5 91.2

150 98 94.7 91.4

200 98.2 95 91.6

250 98.4 95.3 91.8

300 98.5 95.5 92

Table 4. Dynamic malware detection

Nodes

Considered in

the Network

Models Considered

DMPA-

RNBA-SRM

Model

DA-IoT-

MDCNN

Model

IVMD-

RFP

Model

50 97.6 93.7 92.2

100 97.8 94 92.6

150 98 94.2 92.8

200 98.2 94.5 93

250 98.4 94.7 93.3

300 98.6 95 93.5

Figure 7. Node behavior analysis accuracy levels

Figure 8. Dynamic malware detection accuracy levels

Each node in the network has its own behaviour. The

behaviour of each node is analyzed to recognize the node

actions in the network. The change in node behaviour results

in cause of malicious actions. If any node is affected with

malware, such nodes will cause malicious actions in the

network. The Table 3 and Figure 7 depict the Node Behavior

Analysis Accuracy Levels of the existing and proposed models.

When performing dynamic malware analysis, any

suspicious code is run in a network to ensure it does not cause

harm. There is no chance of the malware infecting the machine

or escaping into the network because the system is closed.

1598

Observing and recording the program's behavior both within

and outside of the network is crucial for dynamic malware

analysis, which takes a node behavior based method to

understanding possible dangers. The Dynamic Malware

Detection Accuracy Levels of the proposed and existing

models are shown in Table 4 and Figure 8.

The proposed self-healing theories aims to provide an

explanation of the basic concepts that must be considered

while implementing self-healing functionality, as well as the

pattern between self-healing and other scientific disciplines.

What it means for a cyber-physical system to have self-healing

functionality built into it, while the methods for achieving self-

healing include specifics about the underlying models,

frameworks, and network topologies. The self healing model

removes the detected malware in the network and removes the

malware patterns for increasing the network efficiency. The

Self Replication Model Performance Accuracy Levels of the

proposed and existing models are shown in Table 5 and Figure

9.

Table 5. Self replication performance

Nodes

Considered in

the Network

Models Considered

DMPA-

RNBA-SRM

Model

DA-IoT-

MDCNN

Model

IVMD-

RFP

Model

50 97.3 93.5 92.7

100 97.5 94 93

150 97.8 94.5 93.2

200 98 95 93.4

250 98.2 95.5 93.6

300 98.4 96 94

Table 6. Network security

Nodes

Considered in

the Network

Models Considered

DMPA-

RNBA-SRM

Model

DA-IoT-

MDCNN

Model

IVMD-

RFP

Model

50 97.9 93 92.4

100 98 93.2 92.8

150 98.1 93.4 93

200 98.3 93.7 94.3

250 98.4 93.8 94.6

300 98.6 94 95

Figure 9. Self replication model performance accuracy levels

Figure 10. Network security levels

To secure the network, one must take any and all measures

necessary to keep data and network operational at all times.

Hardware and software are both part of this. It eliminates

multiple dangers at once. It prevents them from getting into

ones system or spreading throughout it. Accurate network

security controls who can access the network and how. The

network security levels of the existing and proposed model are

shown in Table 6 and Figure 10.

5. CONCLUSION

To conduct a dynamic malware analysis, a secure

environment is used to execute hazardous code while

meticulously monitoring its actions to assess their level of

impact. Dynamic malware analysis allows malware to unpack

and operate in a network scenario, sidestepping the constraints

of static analysis. Running an untested program and seeing

what happens is the goal, but there are major downsides to this

seemingly simple approach. The malware could do permanent

damage to the computer and its data if left running. The

application could distribute viruses of any kind and cause

network congestion. There is not a single thing about this that

would be uplifting. A network separates the infected program

from the rest of the system, protecting it from potential harm.

In its most basic definition, malicious software is any program

that is installed on a computer without the owner's consent or

knowledge and has the purpose of causing harm to the host's

data, apps, or operating system. Malware usually uses sneaky

or illegal means to spread itself through files in order to infect

a user's system, which is the initial step for infecting a

computer. Tales of cyber assaults often make mention of

malware families such bots, viruses, spyware, worms,

scareware, and trojans. A self-replicating model for network

intrusion detection is suggested in this study, which combines

dynamic malware pattern analysis with rapid node behavior

analysis. In systems that are constantly changing and

experiencing novel behaviors, this paradigm enables a

significant decrease in false positive alarms. It is possible to

accurately detect malware by analyzing dynamic malwares of

various types and taking node behaviour into account.

Notifications are sent out whenever something that could be

harmful happens, so other servers can quickly implement

1599

countermeasures and other systems can be protected from

attacks. The self healing system is activated if any malware is

detected and the network will be secured without any loss to

the network. The proposed model achieves 98.4% accuracy in

dynamic malware pattern analysis and self healing model

achieves 98.2% accuracy in securing the network from

malware attacks and loss of data. In future, hybrid

optimization models can be included with deep learning

strategies to analyze minute malware patterns also and also to

increase the capabilities of self healing systems in large

networks by performing the malware pattern analysis and

detection in less time.

REFERENCES

[1] Jeon, J., Park, J.H., Jeong, Y.S. (2020). Dynamic

analysis for IoT malware detection with convolution

neural network model. IEEE Access, 8: 96899-96911.

https://doi.org/10.1109/ACCESS.2020.2995887

[2] Roseline, S.A., Geetha, S., Kadry, S., Nam, Y. (2020).

Intelligent vision-based malware detection and

classification using deep random forest paradigm. IEEE

Access, 8: 206303-206324.

https://doi.org/10.1109/ACCESS.2020.3036491

[3] Bibi, I., Akhunzada, A., Malik, J., Iqbal, J., Musaddiq,

A., Kim, S. (2020). A dynamic DL-driven architecture to

combat sophisticated Android malware. IEEE Access, 8:

129600-129612.

https://doi.org/10.1109/ACCESS.2020.3009819

[4] Haq, I.U., Khan, T.A., Akhunzada, A. (2021). A

dynamic robust DL-based model for android malware

detection. IEEE Access, 9: 74510-74521.

https://doi.org/10.1109/ACCESS.2021.3079370

[5] Gan, C., Feng, Q., Zhang, X., Zhang, Z., Zhu, Q. (2020).

Dynamical propagation model of malware for cloud

computing security. IEEE Access, 8: 20325-20333.

https://doi.org/10.1109/ACCESS.2020.2968916

[6] Taheri, R., Shojafar, M., Alazab, M., Tafazolli, R. (2020).

FED-IIoT: A robust federated malware detection

architecture in industrial IoT. IEEE Transactions on

Industrial Informatics, 17(12): 8442-8452.

https://doi.org/10.1109/TII.2020.3043458

[7] Hong, Q., Chen, H., Sun, J., Wang, C. (2020).

Memristive circuit implementation of a self-repairing

network based on biological astrocytes in robot

application. IEEE Transactions on Neural Networks and

Learning Systems, 33(5): 2106-2120.

https://doi.org/10.1109/TNNLS.2020.3041624

[8] Liu, Z., Chen, W., Wang, H., Liu, Y. H., Shen, Y., Fu, X.

(2017). A self-repairing algorithm with optimal repair

path for maintaining motion synchronization of mobile

robot network. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 50(3): 815-828.

https://doi.org/10.1109/TSMC.2017.2726104

[9] Liu, J., Weng, H., Ge, Y., Li, S., Cui, X. (2022). A self-

healing routing strategy based on ant colony

optimization for vehicular ad hoc networks. IEEE

Internet of Things Journal, 9(22): 22695-22708.

https://doi.org/10.1109/JIOT.2022.3181857

[10] Akbari-Dibavar, A., Mohammadi-Ivatloo, B., Zare, K.,

Anvari-Moghaddam, A. (2022). Optimal scheduling of a

self-healing building using hybrid stochastic-robust

optimization approach. IEEE Transactions on Industry

Applications, 58(3): 3217-3226.

https://doi.org/10.1109/TIA.2022.3155585.

[11] Waraga, O.A., Bettayeb, M., Nasir, Q., Talib, M.A.

(2020). Design and implementation of automated IoT

security testbed. Computers & Security, 88: 101648.

https://doi.org/10.1016/j.cose.2019.101648

[12] Zhu, H., Li, Y., Li, R., Li, J., You, Z., Song, H. (2020).

SEDMDroid: An enhanced stacking ensemble

framework for Android malware detection. IEEE

Transactions on Network Science and Engineering, 8(2):

984-994. https://doi.org/10.1109/TNSE.2020.2996379

[13] Cai, L., Li, Y., Xiong, Z. (2021). JOWMDroid: Android

malware detection based on feature weighting with joint

optimization of weight-mapping and classifier

parameters. Computers & Security, 100: 102086.

https://doi.org/10.1016/j.cose.2020.102086

[14] Ma, H., Tian, J., Qiu, K., Lo, D., Gao, D., Wu, D., Baker,

T. (2020). Deep-learning–based app sensitive behavior

surveillance for Android powered cyber–physical

systems. IEEE Transactions on Industrial Informatics,

17(8): 5840-5850.

https://doi.org/10.1109/TII.2020.3038745

[15] Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke,

H. (2020). Deep learning for cyber security intrusion

detection: Approaches, datasets, and comparative study.

Journal of Information Security and Applications, 50:

102419. https://doi.org/10.1016/j.jisa.2019.102419

[16] Wang, X., Li, C. (2021). Android malware detection

through machine learning on kernel task structures.

Neurocomputing, 435: 126-150.

https://doi.org/10.1016/j.neucom.2020.12.088

[17] Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.

(2020). Obfuscapk: An open-source black-box

obfuscation tool for Android apps. SoftwareX, 11:

100403. https://doi.org/10.1016/j.softx.2020.100403

[18] Chen, X., Li, C., Wang, D., Wen, S., Zhang, J., Nepal, S.,

Ren, K. (2019). Android HIV: A study of repackaging

malware for evading machine-learning detection. IEEE

Transactions on Information Forensics and Security, 15:

987-1001. https://doi.org/10.1109/TIFS.2019.2932228

[19] Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W.,

Zhao, J. (2021). Research on unsupervised feature

learning for android malware detection based on

restricted Boltzmann machines. Future Generation

Computer Systems, 120: 91-108.

https://doi.org/10.1016/j.future.2021.02.015

[20] Chen, D., Wawrzynski, P., Lv, Z. (2021). Cyber security

in smart cities: A review of deep learning-based

applications and case studies. Sustainable Cities and

Society, 66: 102655.

https://doi.org/10.1016/j.scs.2020.102655

[21] Millar, S., McLaughlin, N., Martinez del Rincon, J.,

Miller, P., Zhao, Z. (2020). Dandroid: A multi-view

discriminative adversarial network for obfuscated

android malware detection. In Proceedings of the tenth

ACM Conference on Data and Application Security and

Privacy, New Orleans, LA, USA, pp. 353-364.

https://doi.org/10.1145/3374664.3375746

[22] Alzaylaee, M.K., Yerima, S.Y., Sezer, S. (2020). DL-

Droid: Deep learning based android malware detection

using real devices. Computers & Security, 89: 101663.

https://doi.org/10.1016/j.cose.2019.101663

[23] Ren, Z., Wu, H., Ning, Q., Hussain, I., Chen, B. (2020).

End-to-end malware detection for android IoT devices

1600

using deep learning. Ad Hoc Networks, 101: 102098.

https://doi.org/10.1016/j.adhoc.2020.102098

[24] Sharmeen, S., Huda, S., Abawajy, J., Hassan, M.M.

(2020). An adaptive framework against android privilege

escalation threats using deep learning and semi-

supervised approaches. Applied Soft Computing, 89:

106089. https://doi.org/10.1016/j.asoc.2020.106089

[25] Pektaş, A., Acarman, T. (2020). Deep learning for

effective Android malware detection using API call

graph embeddings. Soft Computing, 24: 1027-1043.

https://doi.org/10.1007/s00500-019-03940-5

[26] Bai, H., Xie, N., Di, X., Ye, Q. (2020). Famd: A fast

multifeature android malware detection framework,

design, and implementation. IEEE Access, 8: 194729-

194740.

https://doi.org/10.1109/ACCESS.2020.3033026

[27] Feng, J., Shen, L., Chen, Z., Wang, Y., Li, H. (2020). A

two-layer deep learning method for android malware

detection using network traffic. IEEE Access, 8: 125786-

125796.

https://doi.org/10.1109/ACCESS.2020.3008081

[28] Wang, W., Wei, J., Zhang, S., Luo, X. (2019). LSCDroid:

Malware detection based on local sensitive API

invocation sequences. IEEE Transactions on Reliability,

69(1): 174-187.

https://doi.org/10.1109/TR.2019.2927285

[29] Wu, Q., Li, M., Zhu, X., Liu, B. (2020). Mviidroid: A

multiple view information integration approach for

android malware detection and family identification.

IEEE MultiMedia, 27(4): 48-57.

https://doi.org/10.1109/MMUL.2020.3022702

[30] Jahromi, A.N., Hashemi, S., Dehghantanha, A., Parizi,

R.M., Choo, K.K.R. (2020). An enhanced stacked LSTM

method with no random initialization for malware threat

hunting in safety and time-critical systems. IEEE

Transactions on Emerging Topics in Computational

Intelligence, 4(5): 630-640.

https://doi.org/10.1109/TETCI.2019.2910243

[31] Feng, R., Chen, S., Xie, X., Meng, G., Lin, S.W., Liu, Y.

(2020). A performance-sensitive malware detection

system using deep learning on mobile devices. IEEE

Transactions on Information Forensics and Security, 16:

1563-1578. https://doi.org/10.1109/TIFS.2020.3025436

[32] Sun, C., Zhang, H., Qin, S., Qin, J., Shi, Y., Wen, Q.

(2020). Droidpdf: The obfuscation resilient packer

detection framework for android apps. IEEE Access, 8:

167460-167474.

https://doi.org/10.1109/ACCESS.2020.3010588

1601

