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Advanced machine learning and artificial intelligence-based malware identification and 

categorization activities in real time are the primary emphasis of Malware Analysis and 

Intrusion identification in Cyber Physical Systems, along with the time sequence output of 

observed activity. Malware and other cyber threats have prompted the development of 

numerous static and behavior based detection approaches. These cyber security solutions 

show promise on large datasets, but they aren't reliable or resilient enough for real-world 

detection. Problems like virus detection and the identification of malevolent behavior 

highlight the critical need for improved cyber security solutions based on artificial 

intelligence. For those who utilize the internet, malware has become an enormous issue. 

The application is executed in a secure virtual environment and its actions are tracked in 

real-time to facilitate dynamic malware detection. A lot of people utilize API sequence 

analysis to find out if the software that is currently running is dangerous. While existing 

systems do consider API names and usage frequencies, feature mining of API sequence 

falls short, making it possible for some malware to evade detection. The two mainstays of 

dynamic analysis now in use either modify the virus itself or use an elevated component to 

execute the analysis. In contrast to the latter, which usually causes a discernible 

performance overhead, the former is instantly identifiable by even the most sophisticated 

malware.  One of the most important steps in avoiding cyber assaults is developing new 

cyber security methods to detect hostile nodes before they communicate. Traditional 

dynamic malware detection models need to monitor the nodes more keenly for deep pattern 

analysis and eradicating nodes that cause malicious actions in the network. This research 

proposes a Dynamic Malware Pattern Analysis with Rapid Node Behaviour Analysis using 

Self Replication Model (DMPA-RNBA-SRM) for Network Intrusion Detection in the 

network. The normal patterns will be allowed into the network and the patterns of the nodes 

that are unusual are not allowed temporarily. The Pattern analysis and updating is performed 

and the detected patterns are analyzed and if they are malicious in nature, they will not be 

allowed into the network. The self replication model will be triggered when a unusual 

pattern is detected and required actions are performed in the network. The proposed model 

dynamic pattern analysis and detection is high when compared to traditional models. 
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1. INTRODUCTION

All computer-reliant networks and systems are increasingly 

vulnerable to malware attacks. The number and sophistication 

of newly released malicious software has increased 

dramatically in recent years, according to security researchers 

[1]. Malware caused over $1.8 trillion in losses in 2021, with 

more software vulnerabilities discovered than the year before, 

2.2 million more malware signatures generated, 673 million 

more attacks reported [2]. Although half of all malware 

samples are merely repackaged versions of known malware, it 

is interesting to note that these samples still evade existing 

commercial-off-the-shelf antivirus software by using static 

signature-based techniques that are susceptible to code 

obfuscation and polymorphism [3]. In contrast, dynamic 

detection methods bypass such safeguards as code obfuscation 

and polymorphism by mimicking a process's behavior at 

runtime [4]. Typical dynamic techniques include system call 

scheduling and flow diagrams. Methods that rely on the 

sequence of system calls to develop a model of behavior. Four 

known issues with these approaches exist: the processing 

overhead of logging system calls; a substantial false alarm rate; 

the capacity to make a decision only after assessing the 

complete record of the processing procedure of a process and 

the ease that they can be bypassed by simply restructuring the 

system calls or adding insignificant system calls to invalidate 

the sequence that recursive methods rely on [5]. 

The intricacy and innovation of malware have grown 

throughout the years, despite the fact that it has existed since 

the early days of computing. Malicious software poses risks to 

private users, corporations, public services, governments, and 

security organizations; the most recent wave of ransomware 

has brought this issue into sharp focus. It is critical to identify 

malicious behavior as soon as possible, ideally before it does 
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harm, in order to safeguard these institutions and the public 

from malware attacks. But knowing what to search for can be 

challenging, particularly when dealing with previously unseen 

spyware.  

Static and dynamic analysis methods, when applied to 

questionable files, can reveal useful information about the 

file's effect on the hosting system and, depending on the rules 

established by the approach, can assist establish if the file is 

harmful. Malware authors employ a variety of tactics to evade 

static analysis, such as code obfuscation, dynamic code 

loading, encryption, and packing. However, dynamic analysis 

can still uncover more about the files being analyzed, leading 

to improved detection capabilities. Although dynamic analysis 

outperforms static analysis, the methods and tools currently 

available for dynamic analysis have their limitations, and no 

one tool can account for every possible facet of malware 

behavior. 

Software designed to carry out an attacker's malevolent aim 

is what we mean when we speak about malware detection [6]. 

Eliminating malicious software is a formidable challenge for 

researchers in the area of network security. As a result of 

poorly thought-out technological security countermeasures 

and software flaws, attackers are becoming increasingly adept 

at evading detection [7]. While antivirus software attempts to 

match incoming code with a database of known bad 

applications, NIDS [8, 9] examines network data and protocols 

at a granular level to detect suspicious or destructive activities. 

Because of its ability to hijack hosts, steal data, erase files, and 

disrupt network services, malware poses a significant threat to 

cyber security. Consequently, a great deal of research on 

malware analysis has focused on the host-based environment. 

Malware signatures are identifying patterns that malicious 

software leaves behind that antivirus software uses to protect 

users [10]. The amount of malware has grown substantially 

after obfuscation techniques were introduced and open source 

tools were widely available. Therefore, it is necessary to shift 

focus from identifying malware signatures and to study its 

behavior is required [11]. Malware detection relies heavily on 

being able to identify individual harmful characteristics. 

Malware detection will be faster and cheaper to maintain with 

this approach. The malware detection strategies are shown in 

Figure 1. 

 

 
 

Figure 1. Malware detection models 

 

Due to the complexity of analyzing infected machines, 

system logs, and malware files for indicators of compromise 

and potential goals, a reliable metric is needed for malicious 

characteristics detection [12]. Malware samples that have been 

compromised and classified by multiple anti-virus providers 

can be compiled on sites like VirusTotal [13]. However, the 

security sector has seen that several antivirus vendors employ 

various malware labels [14]. Using supplementary tools, such 

as on-demand detection methods like function call analysis, 

may show the malicious code's execution behavior [15]. For 

instance, they provide entry to the Application Programming 

Interface (API) and the system resources it provides. Previous 

studies have shown that malicious code often operates by 

carrying out a predetermined list of commands [16]. If a piece 

of code produces and writes files, for instance, that could be 

interpreted as malevolent behavior. The NIDS model is shown 

in Figure 2. 

 

 
 

Figure 2. NIDS model 

 

Devices inserted during scenario creation are just one 

example of the new cyber risks brought about by the lightning-

fast development of networking, computing, sensing, and 

control systems. More and more, contemporary vehicles, 

medical equipment, and smart industrial systems are breaking 

down due to external hazards and inefficient operations. 

Turning on the system's built-in self-healing feature is 

essential for maintaining service quality [17]. We want to 

conduct a state-of-the-art analysis to identify the areas where 

cyber-physical systems could benefit from self-healing 

through machine learning, with the aim of improving security 

and preventing breakdowns [18]. In this study, the three main 

components of computer systems' self-healing capabilities—

fault warning, dynamic malware detection, and fault auto-

remediation—are outlined. These factors must be carefully 

considered in order to incorporate self-healing features. To 

fully benefit from these characteristics, one must be familiar 

with the underlying self-healing theories [19]. Cyber-physical 

system self-healing capabilities promise to be an exciting new 

research topic for the creation of cutting-edge IT. Self-

organization and repair capabilities in cyber-physical systems 

could improve system security and user satisfaction [20]. A 

self-healing technology deployed on a power grid, for example, 

would repair damage or threats automatically, allowing 

communities to continue receiving power and vital services to 

remain operational despite disruptions [21]. 

As digital technologies become increasingly integrated into 

many sectors of the global economy, including trade, 

manufacturing, healthcare, and government, so too will the 

number and sophistication of attacks on computer systems and 

networks. One aspect of this risk is cyber attacks, both 

individual and governmental [22]. They targeted anyone who 

stayed indoors during the COVID-19 pandemic lockdowns, as 

well as schools, businesses, hospitals, and other places of 

employment [23]. Research into self-healing computer 

systems has become increasingly significant in recent years as 

broad use of digital technology has left communities more 

susceptible to damaging cyber-attacks [24]. Cyber-physical 

systems must be protected from intruders, and this has 

prompted an examination of the most up-to-date approaches to 
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this problem [25]. Industry 4.0 equipment, which includes 

cyber-physical systems, are Internet-enabled upgrades from 

the earlier, less intelligent gadgets of Industry 3.0. One 

example of the shift from manual repairs to self-repairing 

software used to safeguard cutting-edge systems nowadays 

[26]. There is a shift toward automating the protection process 

via self-healing in networks in an effort to cut expenses. The 

self healing model in networks is shown in Figure 3. 

Latency, bandwidth, and scalability issues plague the 

majority of self-healing system installations. In order to 

improve network security and address issues, this study 

proposes a standardized architecture for dynamic malware 

detection and a self-healing model [27]. Innovative cyber 

security systems are necessary to identify hostile nodes before 

they interact, which is a crucial step in averting cyber assaults 

[28]. Traditional dynamic malware detection approaches 

necessitate closer node monitoring in order to exclude nodes 

causing harmful network activity through in-depth pattern 

analysis. Dynamic Malware Pattern Analysis with Rapid Node 

Behaviour Analysis utilizing Self Replication Model is 

proposed in this research for Network Intrusion Detection. The 

regular patterns will be admitted to the network, while the 

abnormal patterns of the nodes will be blocked for the time 

being. 

 

 
 

Figure 3. Self healing model 

 

 

2. LITERATURE SURVEY 

 

With the help of the IoT, we can pave the way for a world 

where everything is online and can share information in real 

time. When combined, the IoT, 5G, and AI open the door to 

smart city and smart factory applications. Threats to the 

security of IoT infrastructure, applications, and devices have 

multiplied in tandem with the IoT's stratospheric ascent in 

popularity. There have been several lines of inquiry on the best 

ways to safeguard Internet of Things devices from malicious 

malware. The dynamic nature of IoT malware makes it 

difficult to keep up with static analysis, even though it can rely 

on current models to detect harmful IoT code. An intelligent 

method for detecting common and unique IoT malware, called 

dynamic analysis for IoT malware detection (DAIMD), was 

presented by Jeon et al. [1] to safeguard IoT devices from harm. 

In a layered cloud environment, DAIMD can use a 

convolutional neural network (CNN) model to learn about IoT 

malware and do dynamic assessments. The dynamic analysis 

of DAIMD in a nested cloud environment can be used to 

extract features of IoT malware from memory, networks, 

virtual file systems, processes, and system calls. The CNN is 

employed to classify and train the behavior images of IoT 

malware by transforming the retrieved and processed behavior 

data into visuals. In order to lessen the impact of malware 

assaults on Internet of Things devices, DAIMD analyzes and 

learns from data on the behaviors that these devices 

dynamically generate. 

Malware is becoming an increasingly serious threat to 

computers in the current era. Code obfuscations are only one 

example of how malware writers use a plethora of complex 

features to build new malware and evade current malware 

detection techniques. Classifying new malware variants with 

similar characteristics into the right families is still quite 

difficult, even when the classifier is trained with known 

variants from the same family. One of the challenges in 

establishing a more universal method for identifying malware 

is recognizing and extracting features that are distinctive to 

each type of malware. The diversity of malware makes it 

challenging to design features that improve the classifier's 

generalizability. Due to their reliance on static signature-based 

techniques or dynamic behavior-based methodologies, 

traditional malware detection technologies are incapable of 

analyzing and detecting advanced and zero-day malware. By 

using a visualization method where malware is represented as 

2D visuals, Roseline et al. [2] offered a strong machine 

learning-based anti-malware solution to these problems. In 

order to achieve better results than deep learning methods, the 

suggested system is built on a multilayered ensemble approach. 

It is possible to use the proposed method with reduced model 

complexity and avoid hyperparameter adjustment and 

backpropagation.  

Although smartphones were Android's original intended 

users, the platform has already spread to various kinds of 

mobile devices. There has been a meteoric rise in the 

production of varied, pervasive, and complex Android 
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malware due to the platform's open architecture and APIs, 

which allow for the hosting of third-party programs. Bibi et al. 

[3] demonstrated an Android method for multi-class malware 

detection using Cuda and the Gated Recurrent Unit (GRU). To 

test the efficacy of the method, it was applied to Android apps 

drawn from cutting-edge datasets. Accuracy, precision, recall, 

F1-score, and other standard performance evaluation measures 

were used in conjunction with our own DL-driven 

architectures and test procedures to thoroughly analyze the 

suggested method's performance. Despite a small decrease in 

speed efficiency, the GRU-based malware detection system 

excels at identifying malware, with a detection rate of 98.99%. 

A billion dollars' worth of demand has resulted from the 

technological revolution that smart devices powered by 

Android have brought about in raising people's standard of 

living. Even if the Android market is all the rage, the 

widespread and potentially dangerous mobile virus has made 

the popular Android platform a prime target for cybercriminals. 

Because it may be constructed on any executable file extension 

and imitate real third-party programs, multivector malware is 

extremely difficult to detect. Haq et al. [4] presented an 

intelligent multi-vector malware detection mechanism that is 

very effective and powered by hybrid deep learning (DL). This 

mechanism simplifies a complex and crucial matter. The 

approach used Bidirectional Long Short-Term Memory 

(BiLSTM) and Convolutional Neural Networks (CNNs) to 

efficiently detect chronic infections. Not only were state-of-

the-art hybrid DL-driven architectures and benchmark DL 

algorithms used to assess the efficacy of the proposed 

technique, but so were publicly available datasets and standard 

performance indicators. Additionally, cross-validation proves 

that the suggested framework is efficient in detecting 

irregularities quickly and accurately. 

As an integral part of cyber-physical-social systems, 

computing at the cloud's edge is gaining prominence in many 

parts of the globe. When it comes to cloud computing, 

virtualization is a game-changer. It lets us quickly deploy 

computing workloads by transferring virtual machines (VMs), 

hence cloud security is super important. In an infrastructure as 

a service (IaaS) environment, Gan et al. [5] presented a way to 

stop malware from spreading among virtual machines (VMs). 

Initially, a dynamical propagation model was used to examine 

the impact of antivirus software on virtual machines (VMs) 

and other important elements involved in the spread of 

malware. To get insight into the spread of malware in an 

infected cloud environment, the author conducted a theoretical 

analysis of the model using differential dynamics. To test the 

strategy's viability and efficacy, several numerical simulations 

are run. 

The massive volume of industrial IoT malware, which 

includes new kinds of advanced persistent threats and forms of 

obfuscation, is one of the most critical security challenges in 

today's linked world. A powerful platform for detecting 

Android malware apps in IIoT, Fed-IIoT was introduced by 

Taheri et al. [6]. The participant side generates data due to two 

dynamic poisoning attacks, one using a generative adversarial 

network (GAN) and the other a federated GAN. On the server 

side, the author keeps an eye on the global model and shapes 

it into a robust collaboration training model by avoiding 

anomalies in aggregation using a GAN network (A3GAN) and 

refining two GAN-based countermeasure algorithms. One 

major benefit of Fed-IIoT is that it enables devices to 

discreetly and securely communicate with one other as part of 

the IIoT. The author conducted tests on three separate IoT 

datasets, each with its own unique set of characteristics.  

Astrocytes are endogenous cannabinoid retrograde 

messengers that have been demonstrated in many studies to 

connect with neuronal presynaptic receptors and postsynaptic 

spines. A circuit for self-repairing neuron networks based on 

memristors was introduced by Hong et al. [7]. This circuit 

mimics the biological self-repair mechanism of astrocytes by 

mimicking changes in neurotransmitters at a given threshold. 

The following components make up the proposed circuit, 

which collectively mimic the brain's astrocyte-neuron network: 

This is broken down into four sections: One module increases 

the likelihood of synaptic information release in neurons; 

another module detects network problems; a fourth module 

increases the likelihood of release in the astrocyte-neuron 

circuit. When the PR is low due to a malfunctioning synapse, 

the neuron module is practically silent. An automatic 

malfunction detector is built into the circuit. A process similar 

to that carried out physiologically by astrocytes can be used to 

restore injured neurons by increasing the PR of nearby healthy 

neurons. The broken circuit can be repaired using this 

technique. As the virtual circuit showed, a circuit's self-healing 

capacity grows in proportion to the number of neurons it 

contains. However, when an astrocyte-neuron network has 

more injured neurons, its capacity to heal itself decreases, and 

its performance plummets. The robots' functionality and 

dependability were greatly enhanced by the self-repairing 

circuit. 

With the dual objectives of rectifying the logical network 

topology and sustaining synchronization within the physical 

mobile robot formation, Liu et al. [8] took a robotics-centric 

approach to the self-repair problem in their study. The authors 

propose a self-repairing method based on gradients that relies 

solely on local interactions between coupling robots. 

Incorporating a method for gradient production and diffusion 

that can consistently disperse gradients throughout the robot 

formation is the first stage in achieving decentralized 

optimization of the repair path. Following an introduction to 

the recursive self-repairing approach and the suggested 

gradient distribution, the self-repairing problem is 

demonstrated to be solved by means of a number of self-

repairing rules, each with its own associated control 

mechanism. The approach has been tested and proven to 

enhance robot formation coordination and repair path quality 

through both theoretical and practical measurements. Results 

from both theoretical and practical investigations corroborate 

the viability and efficiency of the suggested approach. 

The introduction of vehicle ad hoc networks (VANETs) has 

allowed for an increasing diversity of automobile applications. 

Throughput and multiplexing of routing routes are usually 

more important to applications than delay and effective 

forwarding rate. It is difficult to establish dependable multihop 

forwarding circuits in VANETs in real time because of factors 

like inconsistent topological information, unconnected 

networks, high churn rates, etc. In their proposal of an ant 

colony optimization (ACO) based self-healing routing strategy 

(SR), Liu et al. [9] aimed to assist VANETs in keeping up with 

the latest developments in research and development. An 

innovative feature of SR, the ACO algorithm finds the optimal 

routes in terms of latency and connectivity. Everyone agrees 

that the RBA is the best way to measure transportation 

efficiency. Fuzzy logic systems could be useful in determining 

the RBA from the PDR and delay, which could be 

computationally expensive. If you want to increase throughput, 

lengthen the optimum path, and reduce the time and effort 
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needed to reestablish a path after a break in its continuity, this 

article advises fixing at crossings and in the road.  

An adaptive smart building that can repair itself in response 

to external stimuli has a two-pronged approach to energy 

management, as detailed by Akbari-Dibavar et al. [10]. In 

addition to connecting to the city's primary power grid, the 

state-of-the-art building also features its own diesel generator 

and photovoltaic panels. Software for managing energy use 

ought to be intelligent enough to allocate resources 

strategically. Bilevel programming starts by using MTR 

predictions to prioritise component failures. First, we use 

stochastic programming to account for the uncertainty of faults. 

Then, we use robust optimization to deal with the 

unpredictability of real-time market prices. After significant 

problems have been identified, we use this two-stage hybrid 

robust-stochastic software technique to figure out the bid/offer 

in both the day-ahead and actual time energy markets. 

Ultimately, GAMS's optimization model is mixed-integer 

linear programming after additional linearization.  

 

 

3. PROPOSED MODEL 

 

By identifying the node's actions, users can ensure that the 

communication channels are being constantly monitored. It 

will aid in identifying the malicious nodes that are impeding 

communication. The primary goal is to identify the nodes that 

are the root of the packet loss problem and eliminate them. 

Congestion refers to the total breakdown in communication 

that selfish nodes might generate [29]. Disruptions to the 

network can occur when individual nodes alter their behavior. 

To stop it, just take out the bad actor from the network. 

Because of this, neighboring nodes will be slammed with more 

work. An unstable and underperforming network is the direct 

effect of the disconnected node [30]. By identifying the 

malicious nodes, the network can gain confidence with 

behavioral prediction. This prediction method's key benefit is 

that it can identify malevolent nodes from selfish ones and 

kick them off the network if they are the source of transmission 

failures [31].  

Quality of Service (QoS) is becoming more important to 

service providers as self-healing functions enable the network 

environment to recover from failure scenarios that may occur 

within software, networks, or hardware components of the 

system. Overload, intrusion, misconfiguration, and other 

complex failures in various parts of the network are the root 

cause of the problem that hinders the network's correct 

performance. Recent studies have shown that systems with 

built-in self-healing capabilities can reduce the societal and 

economic impact of these breakdowns [32]. The integration of 

a fault-solving method library, a twin model system, and a 

deep learning (DL) algorithm into a network to create a self-

healing mechanism is one of several proposed solutions. In 

order to implement intrusion detection in the cyber-physical 

system, the DL algorithm must be built using datasets obtained 

from the fault-solving library and thereafter deployed. 

Traditional malware protection relies on scanning specified 

areas for known virus signatures; to incorporate self-healing 

capabilities, one must first undergo intrusion detection. Once 

this is complete, the fault classification process can begin, and 

the fault-solving library can provide a workable mitigation 

solution. 

Despite the fact that the conventional method is necessary 

for safeguarding against known threats, it does not provide any 

defense against zero-day vulnerabilities, which are brand-new 

attacks for which no security patch has yet been provided. 

Their signature has not yet been recognized by anti-virus 

programs, thus the nature of the attack is yet unknown. 

Because of their inability to learn and adapt on their own, such 

systems rely on periodic external upgrades to keep their 

distinctive knowledge base current. One of the most pressing 

questions in cyber security is whether or not a system can 

proactively identify and respond to previously unknown 

threats, thereby limiting any potential damage and, ideally, 

eliminating them altogether. For this reason, a wide variety of 

AI procedures, such as anomaly detection, are frequently used. 

Both the false-negative and false-positive error rates of the 

detection techniques should be kept to a minimum. Existing 

attacks can cause serious harm to the system if they go 

undetected. False positives occur when a legitimate action is 

incorrectly labeled as malicious by the system, prompting 

countermeasures that can do as much financial and operational 

damage as an undetected attack. 

 

 
 

Figure 4. Proposed model framework 

 

In addition to detecting and blocking attacks, a self-healing 

system may fix any harm that has been done. Finding 

intrusions using dynamic patterns is the goal of this research, 

which employs pattern recognition and intrusion detection. 

Intrusions are detected, sequence patterns are formed, and 

environmental events are monitored. The algorithm checks for 

a correlation between past behaviors and potentially harmful 

environmental signs when they are discovered. Instances of a 

system are alerted and the system's defenses are activated 

when they notice a sequence of potentially dangerous events. 

Commonly, "non-self detection" describes the process of 

finding intrusions in negative selection. This is due to the fact 

that the algorithm shares many similarities with how a live 

thing distinguishes its own cells from those of an outside 

source. To create non-self entities that cannot be separated 

from self entities using similarity testing is the core idea. A 

new entity is considered foreign to the system when it is 

compared to one of these non-self entities. The proposed 

model framework is shown in Figure 4. 

Since it is possible to run each detector comparison on its 

own host, the detection approach is inherently portable. If 

hosts so desire, they can even employ their own sensors. Since 

negative selection is mainly an intrusion detection approach, it 

can be used even if no prior knowledge of intrusions is known. 
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A network of detectors is self-learning because it will evolve 

over time when some no longer function and new ones are 

added depending on the traffic of recent events. It is possible 

to monitor self-entities in order to track detector changes and 

vice versa. Reliable computers have communicated with one 

another to issue a warning. Every system in the network is 

alerted whenever a single machine detects and identifies an 

attack. They check their pasts to see whether they've 

encountered something similar or if a certain prefix of the 

sequence of events seems familiar, since an attack might still 

be in its early stages. This makes sense because the same 

malicious pattern could originate from different places or 

employ several variables on each computer, increasing the 

diversity of events that could be matched. When one machine's 

sequence only partially matches another's sequence, the 

system should advise administrators of a potential hazard but 

keep executing all other orders to prevent overreaction. If there 

is a database like this, it may be used to compare the updated 

timeline to a potentially harmful sequence. As soon as any 

potentially harmful sequence occurs inside that time frame, a 

protective mechanism is initiated. Normal communication is 

maintained in the absence of a match. This research proposes 

a Dynamic Malware Pattern Analysis with Rapid Node 

Behaviour Analysis using Self Replication Model (DMPA-

RNBA-SRM) for Network Intrusion Detection in the network. 

The normal patterns will be allowed into the network and the 

patterns of the nodes that are unusual are not allowed 

temporarily. The Pattern analysis and updating is performed 

and the detected patterns are analyzed and if they are malicious 

in nature, they will not be allowed into the network. 

Initially consider the network that contains nodes as a list 

{N1,N2,……..,NK} where k is the total number of nodes in the 

WSN. The nodes that are considered in the network will be 

allocated with a label of values that are used for node 

authentication and recognition. This label helps in detection of 

each node in the network. The node label allocation is 

performed as: 

 

𝑇𝑐𝑜𝑛𝑠𝑡[𝐾] =∑𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒(𝑖)

𝐾

𝑖=1

 

 

𝜔[𝐾] =∑𝑔𝑒𝑡𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟(𝑖) + 𝑛𝑜𝑑𝑒𝑟𝑎𝑛𝑔𝑒(𝑖)

𝐾

𝑖=1

 

 

𝑁𝑙𝑎𝑏𝑒𝑙[𝐾] = ∑
∑ 𝑔𝑒𝑡𝑛𝑜𝑑𝑒𝑎𝑑𝑑𝑟(𝑖)𝑘
𝑖=1

𝐾
+ 𝑇𝑐𝑜𝑛𝑡(𝑖) + 𝜔(𝑖)

𝐾

𝑖=1

+ 𝑟𝑎𝑛𝑑(𝑖) 
 

Here Tconst is the time constant captured at every node 

registration, ω is the node properties and rand() is used to 

generate a random number for each node at label allocation. 

Consider a traffic pattern set {TP1,TP2,…….TPN} where 

there can be N traffic frames to communicate. Each traffic 

pattern is analyzed for detection of change in the network 

traffic data. The traffic pattern analysis is performed as: 

 

𝑇𝑟𝑎𝐷𝑎𝑡𝑎[𝐾] =∏
∑ 𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑖) + 𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)𝑘
𝑖=1

𝐾

𝐾

𝑖=1

+max(𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖)))

+ min(𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖))) 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐴𝑛𝑎𝑙𝑦[𝐾] =∑max(𝑇𝑟𝑎𝐷𝑎𝑡𝑎(𝑇𝑃(𝑖)))

𝐾

𝑖=1

−min(𝑇𝑟𝑎𝐷𝑎𝑡𝑎(𝑇𝑃(𝑖)))

+ lim
𝑖→𝐾

(µ(𝑖) +
𝛽(𝑖)

𝐾 − 1
)
2

 

 

Here µ represents the normal sequences detected in data 

analyzed in the nodes that are authorized. β represents the 

changes in the pattern sequences in the data frames. 

The node behaviour is analyzed for changes in the network 

traffic. The node behaviour represents the actions in the 

network. The node behaviour analysis is performed as: 

 

𝑁𝑜𝑑𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟[𝐾]

=∑
𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟(𝑖)

𝐾

𝐾

𝑖=1

+ 𝑠𝑖𝑚𝑚(𝛽(𝑖), 𝛽(𝑖 + 1))

− min (𝑟𝑎𝑛𝑔𝑒(𝑛𝑜𝑑𝑒(𝑖))) + 𝑁𝑙𝑎𝑏𝑒𝑙(𝑖) 

𝑁𝑆𝑡𝑎𝑡𝑢𝑠[𝐾]

=∑𝛿(𝑁𝑜𝑑𝑒𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟(𝑖, 𝑖 + 1))

𝐾

𝑖=1

+max(𝑇𝑃(𝑖, 𝑖 + 1))

+ 𝑟𝑎𝑛𝑔𝑒(𝛽(𝑖)) {
𝑁𝑆𝑡𝑎𝑡𝑢𝑠 ← 1𝑖𝑓(𝛽(𝑖) > 𝑇ℎ)
𝑁𝑆𝑡𝑎𝑡𝑢𝑠 ← 0𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Here δ is the status of the node behaviour among the nodes 

and the Th represents the threshold limit of changes in the 

similarity. 

With a dynamic investigation, previously unseen malware 

can be found. By executing it on a network system, IT security 

experts can observe malware's activity without worrying about 

infecting their own networks or systems. This type of analysis 

is crucial in a world where malware is always evolving 

because it gives full visibility into the danger and what drives 

it. Let dynamic malware patterns set {MW1,MW2,……MWP} 

where p is the total malware patterns detected. 

 

𝑀𝑎𝑙𝑃𝑎𝑡[𝐾] =∑𝑔𝑒𝑡𝑟𝑎𝑛𝑔𝑒(𝑀𝑊𝑖)

𝐾

𝑖=1

+max(𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑖, 𝑖 + 1)) 
 

Dynamic malware prediction is performed by analyzing 

each node traffic patterns and the changes in the patterns are 

detected. The nodes which are causing the malicious actions 

in the network are identified and then the nodes will be 

removed using the self healing model. The dynamic malware 

pattern analysis is performed as 

 

𝐷𝑦𝑛𝑀𝑎𝑙[𝐾]

=∑
∑ 𝑔𝑒𝑡𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑖)𝐾
𝑖=1

𝑙𝑒𝑛(𝐾)
+max(𝑀𝑊𝑖 , 𝑀𝑊𝑖+1)

𝐾

𝑖=1

+
𝑀𝑎𝑥(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖, 𝑖 + 1))

𝑙𝑒𝑛(𝐾)
𝑠𝑖𝑚𝑚(𝑁𝑆𝑡𝑎𝑡𝑢𝑠(𝑛𝑜𝑑𝑒(𝑖, 𝑖 + 1))) 

 

In a self-healing network, problems are resolved 

automatically, without the need for human involvement. A 

network automation tool can detect and repair any kind of 

network issue or security violation in real time.  While there 
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are many possible implementations of self-healing networks, 

the vast majority of them include receiving an alarm that 

causes your network to take corrective action. The malware is 

entirely eradicated from the network once the self-healing 

model examines every pattern and fixes it. The self healing 

model operations and the nodes causing the malicious actions 

are listed as: 

 

𝑆𝑒𝑙𝑓𝐻𝑒𝑎𝑙[𝐾] =∏
𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)

𝐾
+ 𝜏 (𝑟𝑚 (𝐷𝑦𝑛𝑀𝑎𝑙(𝑛𝑜𝑑𝑒(𝑖))))

𝐾

𝑖=1

+ 𝑟𝑚(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖) − 𝑛𝑜𝑑𝑒(𝑁𝑙𝑎𝑏𝑒𝑙(𝑖)) 

𝑀𝑎𝑙𝐴𝑙𝑎𝑟𝑚[𝐾] =∑
∑ 𝑑𝑖𝑓𝑓(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))𝐾
𝑖=1

𝑙𝑒𝑛(𝐾)

𝐾

𝑖=1

+ 𝛾(𝑠𝑖𝑚𝑚(𝑀𝑎𝑙𝑃𝑎𝑡(𝑖. 𝑖 + 1))) 

𝑆𝑒𝑙𝑓𝑅𝑒𝑙𝑖𝑐𝑎[𝐾] =∑∏𝑔𝑒𝑡𝑚𝑎𝑥𝑟𝑎𝑛𝑔𝑒(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))

𝐾

𝑖=1

𝐾

𝑖=1

+ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑆𝑒𝑙𝑓𝐻𝑒𝑎𝑙(𝑖))

+ min(𝑠𝑖𝑚𝑚(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1))

− max (𝑠𝑖𝑚𝑚(𝐷𝑦𝑛𝑀𝑎𝑙(𝑖, 𝑖 + 1)))

+ 𝑚𝑎𝑥𝐴𝑙𝑎𝑟𝑚(𝑛𝑜𝑑𝑒(𝑖)) 

 

Here τ is the model that generates the copies of the code in 

the network systems, rm is used to remove the specified node 

that has malware patterns, γ is the models for triggering the 

alarm for self replication model to activate self healing model.  

 

 

4. RESULTS 

 

Wireless sensor networks differ from their wired 

counterparts in that they consist of a dispersed collection of 

motes that possess the self-organizing quality. Because of their 

unique architecture, intruder detection algorithms for wireless 

sensor networks must account for the limited processing 

capacity and high energy consumption of the former. Due to 

their extremely high cost per mole, localization-based 

approaches for intrusion detection employing pattern analysis 

are not practical. There are often a few distinct types of 

intrusion detection systems.The public signature method of 

misuse detection uses low resources but is susceptible to 

attacks that have not been made public. Intrusion detection can 

find both known and undiscovered hazards by comparing the 

subject's typical behavior with its reported activity. If the 

nodes conduct is inconsistent with the estimated or projected 

one, the system must issue a report. The log and audit files of 

some models may need tweaking before they can be used with 

wireless sensor networks to their full potential.  

Behavioral prediction provides a generic paradigm for 

predicting nodes' actions based on their routing. Behavior 

probability estimation is a tool that can be used to boost 

network confidence. Trustworthy category nodes can be 

formed to help identify malicious nodes and to build 

confidence between nodes that are far away. Remember that 

network traffic can interrupt connections while keeping an eye 

on the pattern of activities. Conventional communication 

networks rely on reliable routing algorithms to ensure node 

resilience. For WSN routing to work, faraway nodes must 

prove their reliability. Managing the forward node is critical to 

completing the routing procedure in this WSN. The pattern of 

activity in a WSN is determined by analyzing the process of 

node packet delivery. The main reason to use this technique is 

the ability to control node development at the location. This 

method uncovers harmful attacks and builds trust between 

distant nodes. In the event that an unreliable node is identified, 

the reliable ones will need to adjust their configurations. If a 

node's harmful actions impact the entire network, we call it a 

failure node. How every node will behave is hard to predict. 

Returning the system to normalcy requires early detection of 

the rogue node. But if the node is egocentric, then it needs to 

be on its own. This research proposes a Dynamic Malware 

Pattern Analysis with Rapid Node Behaviour Analysis using 

Self Replication Model (DMPA-RNBA-SRM) for Network 

Intrusion Detection in the network. The normal patterns will 

be allowed into the network and the patterns of the nodes that 

are unusual. The proposed model is compared with the 

traditional Dynamic Analysis for IoT Malware Detection with 

Convolution Neural Network (DA-IoT-MDCNN) Model and 

Intelligent Vision-Based Malware Detection and 

Classification Using Deep Random Forest Paradigm (IVMD-

RFP). 

The proposed model is implemented in python and executed 

in Google Colab. The proposed model considers the dataset 

from the link https://www.kaggle.com/c/malware-

detection/data. The system configurations are Intel I5 

processor, 8GB RAM, 1TB HDD, 3.70 GHz. I created this 

dataset as an outcome of my research into android security and 

machine learning. The information was gathered by a 

procedure that included making a binary vector of permissions 

utilized for every application examined, where 1 indicates 

usage and 0 indicates non-usage. In addition, the 

malware/benign samples were categorized by "Type"; one 

sample was classified as malware and the other was not. 

The proposed model performs gathering of complete node 

information for all the nodes in the network. The nodes 

information is maintained for node identification and future 

communications with the nodes. The Node Registration Time 

Levels of the proposed and traditional models are shown in 

Table 1 and Figure 5. 

When a link, file, or connection is made or acquired over 

the network that raises suspicion, it is considered malware 

traffic. Malicious traffic is a security risk that can compromise 

computer or the security of a organization. There are several 

methods and technologies available for detecting malicious 

network activity. Monitoring network activity for suspicious 

patterns, abnormalities, or known signatures of threats is 

where IDS and IPS come in handy. The Table 2 and Figure 6 

represents the Traffic Pattern Analysis Accuracy Levels of the 

proposed and traditional models. 

 

Table 1. Node registrations 

 

Nodes Considered in 

the Network 

Models Considered 

DMPA-RNBA-

SRM Model 

DA-IoT-

MDCNN 

Model 

IVMD-RFP 

Model 

50 10.3 14.7 19.1 

100 10.7 15.2 19.4 

150 11 15.8 19.7 

200 11.3 16.3 20.1 

250 11.7 16.7 20.5 

300 12 17 21 
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Table 2. Traffic pattern analysis  

 

Nodes 

Considered in 

the Network 

Models Considered 

DMPA-

RNBA-SRM 

Model 

DA-IoT-

MDCNN 

Model 

IVMD-

RFP 

Model 

50 97.6 91.5 93.7 

100 97.8 92 94 

150 98 92.5 94.2 

200 98.1 93 94.5 

250 98.3 93.5 94.6 

300 98.4 94 95 

 

 
 

Figure 5. Node registration time levels 

 

 
 

Figure 6. Traffic pattern analysis accuracy levels 

 

Table 3. Node behavior analysis  

 

Nodes 

Considered in 

the Network 

Models Considered 

DMPA-

RNBA-SRM 

Model 

DA-IoT-

MDCNN 

Model 

IVMD-

RFP 

Model 

50 97.6 94.2 91 

100 97.9 94.5 91.2 

150 98 94.7 91.4 

200 98.2 95 91.6 

250 98.4 95.3 91.8 

300 98.5 95.5 92 

Table 4. Dynamic malware detection  

 

Nodes 

Considered in 

the Network 

Models Considered 

DMPA-

RNBA-SRM 

Model 

DA-IoT-

MDCNN 

Model 

IVMD-

RFP 

Model 

50 97.6 93.7 92.2 

100 97.8 94 92.6 

150 98 94.2 92.8 

200 98.2 94.5 93 

250 98.4 94.7 93.3 

300 98.6 95 93.5 

 

 
 

Figure 7. Node behavior analysis accuracy levels 

 

 
 

Figure 8. Dynamic malware detection accuracy levels 

 

Each node in the network has its own behaviour. The 

behaviour of each node is analyzed to recognize the node 

actions in the network. The change in node behaviour results 

in cause of malicious actions. If any node is affected with 

malware, such nodes will cause malicious actions in the 

network. The Table 3 and Figure 7 depict the Node Behavior 

Analysis Accuracy Levels of the existing and proposed models. 

When performing dynamic malware analysis, any 

suspicious code is run in a network to ensure it does not cause 

harm. There is no chance of the malware infecting the machine 

or escaping into the network because the system is closed. 
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Observing and recording the program's behavior both within 

and outside of the network is crucial for dynamic malware 

analysis, which takes a node behavior based method to 

understanding possible dangers. The Dynamic Malware 

Detection Accuracy Levels of the proposed and existing 

models are shown in Table 4 and Figure 8. 

The proposed self-healing theories aims to provide an 

explanation of the basic concepts that must be considered 

while implementing self-healing functionality, as well as the 

pattern between self-healing and other scientific disciplines. 

What it means for a cyber-physical system to have self-healing 

functionality built into it, while the methods for achieving self-

healing include specifics about the underlying models, 

frameworks, and network topologies. The self healing model 

removes the detected malware in the network and removes the 

malware patterns for increasing the network efficiency. The 

Self Replication Model Performance Accuracy Levels of the 

proposed and existing models are shown in Table 5 and Figure 

9. 

 

Table 5. Self replication performance 

 

Nodes 

Considered in 

the Network 

Models Considered 

DMPA-

RNBA-SRM 

Model 

DA-IoT-

MDCNN 

Model 

IVMD-

RFP 

Model 

50 97.3 93.5 92.7 

100 97.5 94 93 

150 97.8 94.5 93.2 

200 98 95 93.4 

250 98.2 95.5 93.6 

300 98.4 96 94 

 

Table 6. Network security  

 

Nodes 

Considered in 

the Network 

Models Considered 

DMPA-

RNBA-SRM 

Model 

DA-IoT-

MDCNN 

Model 

IVMD-

RFP 

Model 

50 97.9 93 92.4 

100 98 93.2 92.8 

150 98.1 93.4 93 

200 98.3 93.7 94.3 

250 98.4 93.8 94.6 

300 98.6 94 95 

 

 
 

Figure 9. Self replication model performance accuracy levels 

 
 

Figure 10. Network security levels 

 

To secure the network, one must take any and all measures 

necessary to keep data and network operational at all times. 

Hardware and software are both part of this. It eliminates 

multiple dangers at once. It prevents them from getting into 

ones system or spreading throughout it. Accurate network 

security controls who can access the network and how. The 

network security levels of the existing and proposed model are 

shown in Table 6 and Figure 10. 

 

 

5. CONCLUSION 

 

To conduct a dynamic malware analysis, a secure 

environment is used to execute hazardous code while 

meticulously monitoring its actions to assess their level of 

impact. Dynamic malware analysis allows malware to unpack 

and operate in a network scenario, sidestepping the constraints 

of static analysis. Running an untested program and seeing 

what happens is the goal, but there are major downsides to this 

seemingly simple approach. The malware could do permanent 

damage to the computer and its data if left running. The 

application could distribute viruses of any kind and cause 

network congestion. There is not a single thing about this that 

would be uplifting. A network separates the infected program 

from the rest of the system, protecting it from potential harm. 

In its most basic definition, malicious software is any program 

that is installed on a computer without the owner's consent or 

knowledge and has the purpose of causing harm to the host's 

data, apps, or operating system. Malware usually uses sneaky 

or illegal means to spread itself through files in order to infect 

a user's system, which is the initial step for infecting a 

computer. Tales of cyber assaults often make mention of 

malware families such bots, viruses, spyware, worms, 

scareware, and trojans. A self-replicating model for network 

intrusion detection is suggested in this study, which combines 

dynamic malware pattern analysis with rapid node behavior 

analysis. In systems that are constantly changing and 

experiencing novel behaviors, this paradigm enables a 

significant decrease in false positive alarms. It is possible to 

accurately detect malware by analyzing dynamic malwares of 

various types and taking node behaviour into account. 

Notifications are sent out whenever something that could be 

harmful happens, so other servers can quickly implement 
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countermeasures and other systems can be protected from 

attacks. The self healing system is activated if any malware is 

detected and the network will be secured without any loss to 

the network. The proposed model achieves 98.4% accuracy in 

dynamic malware pattern analysis and self healing model 

achieves 98.2% accuracy in securing the network from 

malware attacks and loss of data. In future, hybrid 

optimization models can be included with deep learning 

strategies to analyze minute malware patterns also and also to 

increase the capabilities of self healing systems in large 

networks by performing the malware pattern analysis and 

detection in less time. 
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