
Parallel Memory-Based Collaborative Filtering for Distributed Big Data Environments

Pallavi Shree* , Somaraju Suvvari

Department of Computer Science, National Institute of Technology Patna, Patna 80005, India

Corresponding Author Email: pallavis.phd18.cs@nitp.ac.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.120303 ABSTRACT

Received: 25 June 2024

Revised: 9 September 2024

Accepted: 19 September 2024

Available online: 30 September 2024

The amount of information produced about any item or user has reached a very staggering

level. Not only the volume of data, the velocity of data has reached an unprecedented

magnitude. For any information retrieval or information processing system to work

efficiently, it should be able to process massive amounts of data in real-time. Modern

systems face a lot of challenges in managing data with high volume and velocity, especially

when these systems are required to generate accurate predictions in a timely fashion. The

most efficient way to ensure that modern information retrieval systems can adapt to the

current volume and velocity of data is to implement them over a parallel and distributed

environment. In this paper, we put forward a method for enhancing the scalability and

performance of recommender systems in big data environments. By using the Euclidean

distance to calculate the cosine similarity we introduce a technique which is efficient in

parallelizing the algorithm for distributed environments. Thereby improving the

computational efficiency and scalability of the recommender system. This enables such

systems to manage large datasets with high accuracy and speed. With the help of parallel

processing, our method can assist modern information retrieval systems keep up with the

pace of ever-growing demands of data velocity and volume, ensuring real-time

performance and robust scalability.

Keywords:

memory-based, cosine similarity, euclidean

distance, PySpark, parallel and distributed

environment

1. INTRODUCTION

There has been an incredible development and business

surge in the online commerce industry. The economy fueled

by this growth has evolved into a connected economy, and due

to the rapid expansion of data, the network has now stepped

into the age of big data. Users cannot correctly use the

information made available by ever-growing e-commerce

platforms, as the amount of commodity information has

reached an inconveniently large scale. This has led to

information overdose for the users. This means that incoming

information is above and beyond the processing capacity of

recipients, users, and systems alike. Due to this astronomical

data growth, parallel and distributed systems of

recommendation are becoming increasingly important. One of

the key benefits of such systems being distributed and parallel

is their ability to process large datasets more quickly. Real-

time recommendations to users have to be the main aim for

recommender systems, such as those used by streaming

services and e-commerce websites. Another benefit of parallel

and distributed recommender systems is their ability to handle

larger datasets. This is important for recommender systems,

considering the number of parameters that are factored in

while providing recommendations, including but not limited

to user likings, item features, and information related to users

and items. Additionally, parallelized distributed recommender

systems are scalable, resilient, and cost-effective. This means

they can be deployed on large-scale systems, handle failures,

and be deployed on commodity hardware. We present an

implementation of a memory-based collaborative filtering

algorithm in a parallel and distributed environment in this

paper. Our implementation uses several techniques to improve

performance, including:

(1) Partitioning the user-item preference matrix across

multiple processors.

(2) Using a more efficient, parallelizable version of the

cosine similarity formula.

Our experimental results show that our parallel

implementation of a memory-based collaborative filtering

algorithm can significantly improve performance over a serial

execution. The paper has been divided into six sections. In the

second section, we discuss the basic terminologies used in

recommender systems. The third section of the paper discusses

the similar efforts in the field. Our methodology of parallel

implementation of a memory-based collaborative filtering

algorithm is laid out in the fourth section. All the experimental

results of the proposed method have been presented using

graphical and tabular data in the fifth section. We finally

conclude the paper in the final and sixth sections.

2. BACKGROUND

Before we jump into recommender systems, the most

imperative step should be to understand different categories of

data processing systems referred to as Information Retrieval

International Journal of Computational Methods and
Experimental Measurements
Vol. 12, No. 3, September, 2024, pp. 217-225

Journal homepage: http://iieta.org/journals/ijcmem

217

https://orcid.org/0000-0001-5268-158X
https://orcid.org/0000-0001-8956-0175
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.120303&domain=pdf

systems. Information retrieval (IR) can be defined as the

process of using a source of data and extracting information

pertinent to an inquiry done by, any user or any other system

e.g., a movie based on genre from a streaming platform, a

journal from a repository based on a subject, or results

produced by the search engine based on a question asked by

the user [1]. One the types of IR is recommender systems.

Hence, we can define a recommender system (RS) as a

subcategory of an information filtering system that calculates

the most accurate rating a user would provide for an item [2].

RS as a software solution has its roots in the most basic human

tendency of asking for suggestions or recommendations before

trying out any new experience or object or even for making

friends. The information provided by these systems helps the

users make decisions like purchasing an item, renting a movie,

etc. The recommendations presented are designed to assist

individuals in making informed decisions across a range of

contexts. This means that the primary objective of these

systems is to provide personalized recommendations which is

the major difference between recommender systems and

information retrieval search engines [2]. Recommender

systems have emerged as essential tools in electronic

commerce, providing effective solutions for online users

grappling with information overdose. Their significance lies in

their ability to sift through vast amounts of data, enabling users

to make informed decisions. These systems have become

pivotal in addressing the challenges posed by the

overwhelming volume of information on online platforms.

Hence, numerous methods for generating recommendations

have been put forward. Companies like Netflix, Amazon,

Facebook, etc. have successfully applied and gained from

these methods for recommending books, movies and friends.

Any RS has two main objects: “Items” and “Users”. The topic

or object for which the suggestions are generated is generally

called “Item”. Normally, RS is meant to recommend a specific

type of item like movies, books, songs, restaurants, etc. Such

systems are mainly aimed at individuals (referred to as “User”

in RS) who are relatively new in a certain domain, like people

looking for hotel suggestions before visiting a new place.

Interaction between the items and users is called “Transaction”.

Transactions give us data about items, users and preferences.

The recorded preferences of users act as an input to the RS.

These inputs can be collected implicitly or explicitly. Explicit

feedback [3] shows the direct preference of users for an item.

Explicit ratings are mostly on a numerical scale like a range of

1 rating for worst and 5 being the best, like otherwise dislike,

etc. Implicit feedback is extracted from user actions like the

amount of time the user was on any given page, clicks

performed by users on websites, whether the user purchased

the item or watched the video, etc. Based on the way

recommendations are generated, RS can be classified as given

in Figure 1.

Figure 1. Type of recommendation system

(1) Collaborative filtering: Collaborative filtering [4]

recommender systems leverage the preferences and

behaviours of other users to suggest items or content to a

particular user. By analysing the choices and interactions of a

diverse user base, these systems identify patterns and

correlations, allowing them to generate personalized

recommendations. This approach helps users navigate the

abundance of available options, making their online

experience more tailored and relevant. Through sophisticated

algorithms and data analysis, recommender systems enhance

user engagement and satisfaction by presenting them with

choices aligned with their interests and preferences. For

instance, a recommendation of a film for a viewer can be

grounded on the explicit or implicit feedback given by various

other viewers who have watched the movie.

(2) Content-based: Content-based [5] recommender

systems use the previous interactions of the uses with the

system and item properties of the items under consideration.

Such systems might recommend movies based on the genre of

the previously watched movies of the users or a book

recommender tool might suggest books of the same author

whose other books have already been read by the same user.

(3) Demographic: These systems use the date of birth, sex

of the user, and their current geographical location to generate

suggestions for the user. For instance, this type of

recommender would recommend the product to any user on

the same lines as the products that users of the same age and

gender have purchased.

(4) Knowledge-based: Industry or domain-specific

knowledge is used by such systems to provide useful

suggestions to the user. The best example is a system

suggesting a recipe to the user, considering the dietary

restrictions and the ingredients they have on hand.

(5) Community-based: Community-based recommender

systems recommend items to a user relying on the

predilections of user clusters having similar features. For

instance, this type of recommender would use all views of all

users of the same online forum to which another user belongs

and suggest a movie rated highly by the users of the forum.

(6) Hybrid filtering: These recommender systems are built

using a combination of systems mentioned above.

2.1 Content-based filtering algorithms

Content-based filtering (CBF) generates a feature set of

items and preference or behaviour profiles for users based on

additional information about user demography, online

behavior, their friend network, and the properties of items used

by customers. CBF is classified as content-based when it

provides recommendations grounded in the content details of

items. Conversely, when these recommendations rely on the

contextual information of users, CBF is termed context-based.

In most situations, extracting relevant information about users

or items becomes challenging due to a lack of information or

information overload. This limits the performance and

application of CBF.

2.2 Collaborative filtering algorithms

The majority of the recommender systems are based on

Collaborative filtering algorithms. It can be defined as a

method that generates suggestions, i.e., filters the information

related to the choices of any person by gathering information

from a large quantity of other people, i.e., collaborative

filtering [6]. Breese et al. [7] categorized CF techniques into

218

systems which are based on memory while another type of

system is built on models.

2.2.1 Model-based CF techniques

In the model-based approach, the system generates

parameters to model the behavior of users and features of

items, which enables it to make suggestions using the created

parameters. Filtering techniques are collaborative in nature

and build learning models based on machines for predicting

ratings that an item might get from the user. These models are

trained on a dataset of user ratings and item features. Once the

models are trained, they can forecast the most probable rating

an item would get from a specific user, even in scenarios where

the user-item interaction would not have occurred earlier and

no rating data is recorded for this user-item pair. As the main

of such techniques is to predict rating, probability of purchase,

etc., these systems are most commonly configured as

supervised learning problems.

2.2.2 Memory-based CF techniques

Memory-based collaborative filtering techniques are

relatively simple to implement and can be very effective for

generating personalized recommendations. Memory or

neighbourhood-based CF are implemented by calculating

distance or similarity metrics. In memory-based CF,

recommendations are based on similarities among users [8] or

items [9].

(1) User-item Collaborative Filtering: items used or

purchased or rated by users similar to us. Such systems first

find users similar to the user under consideration and then

generate recommendations for users based on their purchase

or rating history.

(2) Item-item Collaborative Filtering: based on the

segregation that suggests that users who show interest in

specific items are more likely to be interested in these items.

Here, we first find similarities among a bunch of items and

recommend items that are most similar to items already rated

by that user.

A detailed comparison in terms of the various

characteristics of both these methods can be found in Table 1.

Table 1. Comparison of memory and model-based CF

Characteristic
Model-Based

Collaborative

Filtering

Memory-Based

Collaborative

Filtering
Simplicity More complex Simpler

Interpretability Less interpretable More interpretable
Flexibility Less flexible More flexible

Cold-start handling Worse Better

Scalability
More scalable for

large datasets (once

models are trained)

Less scalable for

large datasets

Accuracy
More accurate,

especially for

sparse datasets

Less accurate,

especially for

sparse datasets
Explainability Less explainable More explainable

2.3 Challenges of the recommender system

Recommender systems are complex algorithms that use

data to predict what users will like. They are used in various

applications, like online shopping, streaming services, and

social media. However, recommender systems also face

several challenges, including:

Lack of data: Recommender systems need data to learn user

preferences and make accurate recommendations. However, it

is quite possible that there is not enough data for the users with

very specific interests and this makes it very difficult to make

useful and correct recommendations.

Cold start problem: It is a phenomenon faced by a

recommendation system when a new user or item enters the

system and recommendations have to be generated for such

users or items. Being new to the system there is no associated

data for such users or items. This makes it very hard to provide

recommendations when no data is available for the user’s

interests or the item’s popularity. Thus, making it very

challenging while generating recommendations.

Scalability: The most critical feature of any Recommender

system should be its ability to scale up to the ever-increasing

volume of data being generated by users and items. As most

of the recommender systems run on very complex algorithms

which are computationally demanding, scalability becomes

one of the biggest challenges that should be considered while

designing any recommender systems.

Sparsity: As the majority of the users do not interact with

the majority of the items, the user-item matrix in a

recommender system is often very sparse. This means data is

not available for most of the user-item pairs. The absence of

data makes it very difficult to make useful recommendations

and understand the preferential pattern of the user or the

popularity of items.

Bias: The methods or even data used to generate

recommendations can be the source of an inherent bias

towards certain items or users. Once the bias is present in the

recommendations there is a very high chance of the same items

being recommended to the majority of users and not taking

into account the actual preferences of the user.

Privacy: There is an automatic concern relating to the

collection and storage of data for making more accurate

recommendations. This data can be transactional data or

implicit data like browsing history and purchase history. This

is not only a security concern but also raises ethical concerns

as to what is the extent to which we should collect data without

infringing the privacy of any user.

Apart from the challenges discussed above, there are

numerous other challenges faced by any recommender system.

It should be flexible enough to cater to the ever-evolving

preferences of the user and also consider the new items which

are regularly added to the inventory. It also should be robust

to handle attacks such as shilling attacks. A shilling attack is

an attack where the system is flooded by fake user profiles and

their review of items which can either promote or paint a bad

review for any item. Even with such challenges, the

recommender system is a very useful tool which not only helps

users identify the most suitable items for them but also

discovers new content and products which they would

normally not try.

3. PREVIOUS WORK

With the increasing ease of accessibility to the internet and

a large number of online and connected devices, the majority

of the applications running on such devices have become data-

centric. Data is now being generated at a very tremendous rate.

Applications like search engines, social media platforms,

content streaming and sharing platforms have data and

intelligent usage at their core. They are processing data from a

few gigabytes to several terabytes or even petabytes. Google

219

for example is processing around twenty petabytes of data

daily [10]. There have been various reviews of different

recommender system techniques and applications. Lu et al. [11]

provided a comprehensive survey of real-world recommender

system applications and categorizes the definite necessities for

recommendation methods in each application field. The author

has also systematically reviewed recommender systems

(online software) by considering four aspects:

(1) Recommendation methods: This includes the different

algorithms recommender systems use to generate

recommendations, such as collaborative filtering, content-

based filtering, and knowledge-based filtering.

(2) Recommender system software refers to specific

applications that implement recommender systems, such as

BizSeeker.

(3) Real-world application domains: This refers to the

different areas in which recommender systems are used, such

as e-business, e-learning, and entertainment.

(4) Application platforms: This refers to the different

devices and platforms on which recommender systems are

available, such as mobile phones, TVs, and websites.

Chen et al. [12] provided a clear and concise overview of

CF-based recommender systems, covering rudimentary ideas,

different CF algorithms, and assessment metrics. They also

discuss traditional CF methods’ challenges, such as cold start,

data sparsity and scalability. The authors introduce the hybrid

CF methods based on social networks, which have shown

promising results in addressing the challenges of traditional

CF methods. This work discusses a wide range of memory and

model-based techniques, including enhanced similarity

measures, memory-based trust-aware CF, model-based social

matrix factorization-based CF, and dimensionality reduction

techniques.

Collaborative filtering algorithm is one of the most

deployed personalized recommendation approaches especially

in commercial recommendation systems [13, 14]. Scalability

is a major concern for collaborative filtering. This has also

been pointed out by Mishra et al. [15] who consolidated the

research problems in Recommendation Systems, scalability is

one of the most challenging problems to be solved. Bobadilla

[16] also studied the cold start problem present in all

recommender systems alongside similarity metrics tailored for

this problem. Authors have also dwelled on providing a survey

of social filtering focusing on trust, reputation and credibility.

One of the approaches used in addressing such a problem is

the reduction of data size [17]. This is done by either reducing

the number of users by randomly sampling customers or by

not considering users who have made fewer purchases. Items

can also be reduced by selecting certain specific categories of

items [18]. This approach of addressing scalability issues does

not work as recommendation quality worsens significantly.

The segmentation method [19] has also been used to tackle

scaling issues where users are segmented into groups of

similar customers. After segments are generated, the similarity

between users and the vector which summarizes each segment

is calculated. Cluster models are efficient as compared to the

data size reduction approach.

Most recommendation algorithms have tackled the

scalability issue by moving the computationally heavy part of

running any model into an offline phase. The same has been

performed in Amazon.com recommendations [20] where it

generates a similar item table and finds items similar to the

items purchased by the user in offline mode. Part of the

recommendation, which is only on a real-time basis, is listing

the most similar items for that particular user. The real-time

approach does not depend on the total number of items but

only on the purchases made by that user, making item-item CF

a highly scalable recommendation algorithm.

However, moving the calculation steps, which consume a

maximum amount of time to the offline phase and saving

intermediate results for the online phase helped in scaling as

per dataset. Still, the offline phase is a step which consumes a

large amount of time and a tremendous number of resources.

Then researchers started using a parallel data processing

method such as Map-Reduce over a distributed environment

to implement collaborating filtering. Varanasi [21]

implemented user-based collaborative filtering over Map-

Reduce in a Hadoop environment where Jaccard distance was

the similarity measure being calculated. The experiments in

this approach do not include the effort for pre-processing as

the performance measurement metric. Only the running time

and data size are considered. It uses 6 MapReduce jobs.

Bobadilla et al. [22] identified the limitations of traditional

similarity metrics, such as Pearson correlation, which are not

well-suited for discrete data, and proposes a new metric that

addresses these limitations by combining numerical and

nonnumerical information. Three of the most widely used

practical datasets were used by the author to evaluate the new

metric and prove its much better performance than the

traditional metrics regarding accuracy, coverage, and

precision/recall.

Varanasi [23] implemented an item-item CF using Map-

Reduce with multiple similarity measures namely Jaccard

Similarity, Tanimoto Similarity, Cosine Similarity and

Pearson Coefficient. The results show that as the authors

increased the number of nodes execution time decreased.

However, even with a 6-node cluster, the time consumed is

well above 4 hours and reaches around 16 hours for certain

datasets. This work uses 7 MapReduce jobs for

implementation.

When parallel implementation of the basic recommendation

algorithms [24] used Pearson correlation, adjusted cosine

similarity and alternating least squares models on a platform

like TensorFlow. The results pointed out that the adjusted

cosine similarity neighbourhood approach provided the best

accuracy, whereas the alternating least square method gave the

lowest accuracy. The offline computation phase of adjusted

cosine similarity on the other hand took around 8 hours in

execution.

In another Map-Reduce-based approach used in “Scalable

Recommender System over MapReduce” [25], item-item and

user-user collaborative are directly implemented without

changing the approach to calculate similarity. Here, they focus

on the accuracy of the RS, not on the efficiency of the RS. It

used 4 maps and 3 reduce jobs. A lot of contributions and work

has been done where the Hadoop MapReduce framework has

been used to process the calculation of collaborative filtering

in a parallel manner [26], but there seems to be a lack of focus

on the serial processing required in executing a MapReduce

job. Hence it is imperative that fewer full scans and sequential

access should be assured while executing MapReduce jobs as

it is paramount for maintaining the superior efficacy of parallel

processing because such jobs require disk operations on the

data nodes for getting input data and writing back the

processed information.

The author has put forward a new method for aggregating

recommendations from multiple algorithms in paper [27]. The

method, called Collaborative Rank Aggregation (CRA), uses

220

a metaheuristic algorithm to find weights for each algorithm’s

ranking, such that the aggregated ranking is more accurate

than any of the individual rankings. But this method requires

a training set to tune the weights of the individual algorithms.

The CRA method may not be able to improve the accuracy of

recommendations if the individual algorithms are not accurate

and also may not be able to enhance the accuracy of

suggestions for all users.

Dahdouh et al. [28] used Spark as processing system,

recommendations are made to around 1218 learners from a list

of more than 150 courses. The work has been done by using 3

node cluster and a dataset of 5000 transactions where the

execution time is 55 seconds. Sun et al. [29] have proposed

SACF model learns a similarity matrix that embeds features

which are both related and unrelated to sequence, which is

more informative for personalized e-government

recommendations. SACF uses matrix factorization to learn the

similarity matrix, which can effectively calculate the similarity

between a pair of users having no items rated by both of them.

SACF reduces the complexity of computing user similarity

from quadratic to linear, making it more efficient for large-

scale e-government recommendation tasks. It is evaluated on

a live e-governance database and shows significant

improvement over the cutting-edge methods.

All the works discussed above have used direct

implementations of existing algorithms. This may improve the

efficiency to a certain extent, but to completely parallelize any

algorithms, we might have to use specific implementations of

algorithms which are more feasible for parallel and distributed

processing. In the next section, we discuss our approach for

using a different version of existing cosine similarity in

addition to parallel and distributed methods of processing.

4. PROPOSED WORK

The most practical implementation of a memory-based CF

is calculating the distance metric like cosine similarity [19],

Pearson correlation [30] and Jaccard coefficient. We have

focused on cosine similarity. It measures the similarity of two

items, A and B, by measuring the cosine of the angle between

the two vectors. The original formula for the cosine similarity

is as given in Eq. (1):

Similarity(𝐴, 𝐵) = Cos(𝐴, 𝐵) =
|𝐴 ⋅ 𝐵|

∥ 𝐴 ∥∗∥ 𝐵 ∥
 (1)

In this paper, item-item CF is implemented by using cosine

similarity in parallelly in a parallel manner. For this parallel

implementation, the proposed calculation of cosine similarity

is given in Eq. (2):

Similarity(𝐴, 𝐵) =
|𝐴|2 + |𝐵|2 − 𝐶2

2 ∗ |𝐴| ∗ |𝐵|
 (2)

where, A and B are item vector and C is the Euclidean distance

between A and B.

When applying cosine similarity in item-item CF each

vector corresponds to an item and vector dimension

corresponds to users who have rated the item.

The following algorithm [19] provides an approach by

calculating the similarity between a single item and all related

items.

Algorithm Iterative approach to find likeness among any

item and remaining associated items
1: Loop every item Ix

2: Loop every User U who rated Ix

3: Loop every item Iy rated by user U

4: Save values when a user rated Ix and Iy

5: Loop every item Iy

6: Calculate the similarity between Ix and Iy

The computation described above is the extremely time

intensive. To improve the efficiency, it requires reducing the

problem into manageable proportions. Number of users and

items range in millions and become unmanageable. The

approach taken in our work is to perform independent

calculations in a parallelized and distributed manner. To

achieve parallelization, the following steps are required.

Step 1: Load and partition data
1: Read item ID, user id & rating from csv source

2: Partition data with item ID column

Once we have partitioned data, we can carry on with further

transformations. Given below are transformations applied.

Step 2: Consolidate dimensions of each item vector
1: Mapper 2: - Map data into key-value pair

2: Input: - Partition data from pre-processing step.

3: Output: - (Key(item id), value (user id, rating))

4: Reducer 1: - Consolidate all rating for each item

5: Input: - (Key(item id), value (user id, rating))

6: Output: - (Key(item id), value (Magnitude of item vector,((user

1, rating), (user N, rating))))

Step 3: Generate item pair for similarity calculation
1: Mapper 3: - Generate item pair as key and value as pair of

magnitude of vector and user & rating pair

2: Input: - (Key(item id), value (Magnitude of item vector, ((user

1, rating)(user N, rating))))

3: Output: - (Key(item item), value (Magnitude of item I vector,

((user 1, rating), (user N, rating))), (Magnitude of item J vector,

((user 1, rating), (user N, rating))

Step 4: Calculate cosine similarity for each item pair
1: Mapper 4: - Use the formula in the Eq. (9) to calculate the

cosine similarity.

2: Input: - (Key(itemi,itemj), value (Magnitude of item vector,

((user 1, rating), (user N, rating))))

3: Output: - (Key(itemi,itemj), value (Cosine similarity of item

pairs))

4: Reducer2: - Produce a single file with item pair and

corresponding cosine similarity

Our approach has multiple facets, which makes it more

efficient.

1. The magnitude of item vectors is calculated in a

parallelized manner.

2. Use of Euclidean distance for calculating cosine

similarity.

3. Calculation of similarity in a distributed Spark cluster.

The Eq. (1) is slower because it computes the sum of

products whereas Eq. (2) calculates sum of square distances.

Multiplication is an expensive operation compared to

subtraction and square. The Eq. (2) does not require the

computation of the product, and is therefore faster. We break

down and discuss each component of both formulae in the next

paragraph.

When we calculate the square root of the sum of the squares

221

of each corresponding element of any vector, we can say that

we have calculated the norm of that particular vector is defined

as the square root of the sum of the squares of its elements. For

example, let us consider a vector A, the norm can be calculated

by Eq. (3).

∥ 𝐴 ∥= √∑𝐴2 (3)

We need to partition vector A into smaller blocks and then

compute the norm of each block in parallel when the norm has

to be calculated in a distributed environment. Then, all the

intermediate norm of each block is summed up to achieve the

final norm of the vector. Given, two vectors A and B, the dot

product can be calculated by computing the sum of the

products of their corresponding elements. This is also called a

scalar product of the two vectors which is calculated using Eq.

(4).

𝐴 ⋅ 𝐵 = ∑𝐴 ∗ 𝐵 (4)

We need to partition the vectors A and B into smaller blocks

and then compute the dot product of each block in parallel in

a distributed environment. Then we can achieve the final dot

product of the two vectors by adding up the dot products of the

blocks. The Euclidean distance between two vectors is defined

as the square root of the sum of the squares of the differences

of their corresponding elements. In other words, for two

vectors A and B, the Euclidean distance is given by: This can

also be computed in a distributed environment by partitioning

vectors A and B into smaller blocks and computing the parallel

Euclidean distance between each block. Once the Euclidean

distance between each block is computed, the overall

Euclidean distance between the vectors can be computed by

summing the Euclidean distances between the blocks.

In the proposed Eq. (1), we have precalculated the

magnitude of the item vector, so this calculation does not

contribute to execution time when calculating similarity in the

final step. As the data is partitioned based on items, all the

dimensions corresponding to users rating the same item are

present in a single partition. This ensures minimum shuffle

between the partitions.

Table 2. Comparison of number of mapper and reducers

Paper Mapper Reducer

Varanasi [21] 6 6
Varanasi [23] 7 7

Wang and Yao [25] 4 3
Proposed Method 4 2

It can be understood from the Table 2 that number of

MapReduce jobs is very important. Our work uses optimum

number of mappers and reducers. Hence, we get the improved

results.

4.1 Roles of distributed system in recommendation

Apart from the calculation changes. We also made sure to

use of distributed and parallel computing as the two main

weapons to fight the challenges and enhance the performance

of these recommendation engines.

These programming paradigms have a two-pronged

approach, where the computation work is spread or distributed

across multiple computers whereas parallel processing utilized

the multiple cores of each machine and the workload is further

distributed in multiple cores of each machine. Furthermore,

these systems can be upgraded by using a large number of

commodity hardware and by scaling parallelly thereby

reducing the cost of expensive vertical upgrades. This

collection of computing resources makes it possible to handle

large datasets and enables recommender systems to generate

real-time recommendations.

There are a bunch of advantages provided by the use of

distributed and parallel computation:

Scalability: A distributed system can easily scale to match

the growing rate of data, users and items. As such systems

scale up horizontally which means adding commodity

hardware instead of expensive servers, it is much cheaper and

becomes more viable for the future too. The proposed work

uses the user-item interaction matrix which is partitioned over

the distributed environment. The system can distribute the new

workload across nodes when new data and users are added.

This ensures that the system can easily handle larger datasets.

If required we can just add more inexpensive hardware instead

of high-end servers. Thus, horizontal scaling ensures

scalability in a much cheaper manner than vertical scaling.

Faster Training: With the use of parallel processing the

algorithms itself can be parallelized. This expedites the

calculation of values like similarities. Thus, in turn improving

the speed of the training of algorithms many folds, enabling

them to learn from extensive datasets quickly. This use of

parallel processing confirms that similarities and

recommendations are always updated with the latest user-item

interactions. Our implementation uses parallel processing as

each node has 4 CPU cores. This speed up the calculations of

the similarities as larger calculations are broken down into

smaller tasks. This can be easily ascertained using the speedup

measure of the results.

Real-time Recommendations: When distributed and parallel

data processing is combined, the prospect of real-time

recommendations becomes a possibility. This ensures that all

recommendations are always updated with the most recent

trends of user preferences and item popularity. In the proposed

solution Apache Spark has been used as the engine which

provides in-memory processing. This further compliment the

new formula by providing near real-time calculations, so that

similarity values can be always recalculated if there is any

change in user preferences and popularity of the items.

Complex Models: Such systems also allow the researchers

to use more sophisticated methods like deep learning-based

recommendation models. These models can emulate the

behavior of the users and user-item relations much more

efficiently. In our approach, due to the use of Apache Spark

which supports a large number of data science and ML

libraries. We can easily build further complex models.

These implementation techniques have shown a good

improvement in the execution time of cosine similarity; the

results are discussed in detail in the next section.

5. EXPERIMENTS AND RESULTS

5.1 Experiments setup

The setup used in the experiment is the Google Dataproc

Spark cluster. It has a 4-node cluster setup on the Google

Cloud platform with 8GB of RAM and 4 cores for each node.

The cluster has 1 master and 3 slaves. Apache Spark is the

222

processing engine for executing the code.

Dataproc is a platform managed by Google Cloud platform.

It provides Hadoop and Spark services. It is a very useful tool

for batch processing, machine learning and stream processing.

It is very user-friendly as it lets users create clusters and

manage them using the Google Cloud platform dashboard.

Figure 2 gives a screengrab of the VM instance list of the

Google Cloud platform.

Figure 2. Cluster setup in Dataproc

5.2 Datasets

Dataset used in the experiment is called MovieLens. It

contains ratings given by a number of users from the

MovieLens website. This data has been aggregated by the

MovieLens website over a large amount of time. The dataset

used in our work has 1000209 ratings provided by 6040 unique

users for 3706 movies.

5.3 Measures of performance

The most common measures for determining the

performance of a parallel system are as follows:

(1) Execution Time: It is the most basic and intuitive

measure which tracks the time taken between submission of a

job for similarity calculation and job completion.

(2) Speedup: This is a ratio of the execution time of an

application on a single core and the execution time when the

same application is executed using parallel computation [14].

It signifies the improvement in the execution time when using

parallel computation. It is given in Eq. (5).

𝑆(𝑛) =
𝑇(𝑛)

𝑇(𝑛)
 (5)

here, the time of execution with one processor is T (1), and the

execution time with n processors is T(n).

(3) Efficiency: The percentage of time during which a

machine is effectively utilized in parallel computing. It is also

calculated by dividing the speedup by the number of

processors [28].

𝐸(𝑛) =
𝑆(𝑛)

𝑛
=

𝑇(1)

𝑛 ∗ 𝑇(𝑛)
 (6)

In the formula given above speedup is denoted as S(n),

whereas the time of execution with one processor is T (1), and

the execution time with n processors is T(n).

5.4 Results

Experiments were run with different data volumes for

proposed cosine similarity Eq. (2) and existing cosine

similarity Eq. (1).

(1) Execution Time: For calculating this measure, we

executed the proposed cosine and original cosine both on the

4-node cluster and recorded execution time for 5k, 10k, 20k,

50k, 100k, 200k and 500k, 1M and 2M number of transactions.

Execution time was recorded for different volumes and

different number of partitions. The results are captured in the

Table 3.

Table 3. Comparison of execution time

Data

Volume
No. of

Users
Partitions

Proposed

Cosine

Similarity1

Cosine

Similarity1

5001 2645
2 25.22 32.06
4 16.81 21.37
6 20.17 25.64

10000 3722
2 26.31 55.89
4 17.54 37.26
6 21.05 44.71

20000 4680
2 31.79 104.54
4 21.19 69.69
6 25.4 83.5

50000 5637
2 74.01 290.97
4 49.34 193.98
6 59.21 232

100000 5966
2 246.80 762.95
4 164.5 508.63
6 197.4 610.46

200000 6037
2 1123 2308
4 748.96 1539.43
6 898 1847.32

500000 6040
2 5245.4 9759
4 3503 6506
6 4203 7807

1000000 6040
2 6834 19665
4 4556 13110
6 5467 15732

2000000 20000
2 15990 48375
4 10660 32250
6 12792 38700

Note: 1unit of measurement of execution time is seconds.

Results clearly state that the proposed implementation of

cosine similarity is much more efficient than the original

implementation. As the data volume increases, the execution

time increases for both approaches significantly. The

difference between execution time is less when small volumes

of data. However, for 2M rows of data, the execution time is

more than 50 % less in the proposed solution.

Another observation that can be made is that increasing the

number of partitions improves execution time for both

methods. It can also be seen that 4 partitions are ideal for the

dataset as using 2 partitions reduces the performance.

However, increasing the number of partitions to 6 also causes

the execution time to increase due to overheads. Further, this

approach is also able to scale according to the increasing

number of users. Figure 3 showcases that execution time

growth for the proposed solution does increase exponentially

with the increasing volume.

The authors [28] have used a 3-node cluster and worked on

a maximum of 5000 transactions. So, we also set up one more

3-node cluster to compare with the results provided by the user.

The results for execution time have been noted in Table 4

which also states that it is faster than the similar items

calculated in the previous work.

223

Figure 3. Execution time comparison

Table 4. Comparison of execution time 5k rows for 3 node

cluster

Data Volume
Proposed Cosine

Similarity1
FP-Growth

Algorithm [28]1
5001 22.25 50
Note: 1unit of measurement of execution time in seconds.

(2) Speed Up: For calculating this measure, we executed

data once on a single core of a CPU with memory (RAM) of 8

GB and then using a CPU with quad cores without any changes

in the configuration of RAM for both proposed cosine

similarity and original cosine similarity.

Table 5 shows that parallel implementation of any algorithm

considerably speeds up the algorithm. However, our approach

speeds up the similarity calculation 3 times against 2 times

when using the original cosine formula.

Table 5. Comparison of speed up measure

Algorithm
T(1)

Seconds
T(4)

Seconds
S(4)=T(1)/T(4)

Proposed Cosine

Similarity
55.64 16.81 3.31

Cosine similarity 47 21.37 2.20

(3) Efficiency is based on the speedup measure calculated

above. Using the values in the Table 2.

Table 6. Comparison of efficiency measure

Algorithm
S(p), where

p=4
p=4 E(4)=S(4)/4

Proposed Cosine

Similarity
3.31 4 0.82

Cosine similarity 2.20 4 0.55

The results shown above in Table 6 prove that our approach

has a better percentage of time during which a machine is

effectively utilized in parallel computing. Parallel processing

also ensures more efficient use of utilization of resources of

each node of the cluster. This means that computational

resources are more efficiently utilized in performing all the

calculations and processing large volumes of data.

6. CONCLUSIONS

All the experimental results provided above showcase that

the proposed method provides improved scalability and

performance. These features are critical for a recommendation

system to be considered useful in a real-world scenario. Given

below are a few important considerations showcasing the

usefulness of this approach:

(1) Improved execution time: In the above results it is clear

that execution time is nearly reduced to half of that of

the original formula. For example, in Table 3 for 2000000

rows of data execution time is 10000 seconds as compared to

that of 32000 seconds in the original cosine formula.

(2) Better parallelization: The greater speedup factor noted

in Table 5 also showcases that our implementation is very

much suitable for parallel execution as increasing the number

of cores reduces the execution time by a factor of more than 3

whereas the execution time in the traditional approach only

improved by a factor of 2.

(3) Ability to handle more users: As the volume of the data

is increased thereby increasing the number of users the results

in Table 3 again show that the proposed method can manage

increment in the data without a proportion increase in

execution time.

(4) Better resource utilization: The proposed work

showcases an improved efficiency of 0.82 compared to 0.55 of

the original approach. This means that our approach utilizes

the available resources more effectively than the current

approach.

There are many papers which have focused on the parallel

implementation of collaborative filtering. However, the focus

has always been on using the direct implementations of

existing algorithms. We have proved with the experiments that

even adjusting the derivation of cosine similarity can

tremendously improve execution time. Further, we can also

safely state that the formula used in this paper has a better

speedup. The use of the new formula also utilizes the resources

much more efficiently. All these parameters remain

consistently in favour of using the new formula.

Though the use of a suitable formula did improve the

efficiency of the memory-based collaborative filtering, there

were no changes done to improve the accuracy. We plan to

focus next on improving the accuracy of such a system. This

would provide us with more efficient and accurate novel

approaches to make sense of the ever-growing data.

REFERENCES

[1] Bellogín, A., Said, A. (2019). Information retrieval and

recommender systems. Data Science in Practice, 79-96.

https://doi.org/10.1007/978-3-319-97556-6_5

[2] Shapira, B., Rokach, L., Ricci, F. (2022). Recommender

Systems Handbook. Springer, Boston, MA, USA.

https://doi.org/10.1007/978-0-387-85820-3

[3] Amatriain, X., Pujol, J.M., Oliver, N. (2009). I like it... i

like it not: Evaluating user ratings noise in recommender

systems. In International Conference on User Modeling,

Adaptation, and Personalization, pp. 247-258.

https://doi.org/10.1007/978-3-642-02247-0_24

[4] Koren, Y., Bell, R. (2015) Advances in collaborative

filtering. In: Ricci, F., Rokach, L. and Shapira, B., Eds.,

Recommender Systems Handbook, Springer, Boston,

77-118. https://doi.org/10.1007/978-1-4899-7637-6_3

[5] Rendle, S. (2012). Factorization machines with libfm.

ACM Transactions on Intelligent Systems and

Technology, 3(3): 1-22. https://doi.org/10.1145/2168752

2168771

224

https://doi.org/10.1007/978-3-319-97556-6_5
https://doi.org/10.1007/978-3-319-97556-6_5
https://doi.org/10.1145/2168752.2168771

[6] Wikipedia. Collaborative filtering.

https://en.wikipedia.org/w/index.php?title=Collaborativ

e filtering& oldid=1190204039.

[7] Breese, J.S., Heckerman, D., Kadie, C. (2013). Empirical

analysis of predictive algorithms for collaborative

filtering. arXiv preprint arXiv:1301.7363.

https://doi.org/10.48550/arXiv.1301.7363

[8] Herlocker, J., Konstan, J., Borchers, A., Riedl, J. (2017).

An algorithmic framework for performing collaborative

filtering. ACM SIGIR Forum, 8(51): 227-234.

https://doi.org/10.1145/3130348.3130372

[9] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2001).

Item-based collaborative filtering recommendation

algorithms. In Proceedings of the 10th International

Conference on World Wide Web, pp. 285-295.

https://doi.org/10.1145/371920.372071

[10] Dean, J., Ghemawat, S. (2008). MapReduce: Simplified

data processing on large clusters. Communications of the

ACM, 51(1): 107-113.

https://doi.org/10.1145/1327452.1327492

[11] Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G. (2015).

Recommender system application developments: A

survey. Decision Support Systems, 74: 12-32.

https://doi.org/ 10.1016/j.dss.2015.03.008

[12] Chen, R., Hua, Q., Chang, Y.S., Wang, B., Zhang, L.,

Kong, X. (2018). A survey of collaborative filtering-

based recommender systems: From traditional methods

to hybrid methods based on social networks. IEEE

Access, 6: 64301-64320.

https://doi.org/10.1109/ACCESS.2018.2877208

[13] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.

(2004). Evaluating collaborative filtering recommender

systems. ACM Transactions on Information Systems,

22(1): 5-53. https://doi.org/10.1145/963770.963772

[14] Adomavicius, G., Tuzhilin, A. (2005). Toward the next

generation of recommender systems: A survey of the

state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, 17(6):

734-749. https://doi.org/ 10.1109/TKDE.2005.99

[15] Mishra, N., Chaturvedi, S., Vij, A., Tripathi, S. (2021).

Research problems in recommender systems. Journal of

Physics: Conference Series, 1(1717): 012002.

https://doi.org/10.1088/1742-6596/1717/1/012002

[16] Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.

(2013). Recommender systems survey. Knowledge-

Based Systems, 46: 109-132.

https://doi.org/10.1016/j.knosys.2013.03.012

[17] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2000).

Analysis of recommendation algorithms for e-commerce.

In Proceedings of the 2nd ACM Conference on

Electronic Commerce, pp. 158-167.

https://doi.org/10.1145/352871. 352887

[18] Goldberg, K., Roeder, T., Gupta, D., Perkins, C. (2001).

Eigentaste: A constant time collaborative filtering

algorithm. Information Retrieval, 4: 133-151.

https://doi.org/10.1023/A:1011419012209

[19] Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.

(2007). Collaborative filtering recommender systems. In

the Adaptive Web: Methods and Strategies of Web

Personalization, pp. 291-324.

https://doi.org/10.1007/978-3-540-72079-9_9

[20] Linden, G., Smith, B., York, J. (2003). Amazon. com

recommendations: Item-to-item collaborative filtering.

IEEE Internet Computing, 7(1): 76-80.

https://doi.org/10.1109/MIC. 2003.1167344

[21] Varanasi, S. (2015). User-based recommendation

algorithm on Hadoop cluster. Master's thesis, Auburn

University.

[22] Bobadilla, J., Serradilla, F., Bernal, J. (2010). A new

collaborative filtering metric that improves the behavior

of recommender systems. Knowledge-Based Systems,

23(6): 520-528.

https://doi.org/10.1016/j.knosys.2010.03.009

[23] Varanasi, C.P. (2015). Item-based recommendation

algorithm using hadoop. Master's thesis, Auburn

University.

[24] Siomos, T. (2019). Parallel implementation of basic

recommendation algorithms.

https://repository.ihu.edu.gr//xmlui/handle/11544/29406.

[25] Wang, Z., Yao, S. (2020). Scalable recommender system

over MapReduce.

https://api.semanticscholar.org/CorpusID:270555497.

[26] Verma, J.P., Patel, B., Patel, A. (2015). Big data analysis:

Recommendation system with Hadoop framework. In

2015 IEEE International Conference on Computational

Intelligence & Communication Technology, pp. 92-97.

https://doi.org/10.1109/CICT.2015.86

[27] Bałchanowski, M., Boryczka, U. (2022). Collaborative

rank aggregation in recommendation systems. Procedia

Computer Science, 207: 2213-2222.

https://doi.org/10.1016/j.procs.2022.09.281

[28] Dahdouh, K., Dakkak, A., Oughdir, L., Ibriz, A. (2019).

Large-scale e-learning recommender system based on

Spark and Hadoop. Journal of Big Data, 6(1): 1-23.

https://doi.org/10.1186/s40537-019-0169-4

[29] Sun, N., Luo, Q., Ran, L., Jia, P. (2023). Similarity

matrix enhanced collaborative filtering for e-government

recommendation. Data & Knowledge Engineering, 145:

102179. https://doi.org/10.1016/j.datak.2023.102179

[30] Sheugh, L., Alizadeh, S.H. (2015). A note on pearson

correlation coefficient as a metric of similarity in

recommender system. In 2015 AI & Robotics

(IRANOPEN), pp. 1-6.

https://doi.org/10.1109/RIOS.2015.7270736

NOMENCLATURE

RS Recommendation System

CF Collaborative Filtering

225

https://en.wikipedia.org/w/index.php?title=Collaborative_filtering&oldid=1190204039
https://en.wikipedia.org/w/index.php?title=Collaborative_filtering&oldid=1190204039
https://en.wikipedia.org/w/index.php?title=Collaborative_filtering&oldid=1190204039
https://en.wikipedia.org/w/index.php?title=Collaborative_filtering&oldid=1190204039
https://en.wikipedia.org/w/index.php?title=Collaborative_filtering&oldid=1190204039
https://doi.org/10.1145/3130348.3130372
https://doi.org/10.1145/371920.372071
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1109/ACCESS.2018.2877208
https://doi.org/10.1145/963770.963772
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1088/1742-6596/1717/1/012002
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1145/352871.352887
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1016/j.procs.2022.09.281
https://doi.org/10.1016/j.procs.2022.09.281
https://doi.org/10.1186/s40537-019-0169-4

