
Indoor Sound Classification with Support Vector Machines: State of the Art and 

Experimentation 

Leila Abdoune1,2* , Mohamed Fezari3 , Ahmed Dib4

1 Computer Science Department, University Badji Mokhtar Annaba, Annaba 23000, Algeria  
2 Computer Science Department, ENSET (Ecole Normale Supérieure de l'Enseignement Technologique de Skikda), Skikda 

21000, Algeria 
3 Electronics Department, Faculty of Engineering, University Badji Mokhtar Annaba, Annaba 23000, Algeria  
4 Networks and Systems Laboratory - LRS, Department of Computer Science, University Badji Mokhtar Annaba, Annaba 

23000, Algeria 

Corresponding Author Email: lilouchetoday@yahoo.fr 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.120307 ABSTRACT 

Received: 8 August 2024 

Revised: 16 September 2024 

Accepted: 25 September 2024 

Available online: 30 September 2024 

Sound classification is considered as one of the most important areas of classification 

domain, but the least developed compared to speech and voice recognition. In this study, 

we focus on the works that deal with sound classification by making a comparative study 

based on feature extraction and classification methods as well as the targeted sound corpus. 

Next, we present an overview of sound classification systems that utilize deep learning 

techniques, aiming to compare them with traditional learning methods. Based on our 

previous studies and conclusions, and considering that the challenge in choosing 

classification methods lies in balancing accuracy and computational cost, we conducted 

experiments using SVMs (support vector machines) with different kernels and MFCCs 

(Mel frequency Cepstral coefficients). Tests are carried out for the classification of some 

indoor abnormal sounds, then the number of classes is increased to cover a wider variety 

of sounds in order to observe and study the system's behavior. Finally, the results obtained 

in this work are promising and motivate us to explore deeper tests which are mentioned in 

the discussion and conclusion section. 
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1. INTRODUCTION

In daily life and anywhere we go, we encounter a variety of 

sounds such as birdsong, shouts, the clinking of dishes, phone 

ringtones, and footsteps. This collection of sounds varies from 

one place to another and even varies within the same place 

depending on the scenario or activities taking place. The 

ability to automatically detect these sound events is called 

Automatic Sound Recognition (ASR). Other terms can also be 

used to indicate sound recognition, such as Acoustic Event 

Recognition (AER) and Audio Event Recognition. 

Recognizing environmental sounds or, specifically, 

recognizing everyday life sounds is a particular case within the 

field of sound recognition. 

The majority of research has focused on speech and speaker 

recognition; however, work on non-speech environmental 

sound recognition has been limited. Nevertheless, these efforts 

have become more active in recent decades [1]. More recently, 

there has been a growing interest in the classification of 

acoustic scenes [2-4]. 

An important characteristic of non-speech sounds is their 

diversity and the variation in their structures. Therefore, 

existing recognition systems are specialized in dealing with a 

particular type of sound or a set of sounds but are unable to 

handle all categories of sounds. This has made it challenging 

to find the right methods for Sound Event Recognition. As a 

result, this field remains open for finding solutions, comparing 

and attempting to adapt existing methods, and even 

discovering new methods. 

In fact, in a real environment, the sounds to be recognized 

may be noisy, i.e., with the presence of environmental noise, 

or overlapping, indicating several sounds that are nested and 

superimposed. Consequently, to classify them, we first need to 

remove the noise by extracting the sound from the background 

noise [5], and then separate the sounds so that we can process 

them separately. All this processing is an extension of sound 

recognition and forms what we call Auditory Scene analysis 

(ASA) [6]. 

Several fields can benefit from sound recognition such as 

robotics, hearing aid technologies, security systems, remote 

monitoring and assistance systems and also disaster response, 

to name a few. Although there is a significant amount of work 

in this area that provides good recognition rates, there are still 

several major challenges to be addressed including the 

diversity of sounds, their overlapping nature, the very varied 

structure of sounds that vary from stationary, quasi-stationary 

to non-stationary, in addition to impulsive, each requiring 

specific methods, in addition to the lack of a standard database 
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due to the large amount of sounds, etc. 

Indeed, researchers in the field of sound event recognition 

other than speech and music are divided into two groups [7], 

one group that tries to exploit, borrow and adapt the feature 

extraction methods used in the fields of speech and music 

recognition which are frequently stationary techniques such as 

MFCCs that is originally used for speech and music 

recognition. However, the second group try to use specific 

feature extraction methods that take into account the properties 

of the environmental sounds and develop domain-specific 

techniques to capture unique sound characteristics, like non-

stationary techniques. While the non-stationary methods give 

improved performance, they are often computationally 

expensive. On the other hand, although stationary techniques 

are easy to compute but the modeling of non-stationary sounds 

faces certain limitations [8]. So, we have to be careful in the 

choice of methods to achieve a balance between performance 

and computation time. 

This work focuses on the recognition of environmental 

sounds as isolated sounds produced within an apartment 

(indoor sounds), with the aim of integrating them into a more 

comprehensive real-time sound recognition system that serves 

as a surveillance system. In general, like any problem of 

recognition and machine learning, three important points must 

be addressed: the choice of feature extraction methods, 

classification methods, and finally, the database for 

benchmarking and testing the system. These are critical points 

for making decisions on the performance and accuracy of the 

system to be developed. Indeed, the real challenge in sound 

recognition lies in the selection of feature extraction methods, 

as well as finding the most suitable methods for recognizing 

these sounds taking into account the nature of the intended 

application (real-time processing, required processing power, 

potential integration into the Internet of Things (IoT)). 

The aim of this work is primarily to show the possibility of 

using feature extraction methods used for speech and music 

recognition, such as MFCCs, and traditional classification 

methods, such as SVMs, for the recognition of environmental 

sounds, and more specifically sounds of everyday life. Since 

the application targeted by this work is the remote monitoring 

of elderly people, we need to use a particular corpus of sounds 

and consequently a very limited number of classes, given that 

the tests are in their early stages. As we will see later in the 

next section, the choice of MFCCs and SVMs methods is not 

done at random but because the performance they achieve. The 

second goal is to enrich the reader by a review of the state of 

the art pertaining to environmental sound recognition and to 

highlight the major issues and challenges to be resolved. 

This paper, aims first at defining the suitable solution for 

our application according to the findings of the research study, 

and then, test the proposed solution with a real database and 

discuss and interpret the results. To accomplish our objective, 

the paper is structured as follows: we first provide a state-of-

the-art overview of sound recognition systems, followed by a 

synthesis of work on sound recognition systems for distress 

situation detection purpose in order to see what methods are 

used and what kind of classes are targeted and to discuss their 

results, after that we present a survey of studies employing 

new classification methods based on deep learning for a 

comparison purpose with the traditional classification methods. 

Next, we present the general architecture of the sound 

recognition system. In section 4, we present a brief 

experimentation and we discuss the results obtained. Finally, 

the last section concludes the paper with a summary of our 

findings, conclusions and future research directions. 

 

 

2. LITERATURE REVIEW 

 

Many research works have been proposed in the field of 

sound recognition to identify different categories of sounds 

depending on the intended application. In this section, we 

present a synthesis of the works and a comparison of the 

studies carried out in the field of automatic sound recognition. 

Our comparison is based on the feature extraction methods 

used as well as the classification methods but we also take into 

a count the number of classes and consequently the accuracy 

of the system. Our goal is to show which methods are most 

commonly used and yield better recognition rates. 

Classification methods revolve around GMMs (Gaussian 

Mixture Models), HMMs (Hidden Markov Models), and 

SVMs. In a previous work [9], we presented a state of the art 

on environmental sound recognition focusing on the feature 

extraction methods and classification methods used. In this 

section, in addition to work on environmental sound 

recognition, we present work on distress detection and the 

interest of new classification methods based on deep learning 

in comparison with classical methods such as GMMs, HMMS 

and SVMS. 

 

2.1 Overview of research on environmental sound 

recognition 

 

In the study [10], three classification methods were selected 

for water sound recognition, namely SVM, KNN (K-Nearest 

Neighbors) and CNN (convolutional neural network). The 

features used are extracted from audio fingerprints (20 

features). The recognition rate obtained by SVM, which is 

98.22%, is higher than the rates obtained by the other two 

classification models, which are 97.75% and 70.29% for KNN 

and CNN respectively. The research [11] focused on 

recognizing environmental sounds to interpret a scene or the 

context around an audio sensor. The Matching Pursuit (MP) 

method was selected to extract the most effective frequency-

time domain features, and a GMM was used for classification. 

To illustrate the effectiveness of MP features, tests were 

conducted using MFCCs, MP features, and a combination of 

both. The classification accuracy for 14 distinct audio 

environments was 75.3% with MFCCs, 84.0% with MP 

features, and 89.7% when combining both. In a previous study 

by the same group [12], these results were obtained for three 

different classifiers: 96.6% accuracy for SVM, 94.3% for 

KNN, and 93.4% for GMM, using forward feature selection. 

34 characteristics in all were utilized, including Spectral 

centroid, spectral bandwidth, the 1st to 12th MFCCs and their 

standard deviation, etc. An equally significant study [13] 

proposed a method for location classification using 'audio 

fingerprints'. This approach utilizes 62 features spanning the 

temporal, frequency, and statistical domains and tested with 

two classifiers: Random Forest and SVM. The sound database 

used for evaluation was sourced from the online collaborative 

platform Freesound [14], covering 14 different environments. 

The results indicated classification rates of 84.28% for 

Random Forest and 91.42% for SVM. A Chi-squared filter is 

applied for feature selection in a location classification task, 

reducing thus the number of features from 62 to 15, 

comprising 11 statistical and 4 frequency features [15]. Using 

an SVM classifier with 10 classes, the recognition rate 
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exceeded 90%. Muhammad and Alghathbar [16] combined 

MFCCs, MPEG-7, and zero-crossing rate (ZCR) descriptors 

to recognize different environments. The use of MPEG-7 

descriptors led to better performance compared to using 

MFCCs alone. The classifier employed was the HMM and 

experiments indicated that combining MFCCs and MPEG-7 

descriptors resulted in superior performance compared to 

using each feature type individually. Additionally, 

incorporating ZCR with these descriptors further enhanced 

performance for certain environment types. By the same group, 

Muhammad et al. [17] combined MFCCs with 30 MPEG-7 

descriptors, the latter are reduced with The FDR (fisher 

Descriminant Rtaio) method then with the PCA (Principal 

component analysis) method to get finally 13 MPEG-7 

descriptors combined with MFCCs and form an input for a 

GMM classifier. The results were promising and the 

combination of MFCCs and MPEG-7 features gives the best 

results in comparison to the use of each of them separately for 

certain type of environments. The work [18] dealt with the 

recognition of impulsive sounds including explosions, glass 

breaking and screams. The database used for test contains 6 

different classes with a total of 822 signals. For the detection 

algorithm the median filter is used analyzing energy variations 

and performs well even in noise. GMM and HMM are used for 

classification, at an SNR of 70 dB the recognition rate was 

98%, while at SNR of 0% it was less than 80%. In the study 

[19], a sound recognition system called AuditHIS is proposed 

in order to identify sounds produced in the apartment and 

consequently recognizing performed activities, this system 

incorporates the system RAPHAEL for speech recognition 

and identifying distress keywords in the analyzed signal. A 

GMM classifier with LFCCs features is used for classifying 

the input signal into speech or sound. The classification step 

of signals resulted from the GMM classifier is done with a 

GMM or HMM classifier. good results are achieved by the 

GMM when the SNR (Signal to Noise Ratio) is less than 10 

dB whereas the HMM classifier gibe better results in a 

noiseless environment. the number of classes is eight. The 

system achieved an overall performance of 89.76% for 

accurate sound/speech differentiation and 72.14% for 

correctly classified sounds. Multiple one-class SVMs were 

used for the classification of 9 sound classes (gunshots, broken 

glass, explosions, slamming doors, barking dogs, cries, 

children's voices and machines and ringing telephones) with a 

set of audio features namely, ZCR, MFCC, Energy, log energy, 

SC (Spectral Centroid), SRF (Spectral Roll-off Frequency), 

and Dynamic Window Composition (DWC) [20]. The correct 

classification rate is 96.89%. Another trend for environmental 

sound recognition that used PR descriptors for the 

classification of sounds into 7 classes namely: screams, broken 

glass, gunshots, rain, dog barking, restaurant noise and engine 

sounds [21]. The used classifiers are SVM classifier with 

linear and Gaussian kernel, a neural network classifier with 

radial basis function (RBF) and a classifier based on the 

nearest neighbor method. The results showed that combining 

PR descriptors and MFCCs gives always the best results for 

all the types of classifiers and MFCCs features outperforms 

the PR features. The recognition rates are 88.7% for SVM with 

Gaussian kernel, 81.78% for RBF neural network and finally 

86.4% for NN classifier. The study [22] recognized 

environmental sounds using MPEG-7 descriptors and 

temporal Zero Crossing (ZC) with a KNN classifier. 

Performance improved by increasing the number of training 

files and decreasing the number of samples per file. You and 

Li [23] introduced TESPAR (Time Encoded Signal Processing 

and Recognition) for environmental sound recognition. This 

method is notable for its low computational requirements 

compared to other techniques. TESPAR was tested using a 

database from Freesound, and its performance was compared 

with an MFCC-based system using an SVM classifier on the 

same dataset. The results indicated that TESPAR is more 

effective in noisy environments and has significantly shorter 

computation times than SVM. Finally, a recent work [24] used 

SVM classifier for the classification of sound sources in a 

domestic environment rather than solutions based on deep 

learning models in order to get high accuracy with low 

complexity costs. Features such as spectral spread and GTCC 

(Gammatone Cepstral Coefficients) are extracted and the 

accuracy is 80% in the validation phase and 60% in a real-time 

environment. 

This section is considered important in this study, given that 

the most frequently asked question in the field of 

environmental sound recognition concerns two essential 

points: feature extraction methods and the classification 

methods adopted in sound recognition systems. In addition to 

these last two points, the sound classes targeted by each 

application also constitute an important criterion in the quality 

of the system in question because a high recognition rate for a 

small number of classes cannot be the same for a large number 

of classes. In this comparative study, we found that most sound 

recognition systems either rely on MFCCs or combine them 

with other parameters to increase recognition rates. Time-

frequency domain features are also widely used for 

environmental sound recognition. Previous comparative 

studies [1, 11], claimed that MFCCs work well for structured 

sounds such as speech and music [11] and they are also the 

most widely used in speech and sound recognition applications 

[1], but their performance degrades in the presence of noise [1, 

11]. In addition, MFCCs are not effective for analyzing noise-

like signals with a flat spectrum. 

Regarding classification methods, we also note that this 

study focused solely on three types of classifiers: GMM, 

HMMs and SVMs to compare their recognition rates. Not to 

mention some studies that tested KNN and ANN. One 

motivation for this comparison is the choice of the appropriate 

method for our application and needs which is remote 

telemonitoring of elderly and disabled. 

From this summary we can see that most works use SVM, 

and it proves to be the most powerful method when compared 

with other traditional methods. SVM with a Gaussian kernel 

also shows very satisfactory results when compared with other 

kernels such as the linear kernel. Not only the use of SVMs in 

most ESR (Environmental sound recognition) work has 

encouraged us to use this method in this work, but also its solid 

theoretical foundation and its capacity for discrimination and 

generalization are also a cause for choosing the SVM as the 

first solution for our classification system of everyday life 

sounds. Lastly, it is also important to point out that in all the 

works presented above the database used differs from one 

work to another, as do the classes of sounds to be recognized, 

which makes performance comparison a difficult task. 

 

2.2 Works on distress situation detection 

 

As for environmental sound recognition systems, we were 

curious to know the features and the type of classifiers that are 

mostly used for a specific task which is tele-surveillance of 

elderly or disabled for distress situation detection via sound 
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recognition. In these systems, some categories of sounds may 

indicate a distress situation like screams, gunshots, explosions 

and we often use the term abnormal sounds for this type of 

sounds. 

In this section, we review some research studies on remote 

monitoring systems, specifying the nature of the environment, 

the number of classes, the types of sounds studied, the 

classification methods and the recognition rate. 

Kuklyte et al. [25] studied the recognition of abnormal 

events in a noisy environment using MFCCs and HMMs. Four 

classes were targeted: explosion, gunshots, screams as 

abnormal or distress sounds and subway noise as a normal 

event. The correct classification rate was 93.3%. Another 

remote monitoring work [26] presented a hybrid solution for 

remote monitoring aimed at detecting crime in an elevator. 

The proposed system is composed of two subsystems: the first 

is a supervised classifier and the second is an unsupervised 

audio analyzer. The aim of the latter is to detect other 

suspicious sounds not supported by the first subsystem, with 

the possibility of updating the model by adding new classes of 

suspicious sounds. This system is based on GMM. The 

database is composed of 4 classes: clacking, footstep sounds, 

non-neutral speech and normal speech. The parameters used 

are 12 MFCCs for an 8-millisecond frame, and the study was 

carried out on 126 audio clips with suspicious sounds and 4 

clips without events. The recognition rate obtained by GMM 

was 85%. In the study [27], a system for detecting distress 

situations in a public place was presented. The sound classes 

are shouting, noise and gunshots, and the system uses two 

binary GMMs in parallel to distinguish between shouting and 

noise, and gunshots and noise respectively. Each frame is 

classified by both classifiers simultaneously. The final 

decision is made by computing the logical OR. Different types 

of parameters are used: temporal, spectral, perceptual and 

correlation. Another work [28] also described an audio 

monitoring system in a public transport vehicle, which is a 

noisy environment. Different sounds can occur, and the work 

is based on the following 5 scenarios or sounds: a fight 

between two or more men, between two or more women, 

between men and women, armed robbery, and purse snatching. 

The experiment was limited to the detection of screams. The 

acoustic parameters used were MFCCs, LPCs, energy, and 

PLPCs, and for classification SVM and GMM were used to 

compare performance and detect screams in this environment. 

The recognition rate achieved was 75% for the detection of 

screams, and 98% for the detection of events not containing 

screams. Experimentation showed that the SVM classifier 

with the use of PLPs gave the best performance. Valenzise et 

al. [29] described an audio monitoring system for the detection 

and localization of abnormal events in a public place, such as 

shouting and gunshots. The system uses two GMM classifiers 

working in parallel to discriminate, respectively, shouts from 

noise and gunshots from noise. The number of features used is 

13 for the cries/noise classification and 14 for the 

gunshots/noise classification after a parameter selection stage. 

An accuracy of 93% was obtained, with a false rejection rate 

of 5% when the SNR is 10dB. The work [30] enabled the 

detection of road accidents by identifying dangerous situations 

such as tire skidding and car accidents. SVM with a linear 

kernel was used, and the results showed that the MFCCs and 

Bark parameters are the best for different SNRs. The average 

accuracy is 78.95% at a maximum distance of 120 meters. 

Cakır et al. [31] proposed to apply a CRNN (a combination of 

CNN and recurrent neural networks (RNN)) to a polyphonic 

sound event detection (SED) task. The term polyphonic means 

that the system can handle the existence of several sounds at 

the same time, as opposed to the monophonic word. The 

results provided by the system are promising for the four 

databases tested. Furthermore, the results show a significant 

improvement with the introduction of deep learning methods. 

CRNN clearly outperforms previous methods (HMMs, GMMs) 

and offers considerable improvement compared to other neural 

network approaches. Min et al. [32] presented a system for 

detecting indoor emergency events using CNNs. The sounds 

in question are: sounds indicating emergency events 

(explosion, gunshot, broken glass and scream) and a single 

normal sound (sleep). The acoustic parameters calculated were 

log-scaled mel-spectrograms. The experiment resulted in an F-

score of 77.32%. 

For a better understanding of this synthesis, we have 

summarized it in Table 1. 

In this section, we've explored some works on distress 

situation detection which means the recognition of abnormal 

sounds indicating danger, such as gunshots, whether indoor or 

outdoor. Recognition of a few classes of sound is a common 

aspect of these different projects. Various databases have been 

used to evaluate the proposed systems. The classification 

methods used are diverse, including GMMs, HMMS, SVMS 

and deep learning methods. The recognition rates obtained 

vary from one application to another and from one method to 

another in the same work. The aim of this section is to see and 

compare the methods used for the recognition of 

environmental sounds and those used for the recognition of 

distress and danger situations such as screams and gunshots. 

We note that there are no special methods for feature 

extraction and classification of distress sounds, and that the 

same methods used in event sound recognition can be used for 

distress situation detection.
 

Table 1. Distress situation detection related works 

 

Reference 
Purpose of Work (or 

Environment) 
Classes Methods 

[25] Metro Explosion, gunshot, screams and subway noise MFCCs and HMMs 

[26] Elevator 
Clacking, footsteps, non-neutral speech and normal 

speech 
MFCCs and GMM 

[27] Public Place Shouts, noise and gunshots GMM 

[28] Public Transport Vehicle Screams 
MFCCs, LPCs, energy, and PLPCs, 

SVM and GMM for classification 

[29] Public Place Screams, gunshots GMM 

[30] The Road Tire skidding and car accidents MFCCs, bark and SVM 

[31] 
Indoor and Outdoor 

Environment (House) 
Different DBs and different classes 

CRNN-combination of CNN and 

RNN 

[32] Inside the House Explosion, gunshot, glass breaking and screaming CNN 
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2.3 What about deep learning methods for sound 

recognition? 

 

More recently, Deep Learning, which refers to artificial 

neural networks with more than one hidden intermediate layer, 

has gained popularity and achieved impressive results in 

various machine learning tasks [33, 34]. It has been highly 

successful in many fields such as natural language processing, 

speech recognition, computer vision, image and video analysis, 

and multimedia. Today, several studies utilize deep learning 

for automatic sound recognition. In the following, we present 

some recent works on Sound Event Recognition (SER) that are 

based on deep learning. 

The study [35] addressed emergency events with a critical 

impact on occupants' health and proposes a deep learning-

based sound recognition model to monitor occupants' 

behaviors and detect potential emergencies. Two classification 

models were used: Convolutional Deep Neural Network 

(CNN) and Long Short-Term Memory (LSTM). The 

developed LSTM in this research is an advanced RNN model 

designed to overcome the shortcomings of traditional RNNs. 

Experiments were conducted using audio data collected from 

real Single-Person Households (SPH) environments and 

online data sharing websites. Experimental results 

demonstrated that the developed model could successfully 

distinguish emergency sound events from regular human 

activities. The CNN outperformed the LSTM in both 

emergency sound event classification and occupant behavior 

monitoring, achieving accuracy rates of 83.9% for CNN and 

62.6% for LSTM. Greco et al. [36] proposed a deep learning 

method named AReN (Audio Event Recognition Network) 

with 21 layers to automatically recognize events of interest in 

the context of audio surveillance, such as screams, glass breaks, 

and gunshots. Input signals are represented by a 

gammatonegram image; a spectrogram based on a gammatone 

filter bank. The system was tested on three different databases: 

SESA, MIVIA audio events, and MIVIA road events, with 

recognition rates of 91.43%, 99.62%, and 100%, respectively. 

A comparison in this study between traditional machine 

learning methodologies and deep learning confirms the 

effectiveness of the proposed approach. Another work [37] 

addressed the detection and recognition of continuous audio 

streams in noisy conditions using deep learning methods. For 

comparison purposes, the following classifiers were tested on 

the database: HMM with MFCC, SIF (spectrogram image 

feature) with SVM, SIF with DNN, SIF with CNN. In the case 

of isolated sounds, the SIF-CNN system achieved the best 

performance, followed by SIF-SVM and then SIF-DNN. 

HMM was the least robust to noise. In the case of a continuous 

audio stream, SVM performances were highly competitive 

compared to the CNN system in all cases, even more so than 

DNN. Nanni et al. [38] proposed a detection system to assist 

in auscultating heart sounds. Two models were tested in this 

study, namely CNN and CNN combined with LSTM. The 

accuracy rates obtained for the two models are 93.07% and 

91.06%, respectively. Sigtia et al. [34] proposed a system for 

detecting baby cries and smoke alarms using deep neural 

networks (DNNs) and compares the results with Gaussian 

Mixture Models (GMMs) and Support Vector Machines 

(SVMs). DNNs offer a higher accuracy rate than SVMs and 

then GMMs. A more recent work [39] aimed to accomplish 

two sub-tasks: audio classification into 10 classes and the 

second involves classifying audio into three categories based 

on low-complexity solutions. In this work, Delta-DeltaDelta 

and HPSS parameters were used with four classifier models 

inspired by VGGNet, ResNet, LCNN, and InceptionNet. 

Among the four models, the use of Delta-DeltaDelta surpassed 

the performance of HPSS, and among them, the use of ResNet 

presented the highest accuracy. In sub-task B, the use of 

ResNet reduced using the Delta-DeltaDelta function, showed 

the best performance at 95.38%. Table 2 summarizes all the 

work presented above. 

In this section we have presented an overview of some work 

on sound recognition using deep learning methods. Although 

a limited number of works have been presented in this section, 

we note the importance of this method and its power when 

compared with traditional methods such as HMM, GMM and 

SVM. In most works, the recognition rate obtained by these 

deep learning methods is the highest. As there are different 

deep learning methods, each method gives a different result, 

which may be better than the results obtained by other classical 

methods, or vice versa. As a result, we see the value of 

introducing these methods in our future tests and work. 

However, if we think to use our system in edge devices such 

as smart phones, the traditional methods are more suited than 

deep learning methods because of the low complexity in 

calculation and consequently the possibility to design real-

time applications as it is mentioned in the study [24]. 

 

Table 2. Sound recognition systems based on deep learning methods 

 
Work  Objective Classification Method Results Description 

[34] Alarm detection system 

-DNNs 

-GMMs 

-SVMs 

DNNs the best, then SVM, then GMM 

[35] Emergency event detection 
CNN 

LSTM 
83.9% for CNN and 62.6% for LSTM 

[36] Audio surveillance  
AReN (Audio Event Recognition 

Network) 

91.43%, 99.62% and 100% for three different 

DB 

[37] 
Detection and recognition of a continuous 

Audio stream in noisy conditions 

-HMM with MFCC 

-SIF (spectrogram image feature) 

with SVM 

-SIF with DNN 

-SIF with CNN 

-SIF-CNN then SIF-SVM then SIF-SVM 

-SVM performance is very competitive with 

CNN, more so than DNN 

- HMM is the least robust to noise 

[38] 
Sound detection system to help auscultate 

Heart sounds 

-CNN 

-CNN combined with LSTM (Long 

Short-Term Memory) 

-93.07% 

-91.06% 

[39] 
-Classify audio into 10 classes 

-Classify audio into three categories 

Deltas-DeltaDeltas and HPSS with: 

VGGNet, ResNet, LCNN, and 

InceptionNet 

ResNet and Deltas-DeltaDeltas presented the 

best performances at 95.38% 
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2.4 Concluding remarks 

 

In conclusion, from what has been presented in the previous 

sections, we see the interest of traditional classification 

methods (such as SVMs, GMMs, ...) for sound recognition, 

and SVM almost always shows better results. On the other 

hand, classification methods based on deep learning also show 

very satisfactory results, most of the time surpassing those 

obtained by traditional methods, but SVM also remains a 

competitor for these classifiers. In addition, SVMs are crucial 

for environmental sound recognition due to their strong 

performance in distinguishing between different sound classes, 

even in high-dimensional feature spaces. They are effective for 

handling complex, non-linear data often found in 

environmental sounds data because of their ability to 

maximize the margin between classes. Moreover, SVMs are 

robust with smaller datasets, frequently achieving high 

accuracy without needing extensive data, making them ideal 

for practical sound recognition applications. We synthetize 

also, that most sound recognition systems either rely on 

MFCCs or combine them with other audio features to increase 

recognition rates. MFCCs are time-frequency domain features 

and they are particularly valuable in environmental sound 

recognition as they capture both time and frequency domain 

information, allowing for a more comprehensive analysis of 

sound patterns over time and across different frequency ranges. 

Finally, regarding deep learning methods, they are powerful 

for environmental sound recognition and generally, 

outperforms the traditional methods. However, they are 

computationally intensive, and deploying them in real-time 

applications requires high processing power. In addition, they 

require large datasets for training. Therefore, the choice of 

SVM and MFCCs initially represent the best option 

considering the criteria and objectives of our application. 

 

 

3. GENERAL ARCHITECTURE OF A SOUND 

RECOGNITION SYSTEM 

 

To the best of our knowledge, according to the work done 

on sound recognition for a remote monitoring system, there are 

two ways of recognizing sounds: 

Either by integrating a categorization phase that 

distinguishes a speech signal from a sound-type signal, then 

depending on the type of output sound (either sound or speech) 

the signal is directed to be processed by the appropriate system 

[40, 41]. 

A second solution consists of processing the input signal 

directly by the classifier and considering speech as a class in 

addition to the sound classes to be recognized [42]. In this 

second solution, when the recognized sound class is that of 

speech, another system can be used to recognize the input 

speech. 

Another solution could be to integrate new classes 

corresponding to speech, by setting distress keywords such as: 

help, SOS, etc. However, in this solution, the system's 

response time would be longer, given the increase in the 

number of classes to be recognized and, consequently, the 

increase in the necessary processing time. 

From these existing works and architectures of sound 

recognition systems for remote monitoring applications, we 

can deduce that the solution adopting a binary classifier to 

distinguish between the two existing sound categories (speech 

and sound) is the most realistic. However, it must be 

approached with caution because its results will influence the 

entire system. 

Similarly, for the sound detection phase, it is a very critical 

phase because a signal that exists but is not detected by this 

module can put the entire system at risk [43]. On the other 

hand, this module will bring time and processing gains by 

reducing the number of samples to be processed by eliminating 

signals with periods of silence, and even low-energy signals. 

Therefore, all these proposals, with their advantages and 

disadvantages, lead us to the architecture presented in the 

Figure 1, which is considered the most appropriate solution for 

us after comparison, and it provides an overview of the sound 

recognition system. 

As we discussed in the previous section, SVMs are one of 

the most powerful classification methods. Therefore, our first 

motivation was to explore this technique in combination with 

MFCCs, which also yield encouraging results in most sound 

recognition works, including our initial experiments and 

especially in the present study. However, other methods will 

be tested in our future work for a comparison purpose. The 

future tests will be done on the methods that take into 

consideration the properties of environmental sounds like 

stationarity, non-stationarity, impulsive behavior, etc. Figure 

2 shows the architecture of the sound classification system.

 

 
 

Figure 1. Overview of the sound recognition system 
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Figure 2. Architecture of the sound classification system showing the main modules 

 

 

4. EXPERIMENTATION 

 

In this section we present our first experiment for the 

recognition of a few classes of everyday sounds using MFCCs 

and an SVM-based classifier.  

Indeed, in our previous work [44], we proposed a corpus of 

everyday life sounds with a development of a small database 

that was tested using Euclidean distance based classifier and 

ZCR and energy parameters. In this work, the noise-of-life 

database [45] was used for the recognition of a few classes of 

sounds. Indeed, the selection of this database is specifically 

intended for a future performance comparison between our 

system and others that use the same database. We have opted 

for 2 case studies of our sound corpus: 

-The first consists in applying our SVM to 3 classes of 

sound, namely screams, broken glasses and dishwashing 

sounds. 

-The second is to increase the number of classes to be 

recognized from 3 to 7, in order to compare results and gain a 

better understanding of the system's behavior for a higher 

number of classes. 

 

4.1 Corpus of everyday life sounds 

 

The corpus of everyday life sounds provided in the study 

[44], allows us to understand the state of the inhabitant 

according to the class of sound detected by the system. These 

sounds can be Critical sounds or Normal sounds. Critical 

sounds also called abnormal sounds are the sounds indicating 

a distress situation of the inhabitant like screaming. Normal 

sounds can be useful sounds or disturbing sounds; the useful 

sounds are sounds that can help us to detect the inhabitant 

activity or to detect a possible distress situation when 

combined with another information from another sensor. 

Whereas disturbing sounds, they are sounds that are 

considered as noise, like electrical devices sounds. Examples 

for each category of sound are presented in Table 3. 

Table 3. Everyday life sounds corpus 

 

Critical Sounds 
Normal Sounds 

Useful Sounds Disturbing Sounds 

Screaming 

Falls of objects 

Glass breaking 

A long silence 

Sounds of dishes, 

Doors closing, 

Doors opening, 

Door slamming, 

Sounds of footsteps, 

Water flow, 

Coughing, 

Yawning 

TV, 

Radio, 

Phone ringing, 

Electrical devices sounds, 

External noise 

 

4.2 Dataset 

 

Freesound [14] is a database that has been widely used in 

different research works on audio recognition, it contains more 

than 160,000 audio samples. It was used for the benchmarking 

of diverse studies [11, 13, 15, 21, 23]. The dataset we used 

here is downloaded from the study [45], which is developed 

and employed in Sehili’s PhD thesis [46], where a smaller 

version of this database was collected from web and the 

second part is extracted from Freesound database. 

Indeed, in this work, no data augmentation or class 

balancing techniques were applied. The dataset was used in its 

original form without any modifications. Although there may 

be an imbalance between normal and abnormal sounds; the 

decision was made to rely on the natural distribution of the 

data to evaluate the performance of the system without 

introducing synthetic data or balancing adjustments. 

The tested sound classes are the followings: screams, 

sounds of dishes, glass breaking, door opening, door slamming, 

coughing and water flow. 

The number of samples per sound class is on average around 

100 as described in Table 4. The sampling frequency is 16kHz, 

with a .wav format. We have done a decomposition of the 

learning base into 20% for testing and the rest for learning. 
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Table 4. Number of samples per sound class 

 
Sound Class Number of Samples 

dishes 170 

screams 193 

glass breaking 101 

door opening 21 

door slamming 114 

water flow 54 

coughing 62 

 

4.3 Classification with SVM 

 

4.3.1 MFCCs features 

The MfCCs are calculated after transforming the signal into 

the spectral domain, we take the 12 MFCCs as an input for the 

SVM. Since environmental sounds contain very short, non-

stationary and impulsive sounds that change their acoustic 

characteristics very quickly over time, the window length must 

be small. We applied a rectangular window of 20-30 

milliseconds with 50% overlap for each sound to calculate the 

acoustic parameters. 

 

4.3.2 SVM classification method 

SVM is regarded as one of the most effective approaches 

for tackling complex classification problems and known as a 

maximum margin classifier [21, 47] due to its power to find 

the optimal separating hyperplane that maximizes the distance 

between the closest points of classes and the separating 

hyperplane. In addition, an important characteristic of SVMs 

is that they are not very sensitive to the dimension of the 

descriptor vectors [20]. More information on SVM principle 

can be found in the studies [47, 48]. 

In this experiment we used an SVM classifier with different 

kernels: linear SVM, polynomial kernel, sigmoid kernel and 

Radial Basis function (RBF) kernel in order to compare them. 

The C parameter regulate the trade-off between maximizing 

the margin and reducing the classification error. The optimal 

value of the parameter C is fixed by using grid search, and the 

same for degree, and gamma, coef0 and then we applied cross 

validation technique to obtain the best values that optimize the 

models. 

 

4.3.3 Main results 

In the case of 3 classes namely: screams, sounds of dishes, 

and glass breaking, the recognition rates achieved using three 

different kernels, in addition to the linear kernel, are given in 

Table 5 and presented in the Figure 3. 

The Confusion Matrix for the case of SVM with a Gaussian 

kernel (screams, sounds of dishes and broken glass) is 

presented in Figure 4. 

For the case of 7 classes the sounds to recognize are: glass 

breaking, door opening, door slamming, shouting, washing up, 

coughing, water dripping. Table 6 and Figure 5 show the 

recognition rates for the SVM with the different kernels.  

 

Table 5. SVM classifier recognition rates for four different 

kernels: 3 sound classes 

 
Kernels  

Rate (%) 
Polynomial Sigmoid 

RBF 

(Gaussian) 
Linear 

Recognition 

rate 
83.03% 59.61% 96.28% 100.00% 

 

 
 

Figure 3. SVM recognition rates for different kernels: 3 

classes 

 

 
 

Figure 4. Confusion Matrix for SVM with Gaussian kernel 

(3 classes) 

 

Table 6. SVM recognition rates for different kernels: 7 sound 

classes 

 
Kernels  

Rate (%) 
Polynomial Sigmoid RBF (Gaussian) Linear 

Recognition 

 rate 
72.12% 36.54% 74.04% 95.19% 

 

 
 

Figure 5. SVM recognition rate (7 classes) 

 

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

SVM recognition rate for 4 different 

kernels (3 classes)

Recognition rate

276



 

4.3.4 Discussion and interpretation 

The results obtained in the case of 3 classes are very 

encouraging (83.03% for the polynomial kernel, the sigmoid 

kernel 59.61%, the Gaussian kernel 96.28% and the linear 

SVM 100%), with the linear SVM showing the best results, 

followed by the Gaussian kernel. This surprised us, as we 

expected the Gaussian kernel to be better. 

Same results as for the 7-class case, except that recognition 

rates deteriorate (72.12% for the polynomial kernel, 36.54% 

for the sigmoid kernel, 74.04% for the Gaussian kernel, 

95.19% for the linear kernel), but the ranking order of these 

kernels is still the same; the linear SVM then comes the 

Gaussian kernel, the polynomial kernel and finally, the 

sigmoid kernel. 

In addition to these results, we also conclude that it's not just 

the number of classes that has an impact on the recognition 

rate, but also the nature of the classes to be recognized. For 

example, in the case of 7 classes, we don't obtain the same 

results if we replace one class by another (the "door closing" 

class by the "door slamming" class, for example). This 

depends on the similarity or dissimilarity of the new class to 

the existing classes, so the recognition rate may increase or 

decrease. 

How can we explain the obtained results? 

Theoretically, the choice between a linear and non-linear 

kernel is justified by the nature of the data being processed. In 

other words, for non-linearly separable data, the use of a non-

linear kernel is necessary, while for separable data, a linear 

kernel is sufficient. In our experimentation, we tested various 

non-linear kernels in addition to the linear kernel, but the latter 

showed the best performance. This can be attributed to two 

factors: 

(1) The first factor is the small number of samples (tens or 

hundreds per class) compared to the feature size. 

According to previous studies and works, the Gaussian 

kernel can be used when the number of training samples 

is very high and the number of features is small. 

Therefore, the linear kernel yields better results when 

the number of learning examples is small, as is the case 

in this experimentation. 

(2) The second point is the parameter C (C is a 

regularization parameter to be set by the user), which 

plays a significant role in the results. Consequently, the 

value assigned to C will influence the size of the margin 

and classification errors. In other words, a large value 

of C leads to a small margin, and conversely, when the 

value of C is small, the margin will be large. 

Finally, we must mention here that in view of the small 

number of samples in the sound classes and due to the 

variation of the number of samples from one class to another, 

it would be better to use data augmentation and class balancing 

techniques to get more accurate results if we will use the same 

database. Data augmentation will be employed to increase the 

diversity and volume of the dataset by generating additional 

variations of the existing data, which will help improve the 

robustness and generalization of the model. In the other hand, 

class balancing techniques will be applied to address any 

existing imbalances between the different sound classes, 

ensuring that the model is trained on a more equitable 

distribution of classes. These enhancements are expected to 

lead to better performance and more reliable results. 
 

 

5. CONCLUSIONS AND PERSPECTIVES 
 

In this paper, we have presented and analyzed the field of 

sound recognition by comparing various works and focusing 

on audio parameters, classification methods, and highlighting 

targeted sound classes. Subsequently, we introduced a general 

architecture for a sound recognition system, followed by the 

sound classification module based on Support Vector 

Machines (SVMs), which, according to the conducted study, 

in some cases, yields results comparable to those of new deep 

learning methods. 

In the experimentation, MFCCs parameters are used as 

input for the SVM, and we compared the results for different 

kernels, including the Gaussian kernel, polynomial kernel, 

sigmoid kernel, and linear SVM. In this work, we initially 

targeted distress sounds, such as glass breaking and screams. 

We then, extended the tests to cover other types of sounds to 

observe the system's behavior and discuss the results. 

The results obtained for 3 classes are very promising 

(83.03% for the polynomial kernel, 59.61% for the sigmoid 

kernel, 96.28% for the Gaussian kernel, and 100% for the 

linear SVM). In the case of 7 classes, recognition rates decline 

(72.12% for the polynomial kernel, 36.54% for the sigmoid 

kernel, 74.04% for the Gaussian kernel, and 95.19% for the 

linear SVM). However, the ranking order of these kernels 

based on the rate of correct classification remains the same: 

linear SVM, followed by the Gaussian kernel, polynomial 

kernel, and finally, the sigmoid kernel. 

This study offers several practical implications for real-

world applications. First, the literature review provides a 

comprehensive overview of existing methodologies and 

advancements in sound recognition technology and thus, 

supports further research and development and suggests areas 

for improvements. The sound recognition system can be 

integrated into various monitoring applications, such as 

security systems, healthcare environments and industrial 

settings. This depends on the sounds to recognize; distress 

sounds for health care, alarms in industries, etc. Moreover, the 

integration of the system in smart environments such as smart 

homes and cities by facilitating for example, alert systems 

based on the sounds detected. 

Despite the promising results of this study, there are still 

several challenges to overcome. The first challenge is the lack 

of a standard database for benchmarking the variety of 

research studies; validating systems with the same database 

provides the opportunity to compare the proposed solutions 

and thus, identifying the most effective methods. Secondly, 

given the variety of sounds in the environment and their 

diverse natures; stationary, non-stationary and impulsive, the 

choice of audio features and classification methods that can 

take into account all these differences is a challenging and 

critical task. This leads us to view the sound signal as a 

structure rather than just a sound, moving away from its 

representation as a frame, as mentioned in the study [49], and 

we must therefore test other methods like end-to-end models 

carefully, because in spite of their improvement of accuracy 

they might acquire more computational resources. Moreover, 

resorting to new deep learning methods requires working with 

larger databases, and this can be achieved by data 

augmentation for small databases and especially those 

containing sounds that are difficult to acquire or to reproduce 

like the fall of persons and explosions. Also, applying 

balancing techniques will address any existing imbalances 

between the different sound classes, ensuring that the model is 

trained on a more equitable distribution of classes and thus, 

improving accuracy. 

Finally, real-time applications like audio surveillance and 
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security systems require fast, real-time recognition. Achieving 

accurate results in real time, especially with limited 

computational resources, is challenging. This often requires 

efficient algorithms that balance accuracy with speed, but this 

trade-off can limit recognition quality. For this reason, the 

choice of the classification method and the audio features is a 

critical task and this is why we have undertaken this research. 

In conclusion, our future work should focus on:  

- Enhancing the system’s ability to accurately 

recognize sounds in noisy or complex environments. 

- Improvement of accuracy and precision by exploring 

advanced machine learning techniques. 

- Optimizing the solution for faster and real-time 

processing and scaling the system to manage high-

throughput data streams. 

- Addressing class imbalance and using data 

augmentation techniques to increase the diversity of 

sound samples in the dataset or using a more standard 

database. 

- Integrating the sound recognition system with other 

technologies, such as IoT devices or AI-driven 

applications. 
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