
Optimizing Program Efficiency by Predicting Loop Unroll Factors Using Ensemble

Learning

Esraa H. Alwan1* , Ali Kadhum M. Al-Qurabat2

1 Department of Computer Science, College of Science for Women, University of Babylon, Babylon 51002, Iraq
2 Department of Cyber Security, College of Sciences, Al-Mustaqbal University, Babylon 51001, Iraq

Corresponding Author Email: esraa.hadi@uobabylon.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.120308 ABSTRACT

Received: 19 August 2024

Revised: 10 September 2024

Accepted: 19 September 2024

Available online: 30 September 2024

Loop unrolling is a well-known code-transforming method that can enhance program

efficiency during runtime. The fundamental advantage of unrolling a loop is that it

frequently reduces the execution time of the unrolled loop when compared to the original

loop. Choosing a large unroll factor might initially save execution time by reducing loop

overhead and improving parallelism, but excessive unrolling can result in increased cache

misses, register pressure, and memory inefficiencies, eventually slowing down the

program. Therefore, identifying the optimal unroll factor is of essential importance. This

paper introduces three ensemble-learning techniques—XGBoost, Random Forest (RF),

and Bagging—for predicting the efficient unroll factor for specific programs. A dataset

comprises various programs derived from many benchmarks, which are Polybench,

Shootout, and other programs. More than 220 examples, drawn from 20 benchmark

programs with different loop iterations, used to train three ensemble-learning methods. The

unroll factor with the biggest reduction in program execution time is chosen to be added to

the dataset, and ultimately it will be a candidate for the unseen programs. Our empirical

results reveal that the XGBoost and RF methods outperform the Bagging algorithm, with

a final accuracy of 99.56% in detecting the optimal unroll factor.

Keywords:

loop unroll, compiler optimization, ensemble

learning, Random Forest, Bagging, XGBoost

1. INTRODUCTION

A considerable percentage of a program's execution time

spent in a small portion of its code, usually loop constructs.

Research reveals that about ninety percent of the time spent

executing a program focuse on only ten percent of its code.

Thus, improving these frequently run parts can significantly

improve the program's total execution speed [1-4]. Therefore,

code optimization approaches for efficient loop execution are

critical. Loop unrolling is one such technique, wherein the

body of the loop repeats several times and the loop termination

code is adjusted. This technique can speed up execution by

lowering the number of branch instructions required upon

completing the loop body [2, 5, 6]. Table 1 shows the loop

unrolling technique that if the unrolling factor is set to 2, the

loop unrolls. When the factor is set to 4, as illustrated in Table

2, the unrolling technique improves program speed by

allowing many iterations to run concurrently.

Table 1. Original loop and the the result after unroll the loop

with loop unroll factor set to 2

Before Loop Unroll After Loop Unroll

 For (k=0; k<N; k++){

 b[k]=k+1;}

 For (k=0; k<N; k+=2){

 b[k]=k+1;

 b[k+1]=(k+1)+1;}

Table 2. Unroll factor set to 4

After Loop Unroll

 For (k=0; k<N; k+=4){

 b[k]=k+1;

 b[k+1]=(k+1) + 1;

 b[k+2]=(k+2) + 1;

 b[k+3]=(k+3) + 1;}

Probably a particularly essential aspect of loop unrolling is

the capability to show instruction-level parallelism (ILP) to the

compiler. Unrolling loops enables the compiler to rearrange

activities within the expanded loop body to achieve iteration

overlap [7, 8]. Bulldog is the compiler that used this approach

for the first time and is still required when compiling on

computers with a high level of ILP [9]. The unrolling approach,

when used with additional transformation passes, will expand

the size of the scheduled window. Similar techniques comprise

trace scheduling and hyperblock generation.

These methods are especially beneficial for scheduling

loops with control flow or function calls, which pose

significant challenges to software pipelining [9].

Loop unrolling is critical for various optimizations,

particularly those focused on improving the memory system.

Moreover, the process of loop unrolling creates numerous

static memory instructions that can be rearranged to benefit

International Journal of Computational Methods and
Experimental Measurements
Vol. 12, No. 3, September, 2024, pp. 281-287

Journal homepage: http://iieta.org/journals/ijcmem

281

https://orcid.org/0000-0002-6973-266X
https://orcid.org/0000-0002-8522-290X
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.120308&domain=pdf

from memory locality. In practical use, unrolling the loop

leads to performance gains in the majority of instances when

it is used. However, if performed poorly, this technique might

interfere with other vital optimizations, slowing down overall

performance. Therefore, selecting the suitable unrolling factor

is critical. In spite of the unrolling technique having many

benefits, possible drawbacks should also be considered.

-Unrolling has a well-known drawback of reducing

instruction Cache speed.

-Increased scheduling flexibility can result in longer

variable live ranges, increasing register pressure [10-14].

Machine learning is an important tool in artificial

intelligence that improves program performance via

experience. However, a single machine-learning model can

often suffer from issues such as overfitting, which occurs

when the model performs well on training data but badly on

unseen data. Furthermore, certain models may be sensitive to

noise in the data or fail to reflect the entire complexity of the

problem. To solve these constraints, we introduce ensemble

learning, which combines different models' predictions to

produce a more accurate and robust system. Ensemble

approaches decrease mistakes, increase generalization, and

deliver more trustworthy predictions by combining the

capabilities of various models [15]. The contribution of this

paper is an investigation into the use of ensemble learning

techniques with program dynamic features. Additionally, this

research seeks to develop a model capable of predicting the

ideal unrolling factor using ensemble learning. Three

ensemble-learning techniques are used to train our dataset,

which are Bagging, XGBoosting, and Random Forest. The

remainder of the paper organizes as follows: Section 2

provides an overview of the related studies on loop unrolling.

Section 3 covers three ensemble-learning approaches are

introduced in this study. Section 4 describes the proposed

approach. Section 4 includes the findings from benchmark

programs. Finally, Section 5 summarizes our findings and

offers concluding observations.

2. RELATED WORK

Some researchers have pointed to loop unrolling as an

established approach for reducing loop overhead. This

approach was frequently employed to enhance average-case

speed in code by duplicating statements within the loop body,

which causes fewer loop iterations, lower jump overhead, and

less branching. Loop unrolling additionally expands the size

of the basic block, making scheduling more efficient.

Stephenson and Amarasinghe [9] concentrated on loop

unrolling, an important optimization approach for revealing

instruction-level parallelism. Employing the Open Research

Compiler as a platform, they show how to use supervised

learning approaches to assess the suitability of loop unrolling.

They use almost 2,500 loops from 72 benchmarks to train two

separate learning algorithms to estimate unroll factors (i.e.,

how much a loop should be unrolled) for each new loop. The

approach accurately estimates the unroll factor for sixty-five

percent of the loops in the dataset, resulting in a five percent

overall improvement for the SPEC 2000 benchmark suite (9

percent for the floating-point benchmarks).

Booshehri et al. [14] investigated the impact of loop

unrolling on consumption of power, consumption of energy,

and program speed by utilizing instruction-level parallelism

(ILP). They investigated the concept of extended loop

unrolling and presented a new method for traversing linked

lists to improve loop-unrolling results. Their research carried

out using a Pentium 4 CPU, which represents a superscalar

design, which as well as a supercomputer outfitted with

superscalar node computers. The studies revealed that, while

loop unrolling has little effect on both power and energy

utilization, it can be a useful strategy for speeding up

applications.

As mentioned in the study [11], the machine learning model

improve the unrolling capabilities by anticipating its factor.

Initially, they enhance a basic Random Forest model by

applying weighting and the imbalanced dataset. After creating

the training set, they train the model. Experimental findings

show that the model can accurately estimate the optimal or

suboptimal unrolling factor 81% of the time. The model has

also been tested on numerous SPEC2006 test sets. While

Open64's built-in loop unrolling model increases program

performance by an average of 5%, the method suggested in

this study, which predicts the factors of unrolling through

applying a weighted decision forest, improves the

performance of program by approximately 12%.

To improve the precision of the compiler's loop unrolling

factor, Singh et al. [1] suggested an improved loop unrolling

technique that utilizes a modified random choice forest.

Initially, the standard Random Forest improved by including

weight values. Second, they addressed the issue of unbalanced

datasets using a BSC technique based on the SMOTE

algorithm. Nearly 1,000 loops were selected from different

benchmarks, and the characteristics extracted from them

served as the training set for the suggested method to

anticipate the unroll factor. The model predicted the unrolling

factor with 81% precision, compared to 36% for the current

Open64 compiler.

3. ENSEMBLE LEARNER (EL)

Ensemble Learning is a subset of Machine Learning that

seeks to improve task performance, such as classification and

regression, by training a group of relatively weak learners and

integrating their results using voting or averaging. Despite

their particular weaknesses, these learners can create strong

results when they work together. The ensemble method's

effectiveness is intuitive: a group of learners, each good in a

specific work, can complement one another. Their

collaboration frequently results in superior overall

performance than a single learner could achieve alone.

Below we are going to present three popular ensemble

methods named Bagging, Boosting, and Random Forest.

These methods employ resampling algorithms to generate

distinct training sets for each classifier [15].

3.1 Random Forest (RF)

Random Forest, the most popular ensemble method

produced, was introduced separately by the studies [16, 17]

around that exact time. It is becoming increasingly popular,

thanks to their flexibility and predictive effectiveness.

Furthermore, RF is regarded as a simple way to adjust in

comparison to other systems that necessitate precise tuning. It

consists of a large number of decision trees that operate

independently to estimate the outcome of a class, with the

ultimate prediction determined by their majority vote. Figure

1 illustrates how the separate trees are built.

282

Figure 1. Random Forest

3.2 Bagging

Bagging [18] is a straightforward but efficient approach for

creating an ensemble of independent models. This strategy

envolves training each model on a portion of the main dataset's

occurrences. To guarantee that each model has enough

instances, these samples are typically the same size as the main

dataset. The ultimate anticipate for an unseen occurrence is

chosen by a majority vote on the models' projections. Because

sampling uses replacement, certain instances from the original

dataset may appear several times in a sample, while others may

be excluded entirely. Because the models are trained

independently, Bagging can be done in parallel, with each

model trained on a separate processing unit.

3.3 Extreme gradient boosting (XGBoost)

The XGBoost algorithm, presented by Chen and Guestrin

[19], was created to break the computational limits of boosting

trees, resulting in quick computation and superior performance.

XGBoost brings various advancements over classic gradient

boosting algorithms and is known for its exceptional

performance in both classification and regression problems. In

XGBoost, the prediction for a given sample is the sum of the

leaf weights from each weak classifier. A fundamental feature

in XGBoost is the introduction of a regularization term to limit

tree models' inherent tendency to overfit, allowing for little

overfitting before pruning. Furthermore, XGBoost balances

model performance and computation speed using an objective

function that combines a standard loss function with a

regularization term to manage model complexity [20].

4. PROPOSED METHOD

Figure 2 depicts the suggested model, which consists of four

steps.

4.1 Constructing dataset

For this step, we gathered more than 220 samples—drawn

from 20 benchmark programs with different problem sizes.

The execution time of each program was calculated using a

variety of loop unroll factors. Four unroll factors—2, 4, 6, and

8—were chosen based on prior testing showing a considerable

impact on program performance. Each program was executed

at least five times for each unroll factor, implying that the same

program was run five times with the same unroll factor, and

the average execution time was computed. The unroll factor

(2, 4, 6, or 8) with the minimum execution time was chosen as

the optimal factor for the program. To unroll the loop, two

LLVM optimization passes were used: --loop-unroll and --

unroll-count.

Applying set of

machine learning

algorithms

Trained machineTest set

 building the

dataset

Predicted class

Benchmark

program

Features extraction

Figure 2. The suggested approaches

Features extraction

The dynamic dataset includes features that vary during

program execution. These dynamic characteristics are

obtained using the Linux 'perf' tool, which provides an

empirical picture of the program's dynamic behavior as it

interacts with the computing machine while running. For each

program, 35 dynamic features are collected. Table 3 shows the

dtnamic features [21, 22].

Table 3. Perf event

Event Type
instructions,LLC-loads,LLC-load-misses,L1-

dcache- loads, L1-dcache-load-mises, cache-misses,

cache-refernces, dTLB-loads,LLC-stores,LLC-

store-misses,dTLB-loads,dTLB-load-miss, iTLB-

loads, iTLB-load-miss, dTLB-store,dTLB-store-

misses,itlb_misses.walk_completed,branch-

instructions,branch-misses,L1-dcache-stores-

misses,L1-dcache-stores,cpu-cycles,bus-cycles,ref-

cycles,page-faults,context-switches,cpu-

migrations,minor-faults,major-faults,alignment-

faults,emulation-faults,cpu-clock,task-clock,mem-

loads,mem-stores

Hardware

&

software

events

4.2 Features preprocessing

In the field of machine learning, data preparation is an

important step before modeling.

A the first, the columns that have the zero value are removed.

After this the left features become 29. Then the standardization

is applied, specifically the MinMax technique, which is used

to calibrate the range of feature values, assuring scale

consistency. The MinMax method is very useful for

converting data to a bounded interval, often [0, 1]. The

mathematical formula for this operation is as follows:

Xscaled =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1)

283

where, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 indicate the minimum and maximum

values of feature X, respectively.Thisrecalibration is required

to guarantee that each feature contributes equally to the

analytical results. Algorithm 1 show the steps of building the

dataset.

Algorithm 1 Building Dataset

Input:set of programs Pro[M] , set of loop unroll K=[2,4,6,8]

Output: set of program M with less execution time

Begin

 for j =1 to M

 X=Pro[j]

 Execute each program X will all loop unroll factor K

 Chose the one with less execution time.

 Add this program X to the Dataset with its loop

 unroll factor

 Extract the dynamic fatures for X program using Perf tool

 Features preprocessing.

 Add this features to the Dataset.

 End

End

As a consequence, our dataset has 31 columns. The first

column contains the program name. The program features take

up columns 2 through 30, while the label (the optimal unroll

factor for this program) occupies column 31.

4.3 Classifiers

Set of machine learning techniques are use to classify our

data set. These are RF, Bagging and XGBossting. These are

ensemble methods that combine the predictions of multiple

base estimators to improve overall performance. Firstly we

train our dataset with all the ensemble learning techniques.

Then we compare their outcomes to determine the best one.

5. EXPERMENTAL RESULTS

In this research, we use Google Colab, an online platform

that provides a Jupyter notebook environment, to analyze data

and execute ensemble learning models. The platform's smooth

interface with Python, as well as its robust computational

capabilities, enabled us to effectively process our dataset and

train our models. The results from training and testing each of

the proposed learning models discussed above are shown. The

classification models are trained with various parametrs, and

the results are very promising.

5.1 Training set programs

The constructed dataset is used to train three different EL

models that estimate the program's time efficiency. The

present research focuses on three ensemble learning models,

as stated in Section 3. These classifiers take 29 dynamic

characteristics as input, and the output is one of the loop unroll

factors (2, 4, 6, and 8). Moreover, a result of the small size of

the datasets, k-fold cross-validation is preferable to a separate

training and testing split since it maximizes data consumption

by using every data point for training and validation. This

approach, by averaging findings across numerous folds,

provides a more reliable performance estimate while lowering

the risk of overfitting.

5.1.1 Bagging classifier results

The dataset is loaded into a pandas DataFrame, with all

column names being strings. The data is then divided into two

categories: features (X) and labels (y), with the first 29

columns serving as features and the 30th column as the label.

A Bagging classifier is built with a Decision Tree as the base

estimator and ten decision trees (n_estimators=12). A 15-fold

stratified cross-validation is used to ensure that each fold has

a proportional representation of the classes. Log loss is

determined for each fold to determine how closely the

projected probabilities match the true labels, with smaller log

loss indicating higher predictive accuracy.

Mean accuracy with 15-fold cross-validation: 98.63% while

the mean log loss with 15-fold cross-validation: 0.2960 as

shown in Figure 3.

Figure 3. The accuracy of 15 folds of cross validation and

loss function of Bagging classifier

5.1.2 Random Forest classifier results

We employed a Random Forest classifier for this research.

The model was configured with a fixed random state

(random_state=18) to ensure reproducibility of results.To

evaluate the model, we used Stratified K-Fold Cross-

Validation with 15 folds. This method ensures that each fold

has the same proportion of class labels as the entire dataset,

which is crucial for maintaining the balance in class

distribution across folds. Mean accuracy with 15-fold cross-

validation: 99.56% while the mean log loss with 15-fold cross-

validation: 0.1755 as shown with Figure 4.

5.1.3 XGBoost classifier results

XGBClassifier use the default parameters for

XGBClassifier as of the latest version of the XGBoost library.

XGBoost Classifier is built with (n_estimators=36) which is

the number of gradient boosted trees. The performance of an

XGBoost classifier on a dataset using 15-fold cross-validation

is evaluated. Mean accuracy with 15-fold cross-validation:

99.567% while the mean log loss with 15-fold cross-validation

is 0.0453 as shown in Figure 5.

Log loss is determined for each of three classifiers to

determine how closely the projected probabilities match the

true labels, with smaller log loss indicating higher predictive

284

accuracy. Additionally, precision, recall, F1 score, and

standard deviation metrics are computed using 15-fold cross-

validation. Table 4 presents the results for all metrics.

Figure 4. The accuracy of 15 folds of cross validation and

loss function of Random Forest classifier

Figure 5. The accuracy of 15 folds of cross validation and

loss function of XGBoost classifier

Table 4. Various evaluation metrics

Classifier Mean Precision Mean Recall Mean F1 Score Mean Accuracy Mean Log Loss SD

Bagging 99.29% 98.40% 98.60% 98.63% 0.2960 0.027

Random Forest 99.78% 99.33% 99.43% 99.56% 0.1755 0.016

XGBoost 99.56% 99.33% 99.29% 99.56% 0.0453 0.016

Moreover, we experimented with three different k-fold

cross-validation settings: 5-fold, 10-fold, and 15-fold. The best

results were obtained with 15-fold cross-validation as present

in Table 5.

Table 5. Different k-fold cross validation

Classifier 5-fold 10-fold 15-fold

Bagging 97.73% 98.18% 98.63%

Random Forest 99.55% 99.55% 99.56%

XGBoost 99.55% 99.55% 99.56%

5.2 Analysis the findings

While building the dataset, we noted several key

observations. First, the investigation revealed that, through

using LLVM opt with the loop unroll optimization step,

around half of the benchmark loops could not be unrolled

Because of one or more of the following factors:

i. a low initial value for the loop induction variable and ii.

the utilization of conditional control inside the loop.

We also found that an unroll factor equal to 8 is the highest

value that effectively speeds up program execution time.

Values greater than eight may maintain the same execution

time or worsen program performance.

The experiments also show that the loops with an efficient

unroll factor, for instance 8, often perform satisfactorily with

a smaller one, like 2, though the reverse isn’t always accurate.

Furthermore, no single unroll factor is constantly dominant

and performing well across all loops.

6. CONCLUSIONS

This research addressed the difficulty of recognizing the

ideal unroll factor for a set of programs in order to increase its

performance. We provided a method for identifying the most

effective loop unroll factor by using multiple ensemble

learning models such as Bagging, Random Forest, and

XGBoost. We evaluated these models on the construction

dataset. The dataset was comprised of a number of dynamic

features of a set of programs with best loop unroll factors.

XGBoost and RF outperformed the third model that trained on

the dataset, predicting the most appropriate unroll factor with

a precision rate of 99.56%.

A key limitation of the study is the lack of a sufficiently

large dataset, which can introduce biases and affect the

generalizability of the results. Small datasets may not fully

285

capture the variability or diversity present in the population.

This can also result in biased performance estimates, as the

model may learn noise or specific patterns that are not

representative of the broader problem. In the future, extending

the dataset and training classification models on it will help

increase the model's ability for generalization.

REFERENCES

[1] Singh, I., Singh, S.K., Singh, R., Kumar, S. (2022).

Efficient loop unrolling factor prediction algorithm using

machine learning models. In 2022 3rd International

Conference for Emerging Technology (INCET), pp. 1-8.

https://doi.org/10.1109/INCET54531.2022.9825092

[2] Almohammed, M.H., Fanfakh, A.B., Alwan, E.H. (2020).

Parallel genetic algorithm for optimizing compiler

sequences ordering. In New Trends in Information and

Communications Technology Applications: 4th

International Conference, NTICT 2020, Baghdad, Iraq,

June 15, 2020, Proceedings 4, pp. 128-138.

https://doi.org/10.1007/978-3-030-55340-1_9

[3] Alwan, E.H. (2023). Predicting loop vectorization

through machine learning algorithms. Journal of Fusion:

Practice and Applications, 15(2): 36-45.

https://doi.org/10.54216/FPA.150203

[4] Ahmed, N.S., Alwan, E.H., Fanfakh, A.B. (2024).

Optimizing loop tiling in computing systems through

ensemble machine learning techniques. Full Length

Article, 15(1): 214-14.

https://doi.org/10.54216/FPA.150117

[5] Zacharopoulos, G., Barbon, A., Ansaloni, G., Pozzi, L.

(2018). Machine learning approach for loop unrolling

factor prediction in high level synthesis. In 2018

International Conference on High Performance

Computing & Simulation (HPCS), pp. 91-97.

https://doi.org/10.1109/HPCS.2018.00030

[6] Panda, P.R., Sharma, N., Kurra, S., Bhartia, K.A., Singh,

N.K. (2018). Exploration of loop unroll factors in high

level synthesis. In 2018 31st International Conference on

VLSI Design and 2018 17th International Conference on

Embedded Systems (VLSID), pp. 465-466.

https://doi.org/10.1109/VLSID.2018.115

[7] Huang, J.C., Leng, T. (1999). Generalized loop-unrolling:

A method for program speedup. In Proceedings 1999

IEEE Symposium on Application-Specific Systems and

Software Engineering and Technology. ASSET'99 (Cat.

No. PR00122), pp. 244-248.

https://doi.org/10.1109/ASSET.1999.756775

[8] Domagała, Ł., van Amstel, D., Rastello, F., Sadayappan,

P. (2016). Register allocation and promotion through

combined instruction scheduling and loop unrolling. In

Proceedings of the 25th International Conference on

Compiler Construction, pp. 143-151.

https://doi.org/10.1145/2892208.289221

[9] Stephenson, M., Amarasinghe, S. (2005). Predicting

unroll factors using supervised classification. In

International symposium on code generation and

optimization, pp. 123-134.

https://doi.org/10.1109/CGO.2005.29

[10] Murtovi, A., Georgakoudis, G., Parasyris, K., Liao, C.,

Laguna, I., Steffen, B. (2024). Enhancing performance

through control-flow unmerging and loop unrolling on

GPUs. In 2024 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), pp. 106-118.

https://doi.org/10.1109/CGO57630.2024.10444819

[11] Liu, H., Guo, Z. (2018). A loop unrolling method based

on machine learning. Vibroengineering Procedia, 18:

215-221. https://doi.org/10.21595/vp.2018.19928

[12] Hall, M., Chame, J., Chen, C., Shin, J., Rudy, G., Khan,

M.M. (2010). Loop transformation recipes for code

generation and auto-tuning. In Languages and Compilers

for Parallel Computing: 22nd International Workshop,

LCPC 2009, Newark, DE, USA, Revised Selected Papers

22, pp. 50-64. https://doi.org/10.1007/978-3-642-13374-

9_4

[13] Carminati, A., Starke, R.A., de Oliveira, R.S. (2017).

Combining loop unrolling strategies and code

predication to reduce the worst-case execution time of

real-time software. Applied Computing and Informatics,

13(2): 184-193.

https://doi.org/10.1016/j.aci.2017.03.002

[14] Booshehri, M., Malekpour, A., Luksch, P. (2013). An

improving method for loop unrolling. arXiv preprint

arXiv:1308.0698.

https://doi.org/10.48550/arXiv.1308.0698

[15] Huang, D., Hu, D., He, J., Xiong, Y. (2018). Structure

damage detection based on ensemble learning. In 2018

9th International Conference on Mechanical and

Aerospace Engineering (ICMAE), pp. 219-224.

https://doi.org/10.1109/ICMAE.2018.8467650

[16] Ho, T.K. (1995). Random decision forests. In

Proceedings of 3rd International Conference on

Document Analysis and Recognition, pp. 278-282.

https://doi.org/10.1109/ICDAR.1995.598994

[17] Amit, Y., Geman, D. (1994). Randomized inquiries

about shape; an application to handwritten digit

recognition. Dept. Statistics, Univ. of Chicago, Technical

Report, 401.

[18] Mienye, I.D., Sun, Y. (2022). A survey of ensemble

learning: Concepts, algorithms, applications, and

prospects. IEEE Access, 10: 99129-99149.

https://doi.org/10.1109/ACCESS.2022.3207287.

[19] Chen, T., Guestrin, C. (2016). Xgboost: A scalable tree

boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 785-794.

https://doi.org/10.1145/2939672.2939785

[20] Zhen, J., Mao, D., Shen, Z., Zhao, D., Xu, Y., Wang, J.,

Jia, M., Wang, Z., Ren, C. (2024). Performance of

XGBoost ensemble learning algorithm for mangrove

species classification with multisource spaceborne

remote sensing data. Journal of Remote Sensing, 4: 0146.

https://doi.org/10.34133/remotesensing.0146

[21] Alhasnawy, L.H., Alwan, E.H., Fanfakh, A.B. (2020).

Using machine learning to predict the sequences of

optimization passes. In New Trends in Information and

Communications Technology Applications: 4th

International Conference, NTICT 2020, Baghdad, Iraq,

June 15, 2020, Proceedings 4, pp. 139-156).

https://doi.org/10.1007/978-3-030-55340-1_10

[22] Almohammed, M.H., Alwan, E.H., Fanfakh, A.B. (2020).

Programs features clustering to find optimization

sequence using genetic algorithm. In Intelligent

Computing Paradigm and Cutting-edge Technologies:

Proceedings of the First International Conference on

Innovative Computing and Cutting-edge Technologies

(ICICCT 2019), Istanbul, Turkey, pp. 40-50.

286

https://doi.org/10.1109/ACCESS.2022.3207287

https://doi.org/10.1007/978-3-030-38501-9_4

NOMENCLATURE

EL Ensemble Learning

RF Random Forest

XGBoost Extreme Gradient Boosting

LLVM Low Level Virtual Machine

Bagging Bootstrap aggregating

Perf CPU performance counters

ILP Instruction level parallelism

287

