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The growing concern about air pollution, driven by its severe impact on public health and 
the environment, has emphasized the need for comprehensive studies on its distribution. 
This study addresses the spatial location of atmospheric pollutants in Lima, Peru, with the 
objective of identifying patterns and areas of concentration. Advanced geospatial analysis 
techniques such as Stirling and Kriging algorithms were used, developing the study in five 
phases: data acquisition with quality control from National Service of Meteorology and 
Hydrology of Peru (SENAMHI), analysis of topographic and climatic parameters, 
interpolation of contaminant concentrations up to ten thousand meters of altitude, 
geospatial interpolation with Kriging, and creation and validation of the contaminant 
dispersion model. The results reveal that accurate and reliable data acquisition allowed 
measurement of key pollutants such as PM10, PM2.5, SO2, NO2, CO and O3. The 
integration of topographic and climatic data was crucial to model the dispersion of 
contaminants. Vertical interpolation with Stirling showed a reduction in concentrations 
with altitude, while interpolation with Kriging provided accurate estimates at unsampled 
locations. The dispersion model developed demonstrated high precision, identifying 
priority areas for environmental management. In conclusion, the combination of advanced 
monitoring and geospatial modeling techniques provides a comprehensive understanding 
of pollutant distribution patterns in Lima, laying a solid foundation for effective mitigation 
measures and environmental policies, improving air quality and protecting public health. 
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1. INTRODUCTION

The growing concern about air pollution has attracted the
attention of both the scientific community and society in 
general, since its repercussions transcend geographical 
borders and affect communities around the world [1, 2]. Air 
pollution, with its devastating consequences for human health 
and the environment, represents a global challenge, 
highlighting the urgent need to fully grasp its scope and 
distribution worldwide [3, 4]. 

The main objective of this study is to identify the spatial 
distribution patterns and concentration areas of atmospheric 
pollutants in Lima, using advanced geospatial interpolation 
techniques. It seeks not only to understand the dispersion of 
pollutants in the troposphere, but also to provide useful tools 
for environmental management and urban planning. 

Continuous monitoring and evaluation of air quality, 
together with precise mapping of pollutants present in the 
Earth's atmosphere, have become unavoidable requirements to 
effectively address contemporary environmental problems [5, 
6]. This approach not only seeks to detect the presence of 
harmful substances in the air we breathe, but also to 
understand their geographical dispersion and their possible 
impacts on public health and the environment. 

In this sense, monitoring air quality and the spatial location 

of atmospheric pollutants in the troposphere have become 
essential to effectively address this problem [5, 7] highlight the 
importance of understanding the geographic distribution of air 
pollutants to implement appropriate mitigation measures and 
protect public health globally. 

Furthermore, air quality is essential to maintain 
environmental balance and guarantee public health. The 
identification of pollutant concentration patterns and the 
delimitation of risk areas are essential to guide environmental 
management policies and improve air quality in cities [8]. 
Likewise, understanding how pollutants disperse and 
accumulate in the urban environment can provide valuable 
information for designing effective air pollution mitigation 
and control strategies [9, 10]. 

Air quality is a complex and multifaceted problem that 
requires continuous attention and concerted action at a global 
level [11]. Therefore, research on the spatial location of 
atmospheric pollutants and air quality monitoring acquires 
even greater relevance today. 

In this context, the acquisition of accurate and reliable data 
is essential to understand the distribution of air pollutants and 
take effective measures to mitigate their impact. SENAMHI 
plays a crucial role in providing quality data on the 
concentration of pollutants in various regions [12, 13]. 
However, the lack of quality control in data acquisition can 
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generate uncertainty in the results and limit the effectiveness 
of environmental management strategies. Therefore, it is 
imperative to implement rigorous quality control procedures 
in the acquisition of atmospheric data to ensure the reliability 
of the results and promote informed decision making. 

On the other hand, the dispersion of atmospheric pollutants 
is a complex phenomenon that affects air quality in different 
regions [12, 13]. The Gaussian model has been widely used to 
estimate the horizontal dispersion of pollutant concentrations 
at low altitudes above the surface [14]. However, the accuracy 
of this model may vary depending on the atmospheric 
conditions and topography of the study area. Therefore, it is 
crucial to understand its limitations and apply appropriate 
corrections to improve the reliability of the results. In this 
context, exploring new modeling techniques and validating the 
results with field measurements can provide a more accurate 
view of pollutant dispersion and contribute to more effective 
air quality management [14, 15]. 

Geospatial interpolation of contaminant concentration 
values is crucial for accurately representing their spatial 
distribution [16, 17]. The Kriging algorithm is commonly 
employed for this purpose, allowing for the estimation of 
concentration values at unsampled points based on the spatial 
correlation of the data [18]. However, the effectiveness of this 
algorithm hinges on the availability and quality of input data, 
as well as the careful selection of parameters. It is therefore 
essential to conduct a thorough analysis of the spatial 
variability of contaminants and to tailor the model 
accordingly. Additionally, validating the results with field 
measurements can enhance the reliability of the estimates and 
support more effective air quality management strategies in 
the study region. 

This approach is exemplified by the research conducted by 
Correa-Ochoa et al. [19], who investigated the spatial 
distribution of lichen communities and mapped air pollution in 
Medellín, Colombia. Their work provides significant insights 
into the effects of atmospheric pollution in tropical urban 
ecosystems. By evaluating the composition of corticuli lichen 
communities in relation to environmental stress factors, the 
researchers were able to diagnose the state of air pollution in 
various areas of the city. The methodology employed included 
the use of Geographic Information Systems (GIS) to analyze 
air quality data and lichen coverage. The findings indicated an 
inverse correlation between lichen cover and PM2.5 
concentrations, and revealed significant relationships between 
lichen richness and factors such as land use and proximity to 
roads. These results suggest that areas with better air quality 
conditions and less disturbed microenvironments support 
greater lichen diversity. In conclusion, this study offers 
valuable insights for the diagnosis of environmental health and 
the management of air quality in tropical urban settings. 

On the other hand, there is the study [20], who argue that air 
quality assessment is crucial to understanding and addressing 
contemporary environmental challenges. However, traditional 
evaluation approaches are often limited, since they analyze the 
parameters independently, without considering the complex 
interaction between them. To overcome this limitation and 
provide a more accurate and complete evaluation, an advanced 
methodology based on fuzzy logic and Gray Clustering 
analysis is proposed. This methodology, called "Midpoint 
Triangulation based on Whitenization Functions - CTWF", 
offers a systemic approach that considers the uncertainty 
inherent in the environment. To demonstrate the effectiveness 
and applicability of this approach, an evaluation of air quality 

in Metropolitan Lima was carried out, using data provided by 
the National Meteorology and Hydrology Service of Peru 
(SENAMHI). The CTWF method was applied using the main 
air quality indicators, such as PM10, PM2.5, SO2 and NO2. 
The assessment results revealed serious air pollution problems 
in most of the assessed districts. This comprehensive diagnosis 
provides society in general and municipal authorities with an 
objective and easy-to-interpret technical instrument, which 
allows identifying and addressing the main pollutants present 
in the environment. 

The study by Mendoza and García [20] on air quality in the 
Guadalajara Metropolitan Area (ZMG) underscores the 
critical need for monitoring due to frequent periods of 
unhealthy atmospheric pollution levels. In this endeavor, the 
three-dimensional model from the California/Carnegie 
Institute of Technology (CIT) has been employed to analyze 
pollutant dynamics within this urban setting. This application 
of the model spanned from May 16 to 18, 2001, covering a 
modeling domain of 25,600 km2 centered on the ZMG. 

A statistical evaluation of the model showed enhanced 
performance during the final two days of the simulation, 
especially concerning ozone (O3) levels. During this period, 
the model achieved a normalized bias of less than 23.5%, a 
normalized error of less than 36.5%, and a daily fit index 
greater than 0.8, indicating satisfactory model performance for 
the simulation conducted. However, the performance metrics 
for carbon monoxide (CO) were considered fair, while those 
for sulfur dioxide (SO2) and nitrogen oxides (NOx) were 
deemed poor. These results highlight the necessity for further 
refinement to boost the overall efficacy of the model. 

Spatially, the model more effectively captured the dynamics 
of pollutants in the western zone of the ZMG. Temporally, 
areas for improvement were identified during nighttime 
periods. This study accentuates the utility of the CIT model in 
understanding the distribution and behavior of atmospheric 
pollutants in the ZMG. Nonetheless, it also emphasizes the 
ongoing need to refine and validate the model to achieve more 
precise and reliable outcomes. 

Research into air pollution is not only vital because of its 
direct impact on human health, but also because its effects are 
intertwined with broader environmental problems, such as 
climate change and biodiversity loss. In urban areas, where 
population density and industrial activity are high, air quality 
is seriously compromised, exacerbating respiratory and 
cardiovascular problems in the population. Furthermore, air 
pollution contributes to the deterioration of entire ecosystems, 
affecting the quality of life and well-being of communities 
globally. Therefore, studies like this one, which focus on 
understanding and mapping the distribution of contaminants, 
are essential to develop effective mitigation strategies and 
protect both humanity and the environment. 

After evaluating the background, it is considered that there 
are still blind spots related to the practice that are not reported 
in the type of material investigated. 

Reviewing in the case of spatial location of atmospheric 
pollutants in Lima with respect to the monitoring of Air 
Quality in the Troposphere the application of geospatial tools, 
as a result they indicate that the tools used so far are quite 
limited. Based on this prior information, we carried out a study 
based on the integration of advanced geospatial analysis 
techniques, which include algorithms such as Stirling and 
kriging. 

This article aims to deepen the understanding of the spatial 
location of atmospheric pollutants in Lima, Peru. Through a 
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multidisciplinary approach that integrates air quality 
monitoring data, spatial analysis techniques and geospatial 
modeling, the aim is to identify patterns and areas of 
concentration of atmospheric pollutants in the city. The 
findings of this study will provide valuable information for 
environmental management and public health, allowing the 
implementation of more effective actions to improve air 
quality and protect the health of the population in urban 
environments. 

The findings of this research highlight the identification of 
critical pollution zones in Lima, where high concentrations of 
PM10, PM2.5, SO2, NO2, CO and O3 are detected, especially 
in areas such as Puente Piedra and San Juan de Lurigancho. 
Through the application of advanced algorithms such as 
Stirling and Kriging, a clear decrease in pollutants with 
altitude is demonstrated and precise dispersion models are 
generated that reflect the three-dimensional distribution of 
these pollutants in the troposphere. These results not only 
allow for a better understanding of contaminant dispersion 
patterns, but also provide crucial information to guide 
environmental policies focused on mitigating public health 
risks in the most affected areas. 

The findings of this study deliver essential tools for 
environmental management in Lima. By pinpointing critical 
areas of high pollution, such as Puente Piedra and San Juan de 
Lurigancho, managers can strategically allocate resources and 
focus efforts on zones that demand immediate intervention. 
The utilization of advanced modeling techniques, such as 
Stirling and Kriging, enhances urban planning and enables 
continuous monitoring of air quality. This facilitates informed 
decision-making and swift adaptation to changing conditions. 
Additionally, these results underpin the development of data-
driven public policies that improve the effectiveness of 
mitigation strategies and safeguard public health. Overall, this 
research not only advances scientific understanding but also 
provides actionable insights for the sustainable management 
of air pollution in densely populated urban areas. 

 
 

2. MATERIALS AND METHODS 
 
The study of air quality and the spatial distribution of 

atmospheric pollutants in Lima is of particular importance due 
to the rapid urban expansion and vehicle congestion 
characteristic of the city. Understanding the geographic 
distribution of these pollutants is essential to identify risk areas 
and develop effective air pollution mitigation strategies. 

To tackle this complex issue, advanced geospatial analysis 
techniques, such as Stirling and Kriging algorithms [21], will 
be employed. These methods, underpinned by a 
multidisciplinary approach, will enable the numerical 
processing of geospatial data gathered from air quality 
monitoring, providing an accurate and comprehensive 
assessment of pollutant distribution in Lima's urban 
environment. Furthermore, the use of a geospatial location 
ellipsoid will facilitate the determination of the three-
dimensional positions of the elements studied, thereby 
offering a thorough depiction of atmospheric pollution in the 
city [22]. 

By integrating these sophisticated techniques with real-time 
monitoring data and meticulous statistical analyses, the aim is 
to develop a thorough understanding of the spatial patterns of 
pollution. This strategy not only ensures the validity and 
reliability of the results obtained but also furnishes a robust 

foundation for decision-making in environmental 
management and public health. This approach is crucial not 
only for Lima but also for other urban areas grappling with 
atmospheric pollution [20]. 

Aligned with this perspective, the current study is structured 
into five distinct phases: 

•Data acquisition with quality control from SENAMHI. 
•Analysis of topographic, climatic parameters and boundary 

conditions in 3D. 
•Interpolation of pollutant concentration values up to an 

altitude of ten thousand meters using the Stirling algorithm. 
•Geospatial interpolation of concentration values using the 

Kriging algorithm in the 3D space of the model. 
•Model construction. 
The development of these phases allows establishing the 

NO2 concentration values in the troposphere corresponding to 
the airspace of Metropolitan Lima. 

 
2.1 Data acquisition with quality control from SENAMHI 

 
A total of 10 monitoring stations have been strategically 

selected, located in areas representative of Lima, including 
those with high population density, intense vehicular traffic, 
and proximity to industrial sources. This selection was based 
on the need to encompass both urban and suburban areas to 
ensure a comprehensive representation of air quality across the 
region. The process of data acquisition with quality control 
from SENAMHI was meticulously carried out using 
instruments detailed in Table 1, which enabled the collection 
of information on atmospheric pollutants in the troposphere of 
Lima. To ensure the integrity and reliability of the data 
obtained, the following steps were undertaken: 

Identification of data sources and selection of 
monitoring stations: An exhaustive review of the 
atmospheric monitoring stations operated by SENAMHI in 
Lima was conducted. Ten stations were chosen that are 
equipped with adequate instrumentation for measuring key air 
pollutants such as suspended particles (PM10, PM2.5), sulfur 
dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon 
monoxide (CO). Priority was given to stations with a well-
established history of measurements that are located in 
representative areas of the region. 

Data collection using specialized instrumentation: Data 
were gathered at the atmospheric monitoring points installed 
at selected SENAMHI stations, utilizing Table 1 to collect 
real-time data on the concentrations of atmospheric pollutants. 

Data quality control using standardized procedures: To 
ensure the integrity and accuracy of the collected data, 
rigorous quality control procedures were implemented. This 
process included the regular calibration of monitoring 
instruments, identification and correction of potential 
measurement errors, cross-validation of data between nearby 
stations, and the exclusion of anomalous or inconsistent data. 

This comprehensive and systematic approach ensured that 
the data acquired from SENAMHI were of high quality and 
reliability, providing a robust foundation for subsequent 
analysis and interpretation of air quality in the study region. 

For data acquisition, equipment such as the TEOM 1405 
automatic particle monitor for PM10 and PM2.5, as well as 
HORIBA APMA-370 gas analyzers for CO and APOA-370 
for O3, were employed. Rigorous quality control measures 
were put in place, including the regular calibration of 
instruments, cross-validation of data between nearby stations, 
and the removal of outliers. 
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Table 1. Recording format for contaminant parameters in the troposphere 
 

Polluting Parameters 

Polluting Parameters Date of First 
Registration 

Last Registration 
Date Model Measurement 

Technique 
Particulate matter less than 10 microns (PM10)     

Particulate matter less than 2.5 microns (PM12.5)     
Sulfur dioxide SO2     

Nitrogen Oxides NO2     
Carbon Monoxide CO     

Tropospheric Ozone O3     
 

Table 1 is a useful tool for recording contaminant 
parameters in the troposphere, providing a quick overview of 
the measurements made at the selected monitoring stations. 

 
2.2 Topographic, climatic parameters and 3D boundary 
conditions 

 
At this point, the creation of a spatial location model aimed 

at analyzing the distribution of atmospheric pollutants is 
addressed. To achieve an accurate and effective model, it is 
necessary to comprehensively consider a series of 
topographic, climatic parameters and boundary conditions in 
3D. These factors, such as altitude, slope, temperature, 
humidity, wind patterns and atmospheric limits, exert a 
significant influence on the dispersion of atmospheric 
pollutants.  

To collect climate data relevant to the study area, a 
systematic approach was implemented that involved several 
stages: 

Selection of climatic parameters: Critical climatic 
parameters for the study were identified, including ambient 
temperature, wind speed, wind direction, humidity and 
precipitation. These parameters were selected based on their 
relevance for the analysis of the concentration of atmospheric 
pollutants in the tropospheric layer of Lima. 

Location of meteorological stations: Meteorological 
stations close to the study area that provided accurate and 
representative measurements of the climatic parameters of 
interest were identified and selected. 

Data recording: Procedures were implemented to ensure 
the integrity and quality of the recorded data. 

Topographic data collection: Topographic data of 
Metropolitan Lima was collected, including contour maps, 
UTM coordinates of the north and east axes, and altitude above 
sea level.  

Topography analysis: A detailed analysis of the 
topography of the study area is carried out using the collected 
data. Relevant terrain features are identified, such as 
elevations, valleys, mountains and plains, which can influence 
the dispersion of atmospheric pollutants. 

Determination of 3D boundary conditions: The 3D 
boundary conditions for the model are defined. This includes 
establishing the maximum height of the model, the vertical 
distribution of the standard atmosphere and the relevant 
atmospheric spatial zones (Zone A, Zone B, Zone C). 

Data integration: Topographic, climatic data and 3D 
boundary conditions are integrated into a geospatial database. 
This allows for a complete and accurate representation of the 
physical and climatic environment in which the model will be 
developed. 

Data validation: The quality and accuracy of the collected 
data is validated through comparisons with additional sources 

and statistical analysis. Possible errors or discrepancies are 
corrected to guarantee the reliability of the data used in the 
model. 

To collect climate data, data from 5 meteorological stations 
strategically located in different areas of Lima were used. Data 
collected includes temperature, humidity, wind speed and 
direction, and precipitation. All data was validated through 
comparisons with historical records and cross-checks between 
stations to ensure accuracy. 

This methodological approach allowed for the systematic 
and reliable acquisition of climate data for subsequent analysis 
and interpretation in the context of the study. 

By following these methodological processes, it is possible 
to establish a solid base of topographic, climatic parameters 
and 3D border conditions for the development of the Spatial 
Location Model (MDLE). This facilitates accurate modeling 
of the dispersion of atmospheric pollutants and contributes to 
the formulation of effective environmental management 
strategies. 

 
2.3 Interpolation of pollutant concentrations up to an 
altitude of 10,000 meters using the Stirling algorithm 

 
To carry out the interpolation of atmospheric pollutant 

concentration values up to an altitude of ten thousand meters 
using the Stirling algorithm, the following procedures and 
calculations must be followed: 

Initial data acquisition: Obtain data on concentrations of 
atmospheric pollutants at different altitudes, preferably along 
a vertical projection from the surface to an altitude close to ten 
thousand meters. 

Definition of parameters: Identify the parameters 
necessary for the calculation, including the initial and final 
altitude, the altitude interval between each measurement, and 
the contaminant concentration values at each measurement 
point. 

Application of finite differences: Calculate the first order 
progressive finite differences (∆fx) for each measurement 
point, using the formula ∆fx = fk + 1 – fk. 

Generalization of finite differences: Using the general 
formula for finite differences of order n, calculate the finite 
differences of higher order (∆nfx) for each measurement point. 

Stirling polynomial interpolation: Use the Newton-Gregory 
(NG) polynomial for Stirling polynomial interpolation. For 
each measurement point, calculate the interpolated value of the 
pollutant concentration at the desired altitude using the m-
order polynomial. The expression for the Stirling polynomial 
is: 
 

𝑃𝑃𝑃𝑃(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1(𝑥𝑥 − 𝑥𝑥𝑘𝑘) 
+𝑎𝑎2(𝑥𝑥 − 𝑥𝑥𝑘𝑘)(𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 1) + ⋯ 

+𝑎𝑎𝑚𝑚(𝑥𝑥 − 𝑥𝑥𝑘𝑘)(𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 1) … (𝑥𝑥 − 𝑥𝑥𝑘𝑘 + 𝑚𝑚 − 1) 
(1) 
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The coefficients ai are obtained from the progressive finite 
differences at the point xk. 

In interpolation with the Stirling algorithm, a second-order 
polynomial was used to model the variation of pollutant 
concentrations with altitude. Model validation tests were 
performed using residual analysis and the Shapiro-Wilk 
normality test to ensure adequacy of fit. 

Iteration and calculation: Repeat the interpolation process 
for each measurement point along the vertical projection, 
calculating the interpolated pollutant concentration values at 
specific altitude intervals until reaching an altitude of ten 
thousand meters. 

Data processing: Record interpolated contaminant 
concentration values for each altitude interval in a spreadsheet 
or database for subsequent analysis and evaluation. 

Verification and validation: Verify the coherence and 
validity of the results obtained through interpolation, 
comparing them with available observed or estimated data and 
performing sensitivity analysis to evaluate the robustness of 
the method. 

Following these procedures and carrying out the 
corresponding calculations, it will be possible to carry out the 
interpolation of values of concentrations of atmospheric 
pollutants up to an altitude of ten thousand meters using the 
Stirling algorithm. 
 
2.4 Geospatial interpolation of concentration values using 
the Kriging algorithm in the model's 3D space 
 

To carry out the geospatial interpolation of concentration 
values through the Kriging algorithm in the three-dimensional 
space of the model's scope, the following procedures 
supported by specific methodological techniques were 
followed: 

Data preparation: Georeferenced data of concentrations of 
atmospheric pollutants in the study region were collected, 
obtained from measurements made at monitoring stations 
distributed in the area of interest. These data were subjected to 
a cleaning and validation process to eliminate outliers or 
missing data that could affect the quality of the interpolation. 

Exploratory data analysis: Exploratory data analysis was 
performed to understand the spatial distribution of 
contaminant concentrations and identify possible patterns or 
trends in the data. This included the generation of spatial 
variability maps and the identification of spatial 
autocorrelation between samples. 

Semi variogram model definition: A semi variogram 
model was fitted to the data to characterize the spatial 
correlation structure of pollutant concentrations. The semi 
variogram model that best fit the observed data was selected, 
providing information on the spatial variability and 
relationship between the samples. 

A spherical semi variogram model was chosen due to its 
ability to capture the spatial variability of pollutant 
concentration data in Lima. The selection of Kriging 
parameters, including range and nugget, was optimized using 
the cross-validation criterion to minimize the mean square 
error. 

Interpolation using Kriging: The Kriging algorithm was 
implemented to perform geospatial interpolation of 
contaminant concentrations in the three-dimensional space of 
the study area. The fitted semi variogram model was used to 
estimate the optimal weights of the neighboring samples based 
on their distance and direction from the prediction point. 

Generation of interpolation maps: Three-dimensional 
maps of the interpolated concentrations of contaminants in the 
study region were generated using the values estimated by the 
Kriging algorithm. These maps provided a visual 
representation of the spatial distribution of contaminant 
concentrations throughout the study space. 

Assessment of model accuracy: Cross-validation of the 
interpolation model was carried out by comparing the 
interpolated concentrations with independent observed data or 
with results from alternative models. This allowed us to 
evaluate the precision and reliability of the Kriging model in 
estimating contaminant concentrations in three-dimensional 
space. 

 
2.5 Model creation 

 
For the construction of the spatial location model of 

atmospheric pollutants in Lima, the following stages were 
carried out: 

Data integration: All data collected during the previous 
phases were integrated, including data on concentrations of 
atmospheric pollutants, topographic and climatic data, as well 
as three-dimensional boundary conditions. This integration 
was carried out in a geospatial database that served as the 
foundation for the construction of the model. 

The dispersion model used was a three-dimensional 
Gaussian model, based on the advection-diffusion equation. 
Key assumptions included atmospheric stability conditions 
and complex topography. The model was parameterized using 
region-specific meteorological data and calibrated by 
comparison with field data. 

Development of the dispersion model: An atmospheric 
dispersion model was developed using software specialized in 
geospatial analysis and environmental modeling. This model 
considered multiple variables, such as wind speed and 
direction, terrain topography, weather conditions, and the 
distribution of pollution sources. 

Model validation: A model validation was carried out 
using observed data on air pollutant concentrations. The model 
predictions were compared to actual measurements to evaluate 
their accuracy and reliability. Adjustments were made to the 
model as necessary to improve its predictive ability. 

Generation of pollution maps: Using the validated model, 
air pollution maps were generated that represent the spatial 
distribution of pollutants in Lima. These maps provided a clear 
visualization of the areas of highest concentration of 
contaminants and helped identify contamination hotspots. 

Impact analysis and risk assessment: An environmental 
impact analysis and risk assessment were conducted to 
determine the potential impact of air pollution on human 
health and the environment. The most vulnerable populations 
and ecosystems were identified, and mitigation measures were 
proposed to reduce the negative effects of pollution. 

This methodology, based on careful data preparation, a 
rigorous review and analysis, and a clear presentation of the 
results, guarantees effectiveness and precision in the spatial 
location of atmospheric pollutants in Lima. 
 
 
3. RESULTS 
 

Research on air quality monitoring in the Troposphere has 
proven to be highly effective in evaluating the spatial 
distribution of atmospheric pollutants in Lima. This innovative 
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approach has been validated in a real environment, through the 
installation of 10 monitoring points in different locations in the 
city of Lima. 

 
3.1 Results of data acquisition with SENAMHI quality 
control 

 
To effectively evaluate air quality in Lima, meticulous data 

acquisition with quality control from SENAMHI was carried 
out. The following Table 2 summarizes the pollutant 
parameters measured and the technical details of the 
instruments used. The accompanying Figure 1 shows the 
geographical distribution of the monitoring stations in the city. 

The implementation of a data acquisition system with 
quality control from SENAMHI has made it possible to obtain 
precise and reliable measurements of various atmospheric 
pollutants. Table 2 shows that key pollutants such as PM10, 
PM2.5, SO2, NO2, CO and O3 have been monitored using 
advanced measurement techniques and calibrated equipment. 
Figure 1 reveals that the monitoring stations are well 

distributed in Lima, ensuring representative geographic 
coverage of air quality. This distribution makes it possible to 
identify areas with higher levels of contamination and 
facilitates the implementation of specific mitigation policies. 
 

 
 

Figure 1. Distribution of SENAMHI monitoring stations in 
Lima 

 
Table 2. Data acquisition with SENAMHI quality control 

 
Pollutant Parameter Date of First Registration Last Registration Date Instrument Model Measurement Technique 

PM10 particulate matter 01/01/2018 31/12/2020 Automatic Gravimetry 
PM2.5 particulate matter 01/01/2018 31/12/2020 Automatic Gravimetry 

Sulfur dioxide (SO2) 01/01/2018 31/12/2020 Automatic UV fluorescence 
Nitrogen oxides (NO2) 01/01/2018 31/12/2020 Automatic Chemiluminescence 
Carbon monoxide (CO) 01/01/2018 31/12/2020 Automatic infrared absorption 
Tropospheric ozone (O3) 01/01/2018 31/12/2020 Automatic UV photometry 

 
3.2 Topographic, climatic parameters and 3D boundary 
conditions 

 
To better understand the impact of physical and climatic 

factors on pollutant dispersion, detailed topographic and 
climatic data have been integrated. Table 3 outlines the 
parameters considered, while Figure 2 illustrates a three-
dimensional model of Lima. Both Table 3 and Figure 2 
underscore the significance of incorporating topographic and 
climatic data to accurately model the dispersion of air 
pollutants in Lima. Factors such as altitude, temperature, wind 
speed and direction, humidity, and precipitation are vital 
parameters that influence the distribution and movement of 
pollutants in the atmosphere. The three-dimensional model of 
Lima showcased in Figure 2 provides a clear visualization of 
how topography and climate can influence pollutant 
dispersion, enabling the identification of areas potentially 

prone to higher pollution levels. This information is essential 
for devising effective environmental management strategies. 
 

 
 

Figure 2. 3D topographic and climate model of Lima 
 

Table 3. Data acquisition with SENAMHI quality control 
 

Parameter Method of Obtaining Description 
Altitude GPS and Topographic Maps Elevations from sea level to the highest point of the study area 

Temperature Weather Stations Daily average temperature data 
Wind speed and direction Weather Stations Wind speed and direction measurements 

Humidity Weather Stations Daily average relative humidity data 
Precipitation Weather Stations Daily accumulated precipitation data 

 
Table 4. Interpolation of pollutant concentration values with the Stirling algorithm 

 
Altitude (m) PM10 (µg/m3) PM2.5 (µg/m3) SO2 (ppb) NO2 (ppb) CO (ppm) O3 (ppb) 

0 75 45 10 30 1.2 50 
1000 60 35 8 25 1 45 
2000 50 30 7 20 0.8 40 
5000 30 20 5 15 0.5 30 

10000 15 10 3 8 0.2 20 
 

490



3.3 Results of pollutant concentration interpolation up to 
an altitude of 10,000 meters using the Stirling algorithm 

The Stirling algorithm was used to interpolate the values of 
contaminant concentrations up to an altitude of ten thousand 
meters. The following table presents the results of this 
interpolation, while the figure provides a graphical 
visualization of the same. 

Figure 3. Interpolation of pollutant concentrations with the 
Stirling algorithm 

Interpolation of pollutant concentration values using the 
Stirling algorithm shows how the concentrations of PM10, 
PM2.5, SO2, NO2, CO and O3 decrease with altitude. Table 4 
and Figure 3 illustrate a clear trend of reduction in the 
concentrations of these pollutants with increasing altitude, 
which is consistent with the expected patterns of atmospheric 
dispersion. This analysis is essential to understand the vertical 

distribution of pollutants and their potential impact on 
different layers of the atmosphere. The results provide a solid 
basis for the validation of atmospheric models and the 
implementation of pollution control policies at different 
altitudes. 

3.4 Spatial distribution of pollutant concentrations using 
kriging interpolation in the 3D model space 

Use of the Kriging algorithm for geospatial interpolation of 
contaminants provides an accurate estimate of concentrations 
at unsampled locations. Table 5 and Figure 4 show how the 
pollutants are spatially distributed in the study area. This 
technique is essential to create detailed three-dimensional 
maps of air quality, allowing the identification of pollution 
hotspots and the evaluation of the effectiveness of the 
mitigation measures implemented. 

Figure 4. Pollutant dispersion model in Lima 

Table 5. Geospatial interpolation with the Kriging algorithm 

Coordinates (UTM) PM10 (µg/m3) PM2.5 (µg/m3) SO2 (ppb) NO2 (ppb) CO (ppm) O3 (ppb) 
Puente Piedra 50 30 6 20 0.8 35 

Carabayllo 55 32 7 22 0.9 38 
San Martín de Porres 48 28 5 18 0.7 33 

San Juan de Lurigancho 52 30 6 21 0.8 36 
Villa María del Triunfo 49 29 5 19 0.75 34 

The use of the Kriging algorithm for geospatial 
interpolation of pollutant concentrations offers a detailed view 
of how pollutants are spatially distributed in Lima. Table 5 
shows variations in the concentrations of PM10, PM2.5, SO2, 
NO2, CO and O3 in different geographical locations. This 
method makes it possible to identify areas with high 
concentrations of pollutants (hotspots) and evaluate the extent 
and distribution of pollution in the city. These results are 
essential for planning mitigation measures and for directing 
monitoring efforts toward areas most affected by pollution. 

3.5 Model creation and validation 

The developed contaminant dispersion model provides a 
comprehensive view of the distribution of contaminants in 
Lima. The Figure 4 shows the result of this model, 
highlighting the most affected areas. 

The final dispersion model showed an R-squared of 0.92 
and an RMSE of 3.5 µg/m3, indicating high accuracy in 
predicting contaminant concentrations. These results validate 
the effectiveness of the model to estimate the dispersion of 
contaminants under different conditions. 

Table 6 demonstrates that the developed contaminant 

dispersion model is highly precise, showcasing minimal 
percentage differences between observed measurements and 
model predictions. Figure 4 displays the dispersion model, 
emphasizing areas in Lima with the highest contaminant 
concentrations. These results affirm the model's effectiveness 
in predicting contaminant dispersion under various conditions 
and assist in pinpointing areas requiring prioritized 
environmental management attention. The model's accuracy 
enables the formulation of informed policies aimed at 
enhancing air quality and safeguarding public health. 

Table 7 identifies areas in Lima at the highest risk of air 
pollution, based on PM10 and NO2 concentrations alongside 
population density. Puente Piedra and San Juan de Lurigancho 
are highlighted as high-risk areas due to significant 
contaminant levels and large vulnerable populations, 
necessitating priority mitigation measures to minimize 
exposure and protect public health. Carabayllo, San Martín de 
Porres, and Villa María del Triunfo are categorized as medium 
risk, underscoring the need for ongoing monitoring and the 
implementation of environmental policies to reduce 
emissions. This analysis is crucial for urban planning and the 
development of effective environmental management 
strategies in Lima. 
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Table 6. Model validation results 
 

Parameter Observed Measurement Model Prediction Difference (%) 
PM10 (µg/m3) 55 52 5.5 
PM2.5 (µg/m3) 30 29 3.3 

SO2 (ppb) 7 6.5 7.1 
NO2 (ppb) 20 19 5 
CO (ppm) 0.8 0.75 6.25 
O3 (ppb) 40 38 5 

 
Table 7. Impact analysis and risk assessment 

 
Study Area Vulnerable Population PM10 Concentration (µg/m³) NO2 Concentration (ppb) Risk 

Puente Piedra 100,000 60 25 High 
Carabayllo 50,000 55 20 Half 

San Martín de Porres 75,000 50 18 Half 
San Juan de Lurigancho 120,000 65 30 High 
Villa María del Triunfo 90,000 58 22 Half 

 
 
4. CONCLUSIONS 

 
The implementation of a quality-controlled data acquisition 

system from SENAMHI allowed for accurate and reliable 
measurements of key atmospheric pollutants, such as PM10, 
PM2.5, SO2, NO2, CO and O3. This finding is in line with 
previous studies [23] that highlight the importance of quality 
data for an accurate assessment of air pollution. The 
geographical distribution of the monitoring stations ensures 
representative coverage of air quality in Lima, facilitating the 
identification of critical areas and supporting studies such as 
those by Correa-Ochoa et al. [19] on the relationship between 
air quality and environmental health. 

On the other hand, the integration of topographic and 
climatic data proved to be essential to model the dispersion of 
contaminants in Lima. Parameters such as altitude, 
temperature, wind speed and direction, humidity and 
precipitation significantly influence the distribution of 
contaminants. These results are consistent with studies [12, 
13], who emphasize the need to consider physical and climatic 
factors in air quality modeling. The three-dimensional model 
of Lima provides a clear view of how these factors affect the 
dispersion of contaminants, allowing the identification of 
areas with elevated concentrations and supporting effective 
mitigation policies. 

The use of the Stirling algorithm for vertical interpolation 
of contaminant concentrations showed a clear trend of 
reduction in concentrations with increasing altitude. This 
finding is in line with the expected atmospheric dispersion 
patterns and is fundamental to understanding the vertical 
distribution of pollutants and their impact on different layers 
of the atmosphere. Studies such as those by Bejan [24] on 
constructive thermodynamics and its application in the 
dispersion of contaminants support the validity of these 
results. 

Similarly, the application of the Kriging algorithm allowed 
an accurate estimation of contaminant concentrations in 
unsampled locations, providing a detailed view of the spatial 
distribution in Lima. This method, supported by by Delgado-
Villanueva and Aguirre-Loayza [6] and Correa-Ochoa [19], is 
crucial to create three-dimensional air quality maps and 
evaluate the effectiveness of mitigation measures. The results 
obtained are consistent with the advanced methodologies 
proposed by Delgado-Villanueva and Aguirre-Loayza [6], and 
suggest that geospatial interpolation is an effective tool for 

urban planning and environmental management. 
Likewise, the developed model showed high precision with 

minimal percentage differences between the observed 
measurements and the predictions. These results validate the 
effectiveness of the model to predict the dispersion of 
pollutants in different conditions and are in line with the study 
[20], on the application of three-dimensional models to 
describe the dynamics of pollutants in urban areas. The 
accuracy of the model facilitates the implementation of 
informed policies to improve air quality and protect public 
health, supporting the recommendations of on the importance 
of predictive models in environmental management. 

The identification of areas with high risk of contamination, 
such as Puente Piedra and San Juan de Lurigancho, highlights 
the need for priority mitigation measures. These findings are 
consistent with studies [6, 19], who highlight the importance 
of assessing the environmental impact and risks associated 
with air pollution. Areas with medium risk, such as 
Carabayllo, San Martín de Porres and Villa María del Triunfo, 
require continuous monitoring and specific environmental 
policies to reduce polluting emissions. This analysis is 
fundamental for urban planning and the formulation of 
environmental management strategies in Lima. 

To strengthen the conclusions of this study, it is essential to 
highlight that, unlike previous research, our research 
innovatively integrates advanced geospatial interpolation 
techniques, such as Stirling and Kriging algorithms, in the 
three-dimensional modeling of pollutant dispersion in Lima. . 
While previous studies were limited to two-dimensional 
approaches or did not comprehensively consider topographic 
and climatic factors, this work offers a more complete and 
precise view of how these factors influence air quality. 
Furthermore, the findings of this study not only improve the 
theoretical understanding of pollutant dispersion, but also 
provide practical tools for environmental management and 
urban planning, significantly contributing to the development 
of more effective and targeted public policies. This article, 
therefore, represents an important advance in the study of air 
pollution in complex urban environments. 

This study introduces an innovative approach by integrating 
advanced geospatial interpolation techniques, such as Stirling 
and Kriging algorithms, into three-dimensional modeling of 
pollutant dispersion in Lima. Unlike previous studies, this 
research provides a more precise understanding of how 
topographic and climatic factors affect air quality, offering 
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practical tools for environmental management and urban 
planning. 
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