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 Dry forests are ecosystems of great importance worldwide, but in recent decades they have 

been affected by climate change and changes in land use. In this study, we evaluated land 

use and land cover changes (LULC) in dry forests in Peru between 2017 and 2021 using 

Sentinel-2 images, and cloud processing with Machine Learning (ML) models. The results 

reported a mapping with accuracies above 85% with an increase in bare soil, urban areas 

and open dry forest, and reduction in the area of crops and dense dry forest. Protected 

natural areas lost 2.47% of their conserved surface area and the areas with the greatest 

degree of land use impact are located in the center and north of the study area. The study 

provides information that can help in the management of dry forests in northern Peru. 
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1. INTRODUCTION 

 

Dry forests cover 20% of the Earth’s surface, which in turn 

account for 30% of global productivity [1, 2] They are 

responsible for capturing atmospheric carbon (CO2) from 

biomass and soil, in addition to harboring biodiversity [3, 4], 

as well as helping to maintain the hydrological cycle and soil 

conservation [5-7]. They enable climate regulation, 

conservation of flora and fauna species, and provide raw 

materials for construction, food and medicines [8, 9]. However, 

in recent years, forest ecosystems are being impacted by 

increasing or decreasing temperature and precipitation, 

changes in land use and forest degradation [10]. These 

disturbances are often induced by the population settled in this 

ecosystem, which makes it vulnerable to droughts and fires 

with a severe biomass reduction process [11]. 

In the last 60 years (1960-2019), 32% of vegetation cover 

has been lost due to LULC changes [12], modifying the 

structure, functionality of forests and loss of biodiversity 

habitats [9]. It also increases greenhouse gas (GHG) emissions 

[13]. LULC changes are the main cause of forest 

fragmentation for the installation of crop plots, pastures and 

urban growth [14]. It also affects freshwater availability and 

conservation of natural resources [15]. Loss of soil fertility, 

water pollution and droughts are related to forest degradation 

[16]. Therefore, the analysis of forest loss should focus on its 

socioeconomic uses and landscape dynamics [17, 18]. 

Analysis of LULC changes has been used as an important 

tool in the multitemporal analysis of ecosystems, the 

implementation of policies and strategies for sustainable 

development [19, 20]. RS allows detecting and spatially 

analyzing the Spatio-temporal dynamics of LULC using 

different sensors and techniques [21-24]. Time series of 

Landsat and Sentinel-2 (S2) images have been used to identify 

LULC types [24-27]. Similarly, ML models and cloud 

computing have been applied to analyze LULC changes and 

map forests accurately and in near real-time [25]. Other studies 

applied supervised classification by applying RF due to its 

robustness and overcoming data noise overfitting [28], and it 

has been widely used in GEE [29-31]. RF has been applied in 

processing large volumes of data, outperforming other 

methods in accuracy, such as single-layer neural networks, 

decision trees and maximum likelihood [29, 32]. 

In Peru, we find the dry forest ecosystem with biological 

and cultural richness, scenic beauty and high endemic value 

[33]. In recent decades, it has experienced biodiversity loss 

processes due to anthropogenic activities (extractive forestry 

activities, agriculture and urban expansion) and climatic 
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conditions such as high temperatures, extreme dryness, 

irregular occurrence of heavy rainfall and the presence of the 

El Niño-Southern Oscillation (ENSO) [33, 34]. Although 

previous works mapped the current use in the dry forest, 

however, the availability of methodologies and cartography is 

limited for this study area, which could hinder the temporal 

analysis of this ecosystem [35, 36]. Likewise, there is no 

information available related to the impacts of LULC changes 

in natural protected areas. Therefore, in this study we analyze 

the dynamics of LULC using S2 data and cloud processing 

throughout the Peruvian dry forest ecosystem. This will 

provide baseline information on areas with higher dynamics or 

forest loss that will be potential areas for the development of 

ecological recovery and restoration projects. 

 

 

2. METHODS 

 

2.1 Study area 

 

The dry forests of Peru [37], extend along the northern 

coastal zone, through the departments of La Libertad, Ancash, 

Lambayeque, Piura, Tumbes and Cajamarca, covering a 

coastal strip of between 100 to 150 km, with an altitude of up 

to 1000 m a.s.l. [35]. This forest covers 3.6 Mha, which 

represents 4.7% of the total forest in Peru [38]. It is 

characterized by an annual rainfall of 30 to 300 mm between 

December and March and a mean annual temperature of 23 °C 

(Figure 1). 

 

 
 

Figure 1. Forest distribution in northern Peru 

 

The vegetation cover is characterized by being 

heterogeneous, with trees, shrubs and grasslands that are part 

of the dry forest [35]. This ecosystem harbors a diversity of 

forest species with canopy heights of up to 12 meters, which 

allows the vegetative growth of shrubs and trees [39]. Among 

the species that inhabit this ecosystem, it is possible to find 

carob Neltuma pallida, Neltuma limensis, Vachellia 

macracantha, Vachellia aroma, Colicodendron scabridum, 

Anonna spp. and Inga spp [40]. In addition, the dry forest of 

Peru also harbors animal species such as Lycalopex sechurae, 

Furnarius cinnamomeus, Mazama americana, Iguana 

delicatissima, Tremarctos ornatus and Penelope albipennis 

[38]. In the study area, land use is conditioned by 

anthropogenic activities (agriculture, livestock and urban 

growth) [24]. While vegetation depends on rainfall during the 

year [41]. 

Dry forests are of great economic importance as they 

provide ecosystem services such as fruits, firewood and 

fertilizers to the communities settled within the ecosystem. 

Dry forests are also used for subsistence agriculture and 

livestock raising, contributing to the food security of these 

communities. These ecosystems also host important 

archeological and cultural sites for tourism that help diversify 

local sources of income and promote the conservation of these 

natural and cultural environments. 

Figure 2 shows process to evaluate the LULC change and 

its impact on the dry forest of Peru. The construction of time 

series of S2 images was carried out, then the extraction of 

clouds and cloud shadows was applied. We then compute the 

spectral indices and perform the RF classification using 

training data. Finally, the precision of the generated 

cartography was calculated. 

 

 
 

Figure 2. Evaluating LULC changes 

 

2.2 Data collection 

 

During the second and third week of June 2022, field trips 

were conducted to collect data (training and validation) in the 

dry forest. A GPS navigator (Garmin GPSMAP 64s) and the 

FocusMap application (https://www.locusmap.app/) were 

used to georeferenced the LULC classes and generate 
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photographic records [42]. The LULC classes, were 

represented by a) Open dry forest (ODF), b) Dense dry forest 

(DDF), c) Bare land (BL), d) Agricultural land (AL), e) Urban 

area (UA) and f) Water body (WB) (Figure 3). Twenty 

thousand pixels were extracted from the field-collected data, 

representing the six randomly grouped LULC classes [24]. 

 

 
 

Figure 3. LULC classes in dry forests 

 

2.3 Image processing 

 

S2 L1C (COPERNICUS/S2) images were used due to their 

spatial (10 meters) and temporal (6 days) resolution. Images 

of a year considered <30% cloud and no cloud shadow for 

2017 and 2021 [43] were selected by using the quality band 

(QA60). Soil-adjusted Vegetation Index (SAVI), Enhanced 

Vegetation Index (EVI), Normalized difference Vegetation 

Index (NDVI), and Normalized Difference Water Index 

(NDWI) were included to increase the predictor variables for 

LULC classification. Image processing was performed from 

the GEE platform [44]. 

The RF model was used due to its high performance to 

calculate a set of time series to analyses the time series [28, 

45]. The RF has been applied in several studies [28, 46] and 

has proven to be an excellent classifier in coastal areas [47]. 

For this purpose, we created multiband image mosaics that 

included the spectral bands and indices for classification in 

GEE [48]. The classification results were exported and 

visually analyzed with high-resolution images in order to 

improve the classified maps of 2017 and 2021. 

 

2.4 Validation 

 

The precision was determined based on the confusion (error) 

matrix technique [49] and 456 validation points that were 

obtained through the formula established by Cochran [50]. 

These RS techniques have been widely used [51]. Similarly, 

we calculated (i) the overall accuracy (OA), (ii) the user’s 

accuracy (UA), (iii) the producer’s accuracy (PA) and (iv) the 

Kappa index was used [42, 51, 52]. Additionally, for each 

class and year 2017 and 2021, the intensity of changes was 

determined [18]. The loss or gain of each class was determined 

using cross-tabulation matrices [42, 53]. The annual exchange 

rate for FAO was calculated using Eq. (1) [54]. 

 

𝑠 = (
𝑆2

𝑆1

)

1
𝑡2−𝑡1

⁄

− 1 (1) 

 

2.5 Land use degree index 

 

This index quantitatively assesses the impact of human 

actions based on the degree of land use [55]. It is calculated 

according to the change in LULC compared to the natural state 

(Eq. (2)) [56]. The higher the degree of land use, the greater 

the anthropogenic transformation without taking into account 

the ecological environment [56]. 

 

𝑙𝑎 = 100 × ∑ 𝐴𝑖 

𝑛

𝑖=1

×  𝐶𝑖 (2) 

 

where, 𝑙𝑎 is land use degree index; 𝐴𝑖  is the rating index of the 

degree of land use; and 𝐶𝑖  is the percentage of the qualified 

area of the 𝑖-th land use grade type. In accordance with key 

studies [56], LULC classes are classified according to Table 1. 

 

Table 1. Graduated value of land use classes 

 

LULC Class 
Bare 

Land 

Forest, Grassland 

and Body of Water 

Agriculture 

Land 

Urban 

Area 

Classification 

Index 
1 2 3 4 

 

 

3. RESULTS 

 

3.1 Land use and land cover in dry forest 

 

The LULC of the dry forest for 2017 and 2021 is shown in 

Figures 4 and 5. The DDF and ODF covers are the main 

classes of LULC and representing 39% and 41% of DDF and 

22% in ODF in 2017 and 2021, respectively and is distributed 

mainly in the higher altitude areas. The land area of BL has 

increased from 29% in 2017 to 31% in 2021 and is distributed 

in the desert areas of Sechura, Piura and Talara. The 

proportion of area of the AL class reports a reduction of area 

from 9% to 6% from 2017 to 2021. The AU class shows an 

increase, varying from 0.05 to 0.09% in 2017 and 2021, 

respectively. In turn, the general change of the WB was 

relatively small and is mainly represented by the surface of 

rivers located in the study area. 

Overall, ODF and BL classes increased significantly, on the 

other hand, the cultivation area decreased, while the other 

LULC classes remained unchanged, such as DDF, UA and 

WB between 2017 and 2021. 

 

3.2 Intensity of changes 

 

The quantitative and spatial changes of the LULC classes 

were calculated in cross-tabulation matrices, which allowed 

showing the transformation between the different LULC 
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classes in the dry forest for 2017 and 2021 (Table A1). From 

a LULC class change intensity perspective, the AU showed an 

increase in construction area by 2021, which came primarily 

from BL and ODF land. The BL acreage for 2021 changed to 

the establishment of new agricultural parcels and new areas of 

open forest cover. In turn, forest cover (DDF and ODF) 

showed changes due to the establishment of new agricultural 

plots, urban areas and soils with little vegetation. In addition, 

the interaction between both classes DDF and ODF. On the 

contrary, the area of AL showed a downward trend. Cultivated 

land changed to BL, ODF and DDF. At a general level 

between 2017 and 2021, the study area showed changing 

dynamics. Forest cover, BL and AU gradually increased and 

AL and WB classes decreased. 

The loss of coverage in the dry forest in the evaluation 

period is mainly concentrated in areas close to urban areas and 

bodies of water. Between 2017 and 2021, 852.89 km2 (2.34%) 

of forest cover were lost, which changed to crops, urban areas 

and soils with or without vegetation. Regeneration of forest 

cover was also reported in approximately 2,273.74 km2 

(6.24%) (Figure 6a and Table A2). At the level of protected 

areas (PA), 4,494.81 km2 have been conserved so far in the 

entire dry forest for the regions of Cajamarca, Lambayeque, 

Tumbes, La Libertad and Piura. However, 110.83 km2 (2.47%) 

lost forest cover (Figure 6b and Table 2). 

 

 
 

(a) Estimated areas 

 

 
 

(b) Estimated proportion of each class 

 

Figure 4. LULC area for 2017 and 2021 in the dry forest 

 
 

(a) 2017 

 

 
 

(b) 2021 

 

Figure 5. LULC in dry forests 

 

 
 

(a) LULC class transfer map in the study area 
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(b) LULC class transfer map in protected natural areas 

 

Figure 6. Maps of change and persistence of LULC in the 

dry forest 

 

Table 2. Area (km2) of change and permanence of LULC 

 

Change and permanence of 

the LULC 

Dry Forest 
Protected Areas 

(PA) 

Area 

(km2) 
% 

Area 

(km2) 
% 

Change to natural cover 
2,273.7

4 
6.24 135.69 3.02 

Forest loss 852.89 2.34 110.83 2.47 

Permanence of anthropogenic 

use 

1,385.3

7 
3.80 76.57 1.70 

Permanence of natural cover 
31,922.

25 

87.5

8 
4,170.39 92.78 

Water body 15.23 0.04 1.34 0.03 

Total 
36,449.

48 

100.

00 
4,494.81 

100.0

0 

 

3.3 Change of degree of land use 

 

 
 

(a) 2017 

 
 

(b) 2021 

 

Figure 7. Degree of land use for in the dry forest 

 

The effect of human activities on the soil is reflected in the 

levels of use [57]. The different LULC classes identified in this 

analysis allowed the calculation of the comprehensive index 

of the degree of land use for 2017 and 2021. The range in the 

area varies from 100 to 200 in a similar way in both years, 

indicating that the areas with the highest land use are 

concentrated in the north of the study region, with agricultural 

areas predominating (Figure 7). 

 

 

4. DISCUSSION 

 

In this study, we analyze LULC changes in 2017 and 2021 

using cloud computing and RF algorithm. The information 

generated contributes greatly to generate LULC maps for an 

important ecosystem in Peru, obtaining OA and Kappa 

accuracies greater than 89 and 85%, respectively (Table A3 

and S3), indicating reasonable and reliable classification 

results [58]. The dynamics of LULC in the period of analysis 

reported an increase in the areas of bare land and the dynamics 

of open and dense dry forest, which could be conditioned by 

temperature and precipitation [35]. 

Assessing LULC changes in forest ecosystems is an 

important tool that helps to multitemporal changes and 

manage forests with high biodiversity [59]. In the period of 

analysis, an increase in urban areas was reported, which could 

be related to urbanization and population growth that demands 

more and more housing and crop planting [60, 61]. As well as 

the increase in bare land areas and El Niño phenomenon that 

impact terrestrial ecosystems and species habitat [62, 63]. This 

study also reports the reduction of agricultural area, which 

may be related to the occurrence of ENSO in 2017 that favored 

agriculture with abundant rainfall and reduced poverty in rural 

communities by 5% in this ecosystem [64], however, this 

phenomenon occurs between 3 to 8 years, which conditions 

agriculture in these areas [39]. The dense dry forest decreased 

and the open dry forest increased. This reduction may be 
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related to the establishment of new plots for agriculture, urban 

growth and selective logging [38]. 

The creation of PA is considered an agent to mitigate 

deforestation problems and prevent the loss of forest species 

[65, 66]. At the PA level in the dry forest, it was reported that 

92.78% of the conserved area remained unaltered with respect 

to its natural cover. However, 2.45% of its area lost its forest 

cover. It is evident that PAs experience a deforestation process 

both inside and outside their buffer zones [67, 68], with 

logging being one of the causes of forest loss [69]. Likewise, 

it has been shown that PA peripheral areas and intangible areas 

are exposed to deforestation problems [70] due to 

anthropogenic activities and cattle ranching [67, 71]. 

The highest degree of intensity is mainly found in the urban 

and agricultural classes. Cui et al. [58] consider that high 

values are related to a high degree of anthropogenic impacts, 

high levels of LULC with flat slopes. On the other hand, the 

largest area that presented a low degree of land use were the 

soil classes with or without vegetation, water bodies and 

forests for being less impacted by human activities and for 

being on high slopes [55]. 

The use of the GEE platform offers the ability to process 

large volumes of data and can be applied for LULC change 

analysis of large surface areas and crop mapping [25]. A 

disadvantage when taking images is the problems of 

cloudiness and the effect of sea swell that can complicate 

LULC mapping in certain areas, for which atmospheric 

correction through different algorithms is necessary [72]. In 

addition, the creation of mosaics with a wider range of dates 

and complemented with other images such as Landsat, 

PlanetScope and Sentinel-1A. Special and temporal resolution 

are other important aspects to be taken into account in LULC 

studies, the higher the spatial resolution, the greater the LULC 

detail. While, the temporal resolution will allow obtaining a 

greater number of images of the same place, which will 

translate into greater computational power for processing. 

The study provides important information as a baseline for 

monitoring and the formulation of recovery and conservation 

projects by the competent institutions. The maps present the 

areas where forest loss was recorded. However, future studies 

could improve their pressure by using more advanced 

classification techniques such as image segmentation and deep 

learning and the use of high-resolution satellite images such as 

PlanetScope [51]. In addition, future studies need to analyze a 

larger number of LULC classes and longer time periods to 

generate multi-temporal historical information [73]. 

 

 

5. CONCLUSIONS 

 

In this research we analysed LULC changes in the dry forest 

using cloud computing. The LULC maps obtained reported 

pressures higher than 85%. In the study area, there was a 

reduction of cultivated land and dense dry forest, while urban 

areas, dense soils and open dry forest increased significantly. 

From the perspective of changes in the LULC, it was found 

that agricultural areas were mainly changed into bare soils and 

urban areas. On the other hand, natural protected areas showed 

forest loss, indicating impacts from population and climate 

change.  

The results of this study report the changes of LULC in the 

dry forest of Peru. This information can be used as a baseline 

for identifying deforested areas and developing actions for 

their recovery and conservation by decision makers. In the 

future, it is important to conduct research that integrates longer 

time periods and their future prediction using SR techniques, 

as well as social, economic and environmental aspects to 

improve the management and conservation of this important 

dry forest ecosystem. 
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NOMENCLATURE 

 

AL Agricultural land 

BL Bare land 

DDF Dense dry forest 

ENSO El Niño-Southern Oscillation 

EVI Enhanced Vegetation Index 

GEE Google Earth Engine 

LULC Land Use and Land Cover  

ML Machine learning 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

ODF Open dry forest 

OA Overall accuracy 

PA Producer’s accuracy 

RF Random forest 

S2 Sentinel-2 

SAVI Soil Adjusted Vegetation Index 

UA Urban area 

UP User’s accuracy 

WB Water body 

 

 

APPENDIX 

 

Table A1. Matrix of cross-tabulation, rate of change and indices of change for LULC in the dry forest Peru (area in km2 and %) 
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2017 
2021 Total 2017 

(km2) 

Exchange Rate 

(s) 
Loss 

Total 

Change 

Net 

Change 
Exchange 

UA AL LW WB DDF ODF Percentage (%) 

UA 11.85 0.62 4.40 0.00 0.04 0.92 17.83 17.75 33.56 159.38 92.26 67.12 

AL 4.18 1,104.23 824.81 2.19 254.17 1,191.46 3,381.04 -10.20 67.34 99.71 34.97 64.74 

LW 15.56 242.47 9,012.91 4.72 16.24 1,198.58 10,490.49 1.56 14.08 34.56 6.39 28.17 

WB 0.04 1.06 6.44 6.61 1.95 1.35 17.44 -3.33 62.09 111.53 12.65 98.88 

DDF 0.22 224.86 68.77 0.34 6,598.46 1267.87 8,160.51 -0.16 19.14 37.64 0.65 36.99 

ODF 2.45 625.37 1,243.34 1.37 1,236.80 11,272.84 14,382.16 0.94 21.62 47.07 3.83 43.24 

Total 2021 

(km2) 
34.29 2,198.60 11,160.67 15.23 8,107.66 14,933.03 36,449.48 

Gain (%) 125.82 32.37 20.47 49.44 18.49 25.45 

Table A2. Statistical validation of LULC in 2017 

Classification 
Reference 

Total 
User’s 

Accuracy (%) 
Commission Error (%) 

UA AL LW WB DDF ODF 

UA 22 0 3 0 0 0 25 0.88 0.12 

AL 1 31 6 1 3 8 50 0.62 0.38 

LW 0 1 114 0 0 5 120 0.95 0.05 

WB 0 0 4 14 3 0 21 0.67 0.33 

DDF 0 0 3 0 95 2 100 0.95 0.05 

ODF 0 0 12 0 0 128 140 0.91 0.09 

Total 23 32 142 15 101 143 456 

Producer’s Accuracy (%) 0.96 0.97 0.80 0.93 0.94 0.90 

Omission Error (%) 0.04 0.03 0.20 0.07 0.06 0.10 

Table A3. Statistical validation of LULC in 2021 

Classification 
Reference 

Total 
User’s 

Accuracy (%) 
Commission Error (%) 

UA AL LW WB DDF ODF 

UA 21 1 0 0 0 3 25 0.84 0.16 

AL 0 40 2 0 2 6 50 0.80 0.20 

LW 0 1 118 0 0 1 120 0.98 0.02 

WB 0 0 3 18 0 0 21 0.86 0.14 

DDF 0 0 2 0 98 0 100 0.98 0.02 

ODF 0 0 17 0 13 110 140 0.79 0.21 

Total 21 42 142 18 113 120 456 

Producer’s Accuracy (%) 1.00 0.95 0.83 1.00 0.87 0.92 

Omission Error (%) 0.00 0.05 0.17 0.00 0.13 0.08 
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