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The increasing severity of climate change, including global warming, makes it crucial to act 

quickly to adapt and reduce its impact. To address the complex issues of climate change, we 

need to understand how it affects different continents. Traditional methods of predicting 

climate change often fail due to the inherent complexities and nonlinearities of climate 

systems. Thus, to overcome these limitations, this study proposes a machine learning-based 

stacking model. Initially, the state of art models was trained while the results are 

unsatisfactory, the grid search optimization was employed to improve the results. However, 

the results produced were in a mediocre state. Thus, a stacking based, Stack-ClimaBoost model 

was proposed. This model optimizes the integration of Random Forest (RF), CatBoost (CB), 

and Light Gradient Boosting Machine (LGBM) using grid search optimization. The Stack-

ClimaBoost model outperforms previous state-of-the-art models obtaining a low MAPE 0.765, 

an RMSE of 2.254, and an R2 value of 0.9003. In addition, for each of the seven continents 

Stack-ClimaBoost model performed better with a low MAPE (1.8653-5. 8280), an RMSE (1.2-

4.57), with a higher R² value of (0.65-0.94). With its adaptable solutions, the proposed Stack-

ClimaBoost Regressor model could excel in environmental research and climate modeling on 

multiple continents. Enhancing precision facilitates more dependable prognostications of 

temperature patterns, thereby supporting proactive strategizing and decision-making aimed at 

alleviating the consequences of climate change. 
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1. INTRODUCTION

The specter of global warming looms large, its 

consequences rippling across the globe in an intricate tapestry 

of environmental and socioeconomic disturbances [1]. While 

science is clear in pinpointing human activities as the primary 

driver of this phenomenon, the predicted impacts and their 

manifestation are far from uniform across the seven continents. 

This research delves into the predicted trajectory of global 

warming and its specific ramifications for each continent, 

drawing upon the latest scientific consensus and regional case 

studies. The Earth's climate system, a delicate balance of 

natural forces, has been irrevocably altered by the relentless 

pursuit of fossil fuels [2]. The resultant rise in greenhouse gas 

concentrations, particularly carbon dioxide, has trapped 

additional heat within the atmosphere, leading to a gradual but 

inexorable warming trend. This trend, projected to escalate in 

the coming decades, would not impact the planet 

homogeneously. Each continent, with its unique geography, 

ecosystems, and human societies, would experience the 

consequences of global warming in diverse and profound ways. 

Climate change is expected to have a significant impact on 

Africa, a continent already grappling with chronic poverty and 

food insecurity [3]. Rising temperatures and unpredictable 

rainfall patterns threaten agricultural production, exacerbating 

food shortages and malnutrition. The anticipated exacerbation 

of water scarcity would further stress communities and 

ecosystems. Additionally, the melting of glaciers and ice 

sheets is expected to raise sea levels, leading to coastal 

flooding and mass displacement of millions of people. 

Similarly, Asia, home to over half of the global population, 

faces escalating challenges due to climate change [4]. 

Increasing frequency and severity of heatwaves, floods, and 

droughts pose risks to agricultural output and food security. 

Coastal regions, particularly in Southeast Asia, are highly 

vulnerable to rising sea levels. Furthermore, shifting 

precipitation patterns and melting glaciers might disrupt water 

supplies, potentially exacerbating societal instability. 

Europe is increasingly vulnerable to severe impacts of 

climate change, despite historically experiencing fewer effects 

[5]. Recent catastrophic weather events, like heatwaves and 

floods, have caused extensive destruction and casualties. 

Rising sea levels pose threats to infrastructure and coastal 

communities. Furthermore, ecosystems and agricultural yields 

are suffering due to climate change. North America faces 

widespread challenges from global warming, including rising 

sea levels from melting Arctic and Greenland glaciers [6]. 

Increasing frequency and intensity of extreme weather events, 
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such as wildfires, heatwaves, and droughts, adversely affect 

public health, water resources, and agriculture. The Amazon 

rainforest, a crucial carbon sink and biodiversity hotspot in 

South America, is highly susceptible to climate change 

impacts [7]. Deforestation and rising temperatures exacerbate 

wildfires, while altered precipitation patterns threaten the 

delicate rainforest ecosystem. Littoral communities in South 

America, particularly in Argentina and Uruguay, are 

increasingly threatened by rising sea levels. 

Australia is currently facing severe repercussions from 

climate change, with increased frequency and intensity of 

extreme weather events such as heatwaves and droughts 

resulting in extensive agricultural losses and wildfires [8]. 

Rising sea levels also pose a threat to infrastructure and coastal 

communities. Despite its geographic isolation, Antarctica 

plays a crucial role in regulating the Earth's climate [9]. The 

continent's accelerated ice sheet disintegration contributes 

significantly to rising sea levels, posing a global threat. 

Changes in the Antarctic ecosystem could destabilize global 

ocean currents and weather patterns, with far-reaching 

consequences. It is imperative to comprehend the impacts of 

global warming that are specific to each continent in order to 

formulate efficacious strategies for adaptation and mitigation. 

Due to the intricate and varied consequences of climate 

change that span multiple continents, conventional approaches 

might not possess adequate prognostic capability. Hence, in an 

effort to comprehend and tackle the intricate challenges 

presented by global warming, we have chosen analysis based 

on machine learning, which offers a more resilient and flexible 

methodology. This study aims to comprehensively examine 

the anticipated ramifications of climate change on all seven 

continents, focusing on the distinct challenges and 

vulnerabilities unique to each region. By analyzing regional 

case studies and utilizing current scientific data, this study 

seeks to enhance understanding of the global climate crisis and 

provide insights for formulating strategies that effectively 

address its complex and geographically diverse consequences. 

 

 

2. RELATED WORKS 

 

The convergence of machine learning and climate change 

constitutes a dynamic domain of study that carries significant 

implications for comprehending and mitigating worldwide 

environmental issues. There has been a deluge of new research 

demonstrating novel uses of machine learning algorithms for 

climate change adaptation, prediction, and mitigation. Recent 

studies on climate change, global warming, and AI are 

included in this section. 

The significance of ENSO phases in relation to projected 

global warming and natural disasters has been demonstrated 

by Derot et al. [10]. Predictive efficacy was highest when the 

signature method was combined with the LSTM and Lasso 

models (R2=0.74 for LSTM, R2=0.79 for Lasso). To determine 

the switchover thresholds and the order of the temporal 

variations, complementary techniques highlighted the 

influence of climate indices like NINO3, NINO3.4, and NPI 

on changes in the ENSO cycle. This initial implementation of 

the signature method to time series data resulted in accurate 6-

month forecasts with reduced computing time, demonstrating 

its potential for climate forecasting improvement. Using a 

machine learning-based error correction model in conjunction 

with the PHS_HR approach, Choi et al. [11] attempted to 

predict the maximum permitted exposure time for outdoor 

workers in extreme heat. In comparison to the previous 

method, the multi-layer perceptron (MLP) algorithm enhanced 

prediction accuracy, achieving a mean absolute error (MAE) 

of 0.19 minutes instead of 5.05 minutes. Although there may 

be advantages to occupational health and safety management, 

there are also certain constraints to consider, such as issues 

with scalability and generalizability. 

Predictions of future climate change and sea level rise by 

the year 2100 have been estimated using data-driven 

methodologies [12]. The relationships between greenhouse 

gas emissions, temperature, and sea level could be tracked, 

except for the number of sunspots. Adherence to COP26 

restrictions has the potential to limit the increase in 

temperature to 1.88℃, while a rise of 3.28℃ is possible in the 

absence of emissions reduction. A time series data model 

covering the years 1961-2020 was developed by Malakouti et 

al. [13] using data from NASA-GISS to gain a better 

understanding of and generate more precise forecasts about 

changes in global temperatures. Several machine learning 

techniques were studied, including Extra Trees, Light Gradient 

Boosting Machine (LGBM), Random Forest, K closest 

neighbors, gradient boosting, and Bayesian Ridge. The 

execution time of each method and metrics like MAE, MSE, 

RMSE, R2, RMSLE, and MAPE were used to evaluate the 

model's performance. When compared to other algorithms, 

Extra Trees was shown to be the most effective at predicting 

the change in global temperature. 

An investigation was conducted on climate extremes in 

China during the period of hiatus in global warming. Machine 

learning techniques were utilized, with a particular focus on 

the random forest algorithm [14]. Wet and warm extremes 

have been on the decline, according to an analysis of 

precipitation and temperature trends. For trend analysis, 

regression methods like Theil-Sen are used, which show 

different trends in the coldest extremes. Long Short-Term 

Memory (LSTM) outperformed Support Vector Machine 

(SVM) and Random Forest (RF) in predicting precipitation, 

with an R2 value of 0.9, according to an analysis of 

temperature and precipitation Multi-Model Ensembles 

(MMEs) using ML techniques [15]. LSTM deep learning 

models are recommended for their ability to capture nonlinear 

climatic data correlations. Both RF and LSTM reliably 

produced high-quality temperature predictions, with R2 values 

between 0.82 and 0.93. Due to the unpredictability of General 

Circulation Models (GCMs), the study emphasizes the 

significance of precise climate forecasting for water resource 

management and the value of ensemble techniques in 

enhancing the dependability of future projections. In addition, 

different assembly methods were evaluated and enhanced to 

provide higher performance. It is recommended that RF and 

LSTM methods be used to create MMEs in the basin, as ML 

methods generally performed better than mean ensemble 

approaches. 

To forecast emissions of greenhouse gases during the 

process of automobile lightweighting, various machine 

learning methods were employed [16]. A comprehensive 

examination of multiple models, such as decision trees, neural 

networks, linear regression, and deep learning, was performed. 

The linear regression model performed exceptionally well. 

The integration of machine learning techniques and 

metaheuristic algorithms has been suggested as a novel 

approach for analyzing the frequency of floods in the context 

of climate change scenarios [17]. When comparing MARS 

with M5 Model Tree, a method for classifying precipitation, 
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Multivariate Adaptive Regression Splines (MARS) performed 

better. With a Nash-Sutcliffe efficiency (NSE) of 0.911, a 

hybrid method that combines wavelet transform (WT), least 

square support vector machine (LSSVM), and whale 

optimization algorithm (WOA) methodology shows higher 

performance in discharge simulations. Utilizing uncertainty 

analysis approaches like ANOVA and fuzzy logic, the study 

delves further into discharge modeling across many future 

scenarios. 

Berrang-Ford et al. [18] employed machine learning 

methods, the convergence of climate change and health 

literature is accurately delineated, uncovering significant 

emphasis on impact assessments, air quality, and thermal 

stress. By utilizing supervised and unsupervised machine 

learning techniques, substantial research deficiencies in the 

fields of maternal health, undernutrition, and mental health 

were identified. With limited data from low-income nations, 

studies are geographically concentrated in high-income 

countries and China. The study highlights the relevance of 

measures for adaptation and mitigation of climate change for 

human health, and it forecasts that there will be many 

publications on the topic between 2013 and 2019. Using 

Semantic Web techniques, the Fuzzy Cognitive Maps (FCMs) 

model was established to analyze the effects of global 

warming [19]. It presents a Semantic Web simulation tool for 

scenario predictions and centers on modeling causal links 

using FCMs. Analyzing the density reveals how complicated 

the model is, while sensitivity tests show that the equilibrium 

is independent of the initial values. 

Through the integration of data on energy consumption and 

economic growth, this research presents a multi-stage 

methodology for predicting carbon dioxide emissions in 

Group 20 nations [20]. It implements artificial neural networks, 

self-organizing maps, and adaptive neuro-fuzzy inference 

systems by utilizing clustering, machine learning, and 

dimensionality reduction techniques. The outcomes 

demonstrate a substantial enhancement in precision when 

compared to established methodologies; the proposed strategy 

attains a mean average error of 0.065. The potential of the 

singular value decomposition-self-organizing map-adaptive 

neuro-fuzzy inference system to provide valuable insights for 

energy and economic policymaking is made clear by the 

method's superiority. Nevertheless, it is important to consider 

constraints such the lack of generalizability and validation in 

varied circumstances. To reduce computing costs and speed up 

climate change estimates, machine learning is crucial [21]. 

Ridge regression and Gaussian Process Regression are some 

of the methods used to map and forecast regional temperature 

variations over the long term. The significance of sharing data 

extensively is illustrated by data-driven climate modeling, 

which also includes methodologies such as Random Forest 

and Lasso to improve projections when compared to previous 

approaches. 

Amidst global warming, Gholami Rostam et al. [22] 

compared optimization algorithms on Multilayer Perceptron 

(MLP) networks for precipitation forecasting, with an 

emphasis on water resource management in Iran. The 

Integrated Model Framework (IMF)'s MLP-PSO was shown 

to be the most successful for precipitation forecasting out of 

three optimization algorithms tested on backpropagation-

based MLP models. MLP-PSO yielded results for the two 

assessment sets of 21.21 and 18.54 RMSE, 15.12 and 12.97 

MAE, 19.17 Z-test, and 13.69 and 18.54 Taylor diagram 

scores, respectively. Utilizing ML algorithms including 

Artificial Neural Network, K-Nearest Neighbor, Support 

Vector Machine, and Relevance Vector Machine, the multi-

model ensemble (MME) was able to zero in on temperature 

and precipitation forecasts [23]. It evaluates kernel functions 

to improve MME performance, with the best result being a md 

value of 0.889 for SVM-based MME. Furthermore, ML 

methods are used to assess GCMs and MMEs by comparing 

median md values for various ML techniques. During 

validation, which determines the performance of GCMs in 

simulating precipitation, Tmax, and Tmin, KNN-based MMEs 

show the greatest md value of 0.780, whereas RVM-based 

MMEs offer better median values. 

Kalra et al. [24] used machine learning methods to 

investigate greenhouse gas relationships, with a focus on 

carbon dioxide and its major role in the warming trend. When 

mean square error analysis was used to compare ANN models 

to linear regression, decision tree regression, random forest 

regression, and other models, ANN showed that it was the best. 

Using ANN with three-layer topologies, Adam optimization, 

and ReLU activation function, the study determines that 

carbon dioxide is the most significant greenhouse gas. The 

Mean Square Error (MSE) value obtained in the analysis is 

0.0078. The use of LSTM allowed for the prediction of GHG 

emissions from transportation systems [25]. Predictors such as 

density, speed, and GHG emission rates (ER) were set up in 

the LSTM networks. Results showed that the best performance 

came from the LSTM model that took in-links speed, density, 

GHG ER, and speed into account. Consistent comparisons 

with ARIMA and clustering models showed that LSTM 

consistently performed better than others. Furthermore, the 

most important model predictors were determined by 

correlation analysis, and GHG ER prediction was made more 

accurate through simulation utilizing real-time traffic data. 

The constructed LSTM model outperformed the clustering and 

ARIMA models, demonstrating excellent performance with an 

R2 value of 0.767 and an RMSE of 0.362. 

 

 

3. RESEARCH GAP 

 

A significant void in the existing body of knowledge 

regarding climate change is the absence of thorough and 

geographically targeted assessments that address the effects of 

global warming on each of the seven continents. Research on 

the effects of climate change is sparse when it comes to 

continent-by-continent investigations of temperature trends, 

variability, and predictive modeling. Most of the extant 

literature focuses on global or regional scales. Because climate 

dynamics and susceptibility to global warming are impacted 

by various ecological, social, and geographical factors on 

different continents, this disparity is especially noteworthy. 

Researchers may gain a better understanding of the individual 

threats and possibilities presented by climate change in each 

continent by performing continent-specific analyses, which 

will allow for the development of more precise and efficient 

adaptation and mitigation plans. Policymakers, stakeholders, 

and communities could benefit greatly from this approach 

because it helps fill in the gaps in our understanding of the 

climate crisis's complex character by shedding light on the 

ways in which its effects vary between continents. To further 

our knowledge of climate change and improve resilience 

worldwide, it is essential to conduct specialized studies on 

each continent to close this knowledge gap. 
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4. DATASET DESCRIPTION 

 

The dataset used in this study was from Kaggle which has 

the annual surface temperature data for all countries spanning 

the years 1961 to 2022 [26]. The temperature data was sourced 

from reputable climate monitoring agencies and research 

institutions, ensuring its reliability and accuracy. The dataset 

was analyzed for the null value and the columns such as area 

code, area code (M49), area, months code, months, unit were 

removed from the dataset. In the element column the standard 

deviation part was eliminated. Thus, the final dataset contains 

the year and the temperature change as shown in Table 1. 

 

Table 1. Global warming dataset  

 
S. No. Attributes Description of the Attributes 

1 Year Year of the study conducted 

2 Temperature  Temperature changes 

 

 

5. EXPLORATORY ANALYSIS 

 

In this research, the global warming dataset of the seven 

continents were only considered. Except for Asia, Africa, 

North America, South America, Europe, Australia and 

Antarctica, the other countries, and irrelevant data, which does 

not affect the result in any way were removed. The yearly and 

monthly dataset was examined in this study. Figure 1 depicts 

the temperature changes over the years for the seven 

continents. 

 

5.1 Asia 

 

The temperature in Asia has exhibited a discernible upward 

trend over the years, as indicated in Figure 2. Throughout the 

20th century, Asia experienced significant temperature 

fluctuations, reflecting the complex interplay of natural 

climatic variability and human influences. The beginning of 

the 21st century marked an escalation in the frequency and 

intensity of extreme weather events across the continent, 

underscoring the challenges posed by climate change. 

Over the past decade, Asia has confronted numerous 

temperature-related challenges, with instances of both peaks 

and declines in temperature. For instance, there was a gradual 

increase in temperature until 1963, followed by a decline in 

1964 (refer to Figure 2). Subsequent years saw fluctuations, 

including peaks in 1966 and 1980, and declines in 1947 and 

1967, with the latter representing the lowest temperature 

recorded within the selected study period. The temperature 

trend continued with varying highs and lows, reflecting the 

complex dynamics of climate variability. Especially, during 

the COVID-19 pandemic, there was a temporary decline in 

temperatures, followed by a peak in 2021 and 2022. 

Throughout the chosen study period, the temperature reached 

its peak in 2021. 

The climatic pattern in Asia traditionally featured April, 

May, and June as the warmest months, characterized by 

average temperatures ranging from 20 to 30 degrees Celsius. 

Conversely, December, January, and February were typically 

the coldest months, with average temperatures spanning from 

0 to 10 degrees Celsius. However, this climatic norm has 

undergone a shift, with February emerging as the warmest 

month in recent times as depicted in Figure 3. This alteration 

suggests a significant deviation from historical temperature 

trends. Furthermore, the temperature variation between the 

warmest and coldest months varies across different regions of 

Asia. 

In the northern and central parts of the continent, this 

difference could be substantial, reaching up to 50 degrees 

Celsius. Conversely, in the southern regions, such as Southeast 

Asia and parts of the Indian subcontinent, the temperature 

difference tends to be more modest, approximately 20 degrees 

Celsius. This changing climate pattern underscores the 

dynamic nature of Asia's climate system and highlights the 

impact of global warming and other environmental factors on 

regional weather patterns. Understanding these shifts is crucial 

for adaptation strategies and mitigating the potential 

consequences of climate change in the region. 

 

 
 

Figure 1. Overall temperature range across seven continents 
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Figure 2. Asia-temperature change over the years 

 

 
 

Figure 3. Asia-temperature change over the months 

 

5.2 Africa 

 

 
 

Figure 4. Africa-temperature change over the years 

 

 
 

Figure 5. Africa-temperature change over the months 

Figure 4 illustrates the average temperature trends in Africa 

over time. Since 1960, there has been a notable increase of 

approximately 1.5 degrees Celsius in the average temperature 

of the continent. In 1974, Africa experienced an extreme low 

in climate, while by 2010, it reached its maximum temperature. 

Throughout the years, Africa's temperature has fluctuated, 

showing both ups and downs. Remarkably, there was a peak 

in 2016 followed by another in 2021. However, neither peak 

surpassed the temperature recorded in 2010. 

The average temperature over the months in Africa is shown 

in Figure 5. The graph shows that the hottest months in Africa 

are April, May, and June, with average temperatures ranging 

from 23 to 27 degrees Celsius. The coldest months in Africa 

are June, July, and August, with average temperatures ranging 

from 15 to 19 degrees Celsius. 

 

5.3 Northern America 

 

In the 1960s, North America exhibited a higher temperature 

range compared to other continents, indicative of its diverse 

climate zones as depicted in Figure 6. The lowest recorded 

temperature occurred in 1972, while the highest was logged in 

2016, reflecting a trend of increasing temperatures over the 

years. As of the recent year 2022, North America's temperature 

has stabilized within its average range, suggesting a relative 

climate stability in the region. An interesting seasonal pattern 

emerges in North America's temperature fluctuation. 

 

 
 

Figure 6. Northern America-temperature change over the 

years 

 

 
 

Figure 7. Northern America-temperature change over the 

month 

 

January emerges as the hottest month, followed by a decline 

in temperature in February, which closely resembles 

December's temperatures, marking a transition from peak 

winter conditions to early spring. March sees a subsequent rise 
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in temperature, signaling the onset of warmer weather (refer to 

Figure 7). Conversely, the remaining months generally 

experience lower temperatures, with October noted as the 

coolest month. This cooling trend aligns with the onset of 

autumn in North America, characterized by shorter days, 

decreasing sunlight, and cooler temperatures. This seasonal 

temperature fluctuation underscores the dynamic nature of 

North America's climate and the interplay of various 

meteorological factors throughout the year. 

 

5.4 South America 

 

As illustrated in Figure 8, the temperature range in North 

America exhibits temporal variability, with distinct patterns 

observed over the years. The lowest recorded temperature 

occurred in 1971, indicative of periodic fluctuations in the 

region's climate, while the highest temperature was 

documented in 2020, suggesting a trend of warming over time. 

February consistently emerges as the month with the lowest 

temperature when analyzed between 1961 and 2022, reflecting 

the peak of winter conditions in North America (refer to Figure 

9). In contrast, the months of April and October consistently 

exhibit peak temperatures, indicative of transitional periods 

between seasons and the onset of warmer weather. Especially, 

North America experiences its coolest month in October, 

signifying the onset of autumn and the transition to colder 

temperatures. This cooling trend aligns with the changing 

seasons and the decreasing daylight hours characteristic of the 

fall season. In South America, the temperature pattern follows 

a different trajectory, characterized by a high followed by a 

low. This alternating pattern suggests a fluctuating climate 

dynamic, influenced by various regional factors such as ocean 

currents, elevation, and atmospheric circulation patterns. 

 

 
 

Figure 8. South America-temperature change over the years 

 

 
 

Figure 9. South America-temperature change over the month 

5.5 Antarctica 

 

Over the span of 121 years, Antarctica has experienced a 

notable increase in its average temperature, rising by 

approximately 1.2 degrees Celsius. Figure 10, emphasized by 

recorded data, with the lowest temperature documented in 

1983 and the highest in 2013, indicating a clear trajectory of 

warming temperatures over time. Despite this overall warming 

trend, recent observations as of 2022 suggest a stabilization of 

temperatures within the region's average range, hinting at a 

relative climate stability in Antarctica. 

 

 
 

Figure 10. Antarctica-temperature change over the years 

 

Antarctica's climate is characterized by two distinct seasons: 

summer and winter. The summer season spans from October 

to February, during which the sun remains continuously in the 

sky. However, intriguingly, despite the persistent sunlight, 

February emerges as the month with the lowest temperatures 

over the examined sixty-one-year period, as depicted in Figure 

11. This anomaly presents an interesting aspect of Antarctic 

climate dynamics. 

 

 
 

Figure 11. Antarctica-temperature change over the month 

 

Contradictory to traditional expectations, August, typically 

associated with the coolest temperatures in Antarctica, appears 

to showcase the highest temperatures according to the data. 

This departure from expected seasonal norms underscores the 

complexity of Antarctic climate patterns and highlights the 

importance of continuous monitoring and analysis to 

understand the dynamics at play. 

Overall, while Antarctica has experienced a discernible 

warming trend over the past century, recent indications of 

temperature stabilization alongside curious deviations from 

expected seasonal temperature patterns underscore the 

intricate nature of climate processes in this region. 
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5.6 Europe 

 

Figure 12 illustrates the average annual temperature in 

Europe from 1960 to 2022, revealing a noteworthy trend of 

increasing temperatures over the decades. The warmest years 

recorded in Europe all fall within the period since the 1990s. 

In 1960, the average temperature hovered around 0.8℃. 

Conversely, 1970 marked one of the coldest years in Europe, 

with temperatures plummeting to approximately -0.5℃. The 

pinnacle of this warming trend occurred in 2010, designated 

as the warmest year in Europe during the specified timeframe, 

boasting an average temperature of approximately 2.5℃. By 

2019, the average temperature surged to around 3℃, reflecting 

a remarkable increase of approximately 4℃ over the span of 

six decades. Despite noticeable fluctuations between 

individual years, the overarching pattern delineates a 

consistent elevation in Europe's average temperature. 

Europe stands as the fastest warming continent globally, a 

phenomenon predominantly attributed to anthropogenic 

activities. Human-induced factors such as greenhouse gas 

emissions have significantly contributed to this warming trend, 

accentuating the urgency for mitigation and adaptation 

measures. However, a discrepancy arises when considering the 

climatic norms associated with specific months in Europe. 

While September traditionally represents the coolest month, 

the data portrays January as the coldest month. This 

inconsistency is particularly pronounced in northern Europe, 

where January typically ranks as the coldest month of the year. 

Conversely, the warmest months in Europe typically span 

from May to September, with July and August traditionally 

considered the hottest (as shown in Figure 13). Nonetheless, 

the depicted climatic patterns reveal a deviation from the norm, 

with October and November emerging as the warmest months, 

and March assuming the title of the hottest month in Europe. 

 

 
 

Figure 12. Europe-temperature change over the years 

 

 
 

Figure 13. Europe-temperature change over the month 

5.7 Australia 

 

Figure 14 depicts a discernible upward trend in temperature 

spanning the past 68 years, with an average increase of 

approximately 1.49 degrees Celsius. Notably, Australia 

experienced an extreme low in climate around 1976, while 

reaching its peak temperatures in 2012 and 2018. Over time, 

Africa's temperature has exhibited fluctuations, characterized 

by both upward and downward trends. In Australia, the 

warmest years on record have all occurred since the 1990s, 

indicating a pronounced warming trend in the region. Despite 

this overarching trend, discrepancies emerge when comparing 

actual seasonal temperature norms with those depicted in the 

graph. 

 

 
 

Figure 14. Australia-temperature change over the years 

 

 
 

Figure 15. Australia-temperature change over the months 

 

According to traditional climate patterns, December to 

February constitutes the summer season in Australia, while 

March to May marks autumn, June to August signifies winter, 

and September to November represents spring. However, 

Figure 15 presents deviations from these norms. For instance, 

while July typically registers as the coldest month in Australia, 

with daytime temperatures dropping as low as 12 degrees 

Celsius, the graph suggests June as the coolest month. 

Similarly, the graph indicates April, July, and December as the 

warmest months in Australia, contradicting the actual warmest 

months, which are December, January, and February. 

Furthermore, discrepancies extend to the identification of the 

hottest month in Australia. While December, January, and 

February traditionally occupy this status, the graph suggests 

September as the hottest month. 

The comprehensive analyses of temperature fluctuations for 

all seven continents offer significant insights into the intricate 

nature of climate dynamics on a global scale. Each region has 

its own patterns that are affected by different things. For 
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instance, the temperature of Asia has been increasing with 

significant fluctuations, however, there was a short-term 

cooling effect during the COVID-19 pandemic. Similarly, the 

warmth of Africa has been rising since the 1960s. 

Temperatures in North America have risen steadily over time, 

exhibiting distinct seasonal variations, whereas South 

American temperature trends are subject to temporal 

variability, with February consistently being the coldest month. 

Despite a century-long warming trend, Antarctica illustrates 

peculiar deviations from anticipated seasonal patterns. Europe 

is distinguished as the continent experiencing the most rapid 

global warming, as evidenced by significant disparities 

between recorded and customary seasonal temperatures. In 

contrast, Australia reveals a noticeable progressive in 

temperature, although there are inconsistencies between the 

projected trends and the observed seasonal averages. These 

analyses emphasize the significance of comprehending 

regional climate variations in order to develop effective 

strategies for mitigating and adapting to climate change. 

Further accentuate the necessity for ongoing monitoring and 

analysis in order to precisely track climate trends. 

 

6. PROPOSED METHODOLOGY 

 

Initially, the dataset underwent preprocessing to focus 

solely on temperature data across seven continents and various 

years. Categorical variables representing continents were 

encoded using label encoding, ensuring compatibility with 

machine learning algorithms. Subsequently, the dataset was 

split into training (70%) and testing sets (30%). State-of-the-

art machine learning models were employed on the 

preprocessed dataset. Despite their implementation, the 

algorithms demonstrated mediocre performance. These 

algorithms were subsequently applied with grid search 

optimization to enhance their accuracy [27, 28]. However, the 

model yielded inadequate results. Therefore, to enhance 

predictive performance, a novel approach called the Stack-

ClimaBoost Regressor model was proposed [29, 30]. This 

model employed column stacking, amalgamating predictions 

from grid search optimized LGBM and CB regressors. 

Additionally, the optimized RF was utilized as the meta-

regressor. The overall architecture flow of the proposed Stack-

ClimaBoost model is illustrated in Figure 16. 

 
 

Figure 16. Flow diagram-Stack-ClimaBoost model 

 

6.1 Evaluation metrics 

 

The following metrics were chosen since a lower MAPE 

indicates higher predictive capability, which is crucial for 

precise applications like climate change prediction. A lower 

RMSE signifies smaller deviations, essential for reliable 

forecasts in public health and infrastructure planning. A higher 

R² shows the model explains more variance, enhancing long-

term climate planning reliability. Interpretation from these 

metrics ensures informed decisions and better climate-related 

preparation. 

 

6.1.1 Mean absolute percentage error (MAPE) 

It measures the accuracy of a model by calculating the 

average absolute percentage error between predicted and 

actual values. It is expressed as a percentage, making it easy 

to interpret. 

 

MAPE =
1

n
∑ |

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|
𝑛

𝑖=1
100 

 

6.1.2 Root mean squared error (RMSE) 

RMSE measures the standard deviation of the residuals. It 

indicates how spread out the residuals are and is sensitive to 

large errors. 

 

RMSE = √
1

n
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 

 

6.1.3 Coefficient of determination (R²) 

R² measures the proportion of variance in the dependent 

variable that is predictable from the independent variables. It 

ranges from 0 to 1, with 1 indicating perfect prediction. 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
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2𝑛
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7. DISCUSSION 

 

The preprocessed dataset was implemented with various 

machine learning models to analyze complex datasets and 

make accurate predictions. In this study, the following 

algorithms were employed Decision Tree (DT), K Nearest 

Neighbor (KNN), Support Vector Machine (SVM), ElasticNet, 

Random Forest (RF), CatBoost (CB), and Light Gradient 

Boosting (LGBM). The rationale for choosing these 

algorithms is that the DT offers flexibility in analysing the 

time series data while the KNN algorithm is a non-parametric 

method that is useful for identifying patterns based on 

historical data. Similarly, the SVM could handle if there are 

any non-linear relationships in the data. ElasticNet model was 

chosen as it combines the L1 and L2 regularizations which 

helps to manage the multicollinearity in time series data. RF, 

an ensemble technique improves accuracy by averaging 

multiple decision trees. CB algorithm works well without 

extensive preprocessing and works effectively. Similarly, 

LGBM is optimized for speed and efficiency which Handles 

complex data structures. However, the results obtained from 

these models revealed varying degrees of performance, with 

most models exhibiting suboptimal predictive accuracy. 

Upon initial evaluation, it was observed that several models, 

such as DT, KNN, and SVM, yielded relatively higher Root 

Mean Squared Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) values, indicating poor predictive performance 

(refer to Table 2). Thus, to improve the predictive performance 

a novel method was proposed. 

 

Table 2. Results-state of art algorithms 

 
Regressors MAPE RMSE R2 Score 

Decision Tree  269.1804 6.7045 0.3826 

K Nearest Neighbor 191.9477 6.4733 0.4245 

Support Vector Machine 218.1056 6.2319 0.4666 

ElasticNet 200.7479 6.2205 0.4685 

Random Forest  166.3474 6.0046 0.5048 

CatBoost 167.4243 5.5148 0.5823 

LGBM 144.4388 5.4922 0.5857 

 

To improve the results obtained the Grid search 

optimization was utilized. Each algorithm was 

hyperparameterized according to its parameters as shown in 

Table 3. The results were improved to a greater extent as 

shown in the table. The worst performer is SVM with a higher 

RMSE of 5.09 and MAPE of 3.67. Similar to the performance 

of the state-of-art algorithms, the best-performing models 

based on the R2 metric are Light Gradient Boosting (0.6707), 

CatBoost (0.652), and Random Forest (0.6422). These models 

have the highest coefficient of determination, indicating a 

better fit to the data compared to other models as portrayed in 

Table 4. 

The best performers with higher R2 value among the chosen 

algorithms such as RF, CB, and LGBM were stacked together. 

LGBM and CB were stacked along with the RF as the meta-

regressor. When compared with Table 2 and Table 3, the 

proposed model outperformed the other traditional and 

optimized models. This Stack-ClimaBoost model 

outperformed the other existing models [10-12] with the R2 

value of 0.9003, RMSE of 2.254, and MAPE of 0.765. The 

proposed Stack-ClimaBoost Regressor model showcased a 

significant improvement in predictive performance compared 

to individual models like Random Forest, CatBoost, and Light 

Gradient Boosting. The novel approach of stacking models, 

combined with a meta-regressor, proved to be an effective 

strategy for leveraging the strengths of multiple algorithms 

and mitigating their individual weaknesses. The study 

underscores the importance of rigorous optimization 

techniques like grid search in fine-tuning machine learning 

models to achieve optimal performance. The Stack-

ClimaBoost Regressor model improved its predictive 

capability and shows great potential for use in climate 

modeling. Further, this model performed the best for all the 

continents individually as shown in Table 5. 

 

Table 3. Best parameter value-grid search optimized 

 

Algorithm Hyperparameter 
Best Value 

Obtained 

KNN n_neighbors 10 

 weights uniform 

 algorithm ball_tree 

Decision Tree max_depth 5 

 min_samples_split 5 

 min_samples_leaf 4 

Support Vector 

Machine 
kernel linear 

 C 10 

 epsilon 0.1 

ElasticNet alpha 0.5 

 l1_ratio 0.1 

 max_iter 1000 

Random Forest n_estimators 100 

 max_depth 20 

 min_samples_split 5 

 min_samples_leaf 4 

CatBoost n_estimators 100 

 max_depth 6 

 learning_rate 0.05 

 l2_leaf_reg 1 

LGBM n_estimators 100 

 max_depth 8 

 learning_rate 0.1 

 num_leaves 31 

 

Table 4. Results of grid search optimized models 

 
Regressors MAPE RMSE R2 Score 

Decision Tree 144.6274 4.5413 0.5959 

K Nearest Neighbor 137.9761 4.8632 0.5365 

Support Vector Machine 158.0760 5.0963 0.491 

ElasticNet 151.8972 5.0540 0.4995 

Random Forest 133.9582 4.2731 0.6422 

CatBoost 121.7677 4.2144 0.652 

LGBM 131.9933 4.0992 0.6707 

 

Table 5. Continent wise-results of Stack-ClimaBoost model 

 
Continents MAPE RMSE R2 Score 

Asia 3.0834 1.95 0.895 

Antarctica 5.8280 2.95 0.793 

Australia 3.1457 2.30 0.921 

Africa 2.0680 1.25 0.933 

Northern America 6.3047 4.57 0.65 

South America 1.8653 1.20 0.925 

Europe 4.6284 1.72 0.944 
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The analysis of temperature prediction across different 

continents reveals varying degrees of accuracy and model 

performance. Africa and Australia emerge as regions with the 

most accurate predictions, characterized by low MAE and 

RMSE values, indicating precise temperature forecasts with 

minimal error. Additionally, these continents exhibit 

exceptionally high R2 scores, indicating excellent model fit 

and explaining a significant portion of the variance in 

temperature data. Europe follows closely behind, 

demonstrating slightly higher error metrics but still 

showcasing strong predictive capability, as evidenced by its 

high R2 value. However, Northern America displays the 

highest error metrics, indicating less accurate predictions 

compared to other continents. Despite this, the model still 

achieves a moderate fit to the data, as indicated by its R2 score 

of 0.65. 

South America showcases accurate predictions with low 

MAPE and RMSE values, with an R2 score of 0.925, 

indicating a strong fit of the model to the data. In contrast, Asia 

and Antarctica demonstrate slightly higher error metrics but 

still maintain good model fit, as reflected by their respectable 

R2 scores. These findings underscore the importance of region-

specific climate modeling efforts and adaptation strategies 

tailored to the unique characteristics of each continent. 

Additionally, they highlight the effectiveness of machine 

learning algorithms in predicting temperature trends across 

diverse geographic regions, providing valuable insights for 

climate research and policymaking initiatives aimed at 

addressing global warming and its associated impacts. 

Further, for the overall dataset, the proposed StackBoost 

model yielded a higher R² value of 0.9003 and lower error 

rates, with an RMSE of 2.254 and a MAPE of 0.765. The R² 

value of 0.9003 signifies that 90.03% of the variance in 

temperature data is explained by the model. An RMSE of 

2.254 indicates that the average deviation of the model's 

predictions from the actual temperatures is quite small. This 

low MAPE value suggests that the model's predictions are 

highly accurate, with an average error of only 0.765%. Thus, 

the analysis emphasizes the importance of region-specific 

climate modeling and adaptation strategies, informed by 

machine learning predictions, to address global warming 

effectively. This also enhances trust in the model for practical 

applications like urban planning and disaster management, 

where accurate temperature predictions can significantly 

influence decision-making. 

 

 

8. CONCLUSION 

 

The imminent hazard posed by global warming compels 

experts to explore viable strategies for adaptation and 

mitigation. This study delves into the effects of climate change 

on different continents and offers solutions specifically 

designed to tackle the complex issues it poses. When 

compared to other state-of-the-art models, the proposed Stack-

ClimaBoost model performed better. The Stack-ClimaBoost 

model integrates the top three methods, RF, CB, and LGBM, 

along with grid search optimized parameters. By combining 

RF as the meta-regressor and stacking CB and LGBM, the 

proposed model surpassed other cutting-edge models, 

achieving an impressive R2 value of 0.9003, RMSE of 2.254, 

and low MAPE. The Stack-ClimaBoost Regressor model 

holds promise for applications in environmental research and 

climate modeling due to its enhanced prediction accuracy. 

Additionally, the model demonstrated effectiveness for 

each continent separately, showcasing varying levels of 

precision and performance. The Stack-ClimaBoost model had 

obtained an R2 score of 0.65 to 0.94 for the seven continents 

with a minimal error rate. For future work, integrating 

supplementary climatic, geographical, and socioeconomic 

variables would allow for a more comprehensive spectrum of 

factors impacting temperature variability and trends to be 

captured. This could facilitate more robust climate predictions 

and adaptation strategies, enabling stakeholders to better 

understand and address the challenges posed by global 

warming on a regional and global scale. Such advancements 

in climate modeling and prediction are crucial for informing 

evidence-based decision-making and implementing proactive 

measures to mitigate the impacts of climate change. 
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