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 In this paper, the focus is mainly on building machine learning (ML) models for AAT 

forecasting every hour over Karak City in Jordan. The dataset consisted of comprehensive 

meteorological readings, which were subject to heavy preprocessing in order to establish data 

integrity essential for building strong ML models. The investigation involved a number of ML 

models Support Vector Regression (SVR) with RBF Kernel, Decision Tree Regressor (DTR), 

Ridge Regressor (RR) & Lasso Regressors (LSR) and Linear Regression (LR) because each 

was found to have unique strengths in capturing the intricate dynamics of temperature 

behavior. Excellent accuracy of the models, mainly SVR with RBF Kernel and relevance for 

better forecasting of weather in a region with peculiar difficulties to data-based modeling were 

shown by it. Our research not only confirmed the capability of different ML methodologies in 

regional temperature forecasting but also provided an important reference for planners and 

stakeholders concerned with environmental planning and management. The study provides a 

better understanding of the regional climate adaptation approaches, vide its case location in 

Karak City only whereas support local data analysis is necessary to address global climate 

variability. The results have important implications for the improvement of decision-making 

in agriculture, disaster management and sustainability schemes especially under changing 

climatic conditions. 
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1. INTRODUCTION 

 

The temperature of atmospheric air (AAT) has a significant 

influence on ecology and human systems, affecting the 

weather, agricultural productivity in particular, as well much 

more broadly-the stability of community livelihoods globally. 

This is by now more than clear in the need and importance of 

knowing accurate AAT readings which are critical for 

resource management purposes as well as strategic planning, 

across a variety of fields (e.g., energy [1], agriculture [2] 

tourism, transportation logistics). Accurate AAT forecasting is 

an essential element of effective responses associated with 

other meteorological components, including solar radiation, 

wind velocity and atmospheric moisture content which play 

key roles in natural activities like evapotranspiration known to 

be one of the important processes needed for eco-friendly 

sustainable water management [3]. 

In the light of eyes, awareness about accurate forecasts of 

AAT is literally a life-saving cause and becomes all such vital 

to stress as climate change advances with increased number or 

intensity in extreme weather events such heatwaves-hailstorm-

snowfall- downpour. These events lead to a plethora of health 

issues and place substantial pressure on the environment 

highlighting that weather forecasting has become an essential 

part of environmental management plans and energy 

conservation measures. Policies like these likely require 

careful control of space conditioners to save energy and reduce 

the discharge [4]. 

For many that have forecast AAT, GCMs and large 

statistical models are the order of the day. GCMs that predict 

climate under different scenarios in a variety of time frames 

are indispensable for understanding the physical processes 

responsible for anthropogenic changes. On the one hand, 

statistical models in comparison to machine-learning ones are 

less nuanced but they present stable results without a need for 

extensive calculations. While useful for early warnings, the 

models suffer from their ability to only partition predictions 

efficiently along gridded formats so that it is difficult and 

sometimes impossible to sufficiently account for certain non-

linear relationships [5]. 

The rise of machine learning (ML) technologies has also 

transformed meteorological forecasting by overcoming these 

challenges. Climate data nature is very complex and also non-

linear which can be effectively treated by features of the ML 

models thus giving a new promising door to research in 

unravelling the nuances associated with AAT. There is more 

evidence that recent progress in ML has proved to be very 

effective at mitigating complex issues such as drought 

patterns, rainfall variability and river flow dynamics with 

significant influence on environmental research and 

International Journal of Sustainable Development and 
Planning 

Vol. 19, No. 9, September, 2024, pp. 3679-3688 
 

Journal homepage: http://iieta.org/journals/ijsdp 
 

3679

https://orcid.org/0000-0003-3469-9916
https://orcid.org/0000-0001-9255-5449
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsdp.190936&domain=pdf


 

management [6]. 

In this study, we investigate the superior performance of 

ML models by leveraging forecasting AAT specifically under 

unique atmospheric conditions that occurred in Karak 

City/Jordan. This study uses advanced ML techniques in an 

attempt to enhance the comprehension of what drives temporal 

dynamics at local scales for better environmental 

management, disaster preparedness and climate change 

adaptation. The essence of our overall evaluation of the 

various ML models is to provide state-of-the-art prediction 

means in respect with all those working towards sustainability 

and resiliency, especially within the unique climate regime of 

Karak. By so doing, we are addressing the wider requirement 

for adjusting to these inevitable variations in global climate 

patterns and contributing to this ongoing work on regional 

climate adaptation strategies. 

This localised nature of the study not only suggests that 

accurate temperature prediction for sustainable development 

is significant in both theory and practice but also demonstrates 

a new approach by combining leading ML applications that 

are custom-made to take into account specific regional 

climatic adaptations. 

 

 

2. RELATED WORKS 

 

The field of atmospheric temperature prediction has 

witnessed a significant influx of research leveraging various 

(ML) techniques, underscoring their potential to address this 

complex task. The burgeoning body of related works serves as 

a testament to the diversity of approaches and methodologies 

employed in the quest to refine accuracy and reliability in 

temperature forecasting. Ozbek et al. [7] introduced a deep 

learning (DL) approach using a long short-term memory 

(LSTM) network for predicting (AAT) across different time 

intervals employing data from two stations in Turkey. 

Evaluation criteria include Mean Absolute Percentage Error 

(MAPE), Root Mean Squared Error (RMSE), correlation 

coefficient, Mean Absolute Error (MAE), and bias, with the 

LSTM method showing high accuracy, especially in short-

term, 10-minute interval predictions.  

Comparative analysis with the adaptive neuro-fuzzy 

inference system with fuzzy C-means (ANFIS-FCM) and 

autoregressive moving average (ARMA) models highlighted 

LSTM’s superior performance in predicting AAT at 10-

minute, hourly, and daily intervals, demonstrating its 

effectiveness for short-term forecasting with long period data. 

Alomar et al. [8] explored the efficacy of six data-driven 

approaches—Support Vector Regression (SVR), Regression 

Tree (RT), Quantile Regression Tree (QRT), Autoregressive 

Integrated Moving Average (ARIMA), Random Forest (RF), 

and Gradient Boosting Regression (GBR)—for forecasting 

short- and mid-term atmospheric air temperature in North 

America. Utilizing data from 2000 to 2021, the study 

employed autocorrelation and partial autocorrelation for 

optimal model input selection, with models calibrated on 70% 

of the data (2000-2015) and validated on the remainder. The 

SVR model outperformed others in daily temperature forecasts 

with superior statistical metrics. Both RT and SVR showed 

strong performance in weekly forecasts, highlighting the 

impact of data duration and variability on model accuracy. A 

second scenario using a randomization method for data 

division suggested improved model performance, underlining 

climate change’s influence on temperature patterns and 

supporting the utility of data-driven methods for high-

resolution temperature forecasting. 

The study by Kajewska-Szkudlarek [9] focused on 

predicting Heating and Cooling Degree Hours (HDH and 

CDH) in Wrocław, Poland, utilizing ML methods Artificial 

Neural Network (ANN) and (SVR) based on outdoor air 

temperature. It has emphasized the importance of temperature 

lags (1 to 24 past hours) as predictors and examined the effect 

of database clustering on model accuracy. The findings 

revealed that the best predictions use clustering, with the most 

significant predictors being the outdoor temperatures 1 and 24 

hours prior. ANN yielded the highest quality models, 

outperforming SVR, offering a method for anticipating 

building energy demand without needing specific building 

characteristics and considering regional climate changes. 

Hou et al. [10] introduced a combined deep-learning model, 

integrating a convolutional neural network (CNN) with 

(LSTM), termed CNN–LSTM, for improving the prediction 

accuracy of hourly air temperature. The CNN component was 

tasked with reducing the dimensionality of time-series data, 

while the LSTM part focused on capturing the long-term 

dependencies within the extensive temperature datasets. 

Utilizing 60,133 hourly meteorological data points collected 

from the Yinchuan station in China from January 2000 to 

October 2020, the model’s performance was evaluated 

employing metrics like MAE, MAPE, RMSE, and goodness 

of fit. The CNN–LSTM model outperformed standalone CNN 

and LSTM models, demonstrating superior accuracy and 

better alignment with actual measured temperatures, 

especially in handling long time-series data. 

The article by Astsatryan et al. [11] introduced a machine 

learning-based weather prediction technique that was designed 

to improve the temperature forecast of the air 24 hours in 

advance in the Ararat Valley, Armenia, which is a place of hot 

weather and low humidity. By exploring meteorological 

station data and satellite-based datasets using (NN), the study 

determined the accuracy of temperature forecasting. The 

model obtained the accuracy of 87.31% and 75.57% for the 

prediction of temperatures during the next 3 hours and the next 

24 hours, respectively. It has shown that the model might be 

used as a complement to the forecasting methods currently in 

operation in one of the most arid regions of Armenia. 

Shin et al. [12] introduced a hybrid model combining the 

GloSea5GC2 global climate model with a regularized extreme 

learning machine (RELM) for seasonal forecasting of daily 

mean air temperatures at the field scale, aimed at supporting 

agricultural decision-making. The model was tested through 

twenty frameworks, varying in transformation schemes, 

ensemble member counts, and learning algorithms, including 

an output blending method evaluation.  

The results indicated that the hybrid model outperformed 

traditional climatology models in long-range prediction 

accuracy, with specific frameworks showing superior 

predictive skills. Notably, employing centred data with 

hindcast data and ensemble learning significantly enhanced 

model performance. This advancement offered valuable 

insights for developing high-resolution seasonal forecasts for 

critical agricultural variables, potentially improving yield 

prediction and sowing timing decisions. 

Bellido-Jiménez et al. [13] presented the development and 

evaluation of ML models for predicting solar radiation across 

diverse geo-climatic conditions in Southern Spain and North 

Carolina, USA. Utilizing novel input variables from intra-

daily temperature datasets, the models significantly 
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outperformed traditional empirical methods such as 

Hargreaves-Samani and Bristow-Campbell, with 

improvements ranging from 7.56% to 45.65% in RMSE. 

Notably, inland locations achieved mean NSE and R2 values 

exceeding 0.9. Performance was highest in summer, with over 

a 60% improvement in NSE and R2 across all sites, while 

winter performance showed over an 18% improvement.  

Additionally, when tested in non-used locations with similar 

climates, the models reduced RMSE compared to traditional 

methods, offering enhanced accuracy crucial for optimizing 

solar power plant location determination in data-scarce 

regions. 

The study managed by Cho et al. [14] investigated the use 

of ML models to correct the output of a local Numerical 

Weather Prediction (NWP) model for forecasting maximum 

and minimum air temperatures in Seoul, South Korea. (RF), 

(SVR), (ANN), and a multi-model ensemble were employed 

to improve the accuracy of next-day temperature forecasts. 

Results showed significant enhancements in R2 values, bias, 

and RMSE compared to the NWP model, with the multi-model 

ensemble demonstrating the best generalization performance 

across different validation methods. Ferreira and da Cunha 

[15] explored the use of limited hourly meteorological data to 

estimate daily reference evapotranspiration (ETo) directly and 

by summing hourly ETo values using ML models like RF, 

XGBoost, ANN, and CNN. The results showed that utilizing 

hourly data to estimate daily ETo directly, particularly with 

CNN models, yielded the best performance. In both regional 

and local scenarios, utilizing hourly data led to significant 

improvements in model accuracy compared to conventional 

daily input data, with reductions in RMSE and increases in 

NSE and R2 values by up to 28.2%, 21.7%, and 11.4%, 

respectively, in the regional scenario, and up to 22.4%, 10.1%, 

and 11.3%, respectively, in the local scenario. 

The research by Tabrizi et al. [16] addressed the 

optimization of road salt application in cold climates by 

developing an ML-based pavement surface temperature 

prediction tool. Employing advanced deep neural network 

(DNN) techniques, particularly a CNN-LSTM model, hourly 

pavement temperature forecasts were generated. Evaluation 

against comparative ML methods showed superior accuracy of 

the CNN-LSTM model. Utilizing data from Environment 

Canada and the Road Weather Information System (RWIS) 

around Toronto, Ontario, the proposed model outperformed 

others in predicting pavement surface temperature up to 6 

hours ahead, potentially reducing costs and environmental 

impacts associated with excessive salt application. The 

scenery of air temperature prediction is diverse and 

multifaceted, and many research works have investigated 

different geographical landscapes and used many ML 

methods. These supporting works complement each other to 

formulate a platform relating the findings to this study, which 

is concerned with predicting air temperature in Karak City, 

Jordan. Karak was selected to extend the global picture of 

regional climate modeling and reveal unique aspects of its 

climatic characteristics.  

 

 

3. METHODOLOGY 

 

Within the domain of air temperature prediction in 

atmospheric science, the competency to properly predict air 

temperature is of great significance, taking into consideration 

the exceptional provinces like Karak City as an example, 

which are stipulated by the climatic conditions strongly and 

influencing both the natural environment and humans. In this 

study, we use ML as a subfield of artificial intelligence that 

uses statistical techniques to enable computer systems the 

ability to 'learn' with data. Machine learning works best in the 

identification of patterns and making useful predictions from 

complex datasets where it is easier for a machine to learn given 

functions as opposed to building machines [17]. The research 

approach is based on the use of explanatory models 

incorporating a set of different sophisticated ML components, 

each of which is designed to analyze the diverse impacts of 

various meteorological factors on air temperature. 

The dataset, elaborately designed on the basis of the Dead 

Sea vicinity, is an encyclopedia of high-resolution 

meteorological factors that will serve as a detailed backdrop of 

the specific climate situation existing in the area of Karak. We 

use this information to refine our predictive models further so 

that they are not just uniformly tuned to main weather patterns 

but also attuned to the nuances of local weather patterns. The 

initial cleaning, normalization, and filling-in-of-missing steps 

are also probably the most important and demanding steps. 

This preprocessing is what makes our predictive models 

reliable. 

The triplet inclusive of SVR with RBF Kernel that comes 

equipped with its ability to handle non-linear patterns and the 

Decision Tree Regressor that provides an interpretable 

decision rule are also among the models worth mentioning, as 

well as Ridge and Lasso Regressors that bring regularization 

to the fray and the intrinsic Linear Regression which makes up 

for a baseline model. The evaluation criteria will be based on 

the MSE. This well-known metric measures the average 

squared difference between the actual and predicted values, 

and it serves as a good measure of the quality of the model. 

The approach is not only intended to upgrade the scientific 

knowledge about the climate patterns of Karak City but also to 

develop various forecasting tools that could be practically used 

in numerous applications, such as crop management, urban 

engineering, and many others; thus, the scientific research 

interlaces with social progress. 

 

3.1 Dataset description 

 

The dataset that we base our study on is a valuable and 

accurate resource of meteorological readings from the Dead 

Sea area that offers us an opportunity to have a unique 

perspective of the area because of its distinctive climatic 

features. It broadly presents a large set of factors required for 

the proper air temperature prediction, such as hourly mean 

values of air temperature, relative humidity, solar radiation in 

watts per square meter and kilojoules per square meter, wind 

speed, wind direction and the standard deviation of wind 

direction.  

If considered from a selected set of precisely tuned 

instruments, whose readings will span 19-21 August 2021, this 

set will have impressive accuracy and provide a good basis for 

model verification. Missing data points are addressed using 

sophisticated imputation methods such as predictive 

modeling, ensuring no loss of critical information that could 

impact the performance of the forecasting models One of the 

most remarkable features of this aggregation of data is the 

refinement–the air temperature is indicated with two decimal 

places, the definition required to capture the subtle changes 

that occur within an hour. Split solar radiation data, the watts 

per square meter and the total kilojoules per square meter are 
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used to discover the diurnal solar energy input; this is the 

variable that directly influences the temperature.  

Wind parameters include not only average and maximum 

speeds but also the variability of wind direction, denoted by its 

standard deviation, which acknowledges the complex 

interaction between wind patterns and temperature dynamics. 

As shown in Figure 1, a subset of the data highlights the 

critical variables in this analysis, illustrating how air 

temperature, relative humidity, solar radiation, wind speed, 

and wind direction vary hourly.  

 

 

 
 

Figure 1. A subset of the data 

 

Figure 2 presents two subplots showing the variation of air 

temperature and solar radiation over time from August 19 to 

September 23, 2021. The upper plot illustrates air temperature 

variation, with data points clustered over this period indicating 

the diurnal temperature cycle: temperatures rise during the day 

and fall at night. The temperature points are plotted in blue, 

indicating a regular pattern consistent with expected daily 

temperature changes.  

The lower plot depicts solar radiation variation, marked in 

red, which shows sharp peaks corresponding to daytime and 

troughs to nighttime, reflecting the absence of solar radiation 

at night. The solar radiation data points demonstrate a clear 

cyclical pattern that corresponds with the daylight hours, as 

solar radiation increases after sunrise, reaches a peak during 

midday, and declines towards sunset. 

 

 
 

Figure 2. Temperature and solar radiation variation 

The dataset employed in this study provides a rich source of 

meteorological readings from the Dead Sea area, capturing 

unique climatic features that are instrumental for air 

temperature prediction. This dataset includes hourly 

measurements from August 19 to September 23, 2021, 

covering parameters such as air temperature, relative 

humidity, solar radiation, wind speed, and wind direction. 

 

3.2 Statistical characteristics 

 

Air Temperature: The dataset reveals a distinct diurnal 

cycle, with temperatures ranging from a minimum of 17.03℃ 

to a maximum of 19.84℃ within the recorded period. The 

mean air temperature during this interval is 18.12℃, with a 

variance of 0.75, highlighting slight fluctuations typical of the 

seasonal transition from summer to autumn. 

Relative Humidity (RH): RH values show less variability, 

averaging at 0.33 with a variance of 0.002. This consistency is 

crucial for accurate temperature modeling as it impacts the 

thermal sensation and cooling rates. 

Solar Radiation: Observations indicate a pronounced 

variability in solar radiation, directly correlating with sunlight 

presence. Solar radiation peaks midday and drops to zero at 

night, displaying clear cyclical patterns that are critical for 

understanding daily temperature dynamics. The average solar 

radiation during daylight hours is approximately 200 W/m², 

which peaks significantly during midday. 

 

3.3 Time series analysis 

 

Periodicity: The diurnal patterns observed in both air 

temperature and solar radiation are indicative of strong daily 

periodicity. This cyclic behavior is essential for predictive 

modeling, especially for algorithms like Fourier Analysis, 

which can decompose time series data into periodic 

components. 

Trend Analysis: Linear Regression on temperature data 

over the month suggests a slight cooling trend, possibly 

indicative of seasonal transition effects in the region. 

 

3.4 Advanced statistical measures 

 

Kurtosis and Skewness: The dataset's kurtosis and skewness 

for temperature and solar radiation are calculated to assess the 

peakedness and asymmetry of the observed values, 

respectively. These metrics help in understanding the 

distribution characteristics which can influence the selection 

and performance of certain ML models. 

Autocorrelation: Understanding the autocorrelation in 

temperature and solar radiation data helps in identifying the 

lag at which data points are correlated to each other. This is 

particularly useful for models like ARIMA, which are used for 

forecasting based on previous values. 

 

3.5 Data preprocessing 

 

The data preprocessing is a procedure or steps to handle the 

integration of missing values in ML. Data processing is 

required for predicting hidden likelihood. Such processes 

include imputation of missing values, scaling features and 

outlier detection thereby making it easy to have more trust in 

predictive models. Data preprocessing is the conversion of raw 

data into a format that can be understood by machines, it is one 

of the key steps in setting up ML applications [18]. The dataset 
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features a variety of meteorological variables critical for the 

analysis of atmospheric conditions, particularly for the 

prediction of hourly air temperature. It comprises 

measurements such as maximum wind speed, average wind 

speed, wind direction standard deviation of wind direction, 

relative humidity, average solar radiation in watts per square 

meter, total solar radiation in kilojoules per square meter, and 

average air temperature. Each of these variables is recorded in 

a 124×1 double format, indicating the precision and structured 

nature of the dataset. 

Notably, the dataset spans from 19 August 2021 to 20 

September 2021, capturing a complete monthly cycle, which 

is essential for seasonal analysis. The median timestamps and 

other statistical measures, such as median wind speeds and 

temperatures, indicate the dataset’s central tendency, which is 

valuable for understanding typical conditions. 

However, the dataset is not without its gaps; there are two 

missing values across several variables, signifying potential 

data loss or unrecorded measurements. The lack of this 

information causes something very important as it is used for 

the machines to identify the pattern. Proper treatment of this 

missed information - using the imputation method or removing 

the data - is crucial for the predictive analysis of any 

individual, which is done utilizing this dataset. The presence 

of said data points generated issues, as well as the importance 

of solid data collection and preprocessing methods, 

environmental data analysis, and ML. 

The example shown in Figure 3 is one of the most important 

parts of the data preprocessing techniques for the study in our 

context. These pictures illustrate the actual data by using blue 

lines, which show typical variability in different atmospheric 

measurements such as wind speed, wind direction, standard 

deviation of wind direction, solar radiation, and relative 

humidity, which can take place over time. 

 

 
 

Figure 3. Filling missing values 
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As is very typical for time-series data, outliers, which were 

shown by "x" signs, were detected and then tackled. As a rule, 

z-scores or the interquartile range (IQR) were used as 

statistical methods. The wild data could arise because of errors 

in the sensors or because of particular weather conditions. 

Through the bar labelled’" cleaned data," we can take a look 

at the data processed from outlier treatment and discover that 

it follows a less wavy curve, representing the independent 

attribute of the atmosphere more naturally. 

Also amusing depicted that there is some missing data since 

the orange spots are the ones that show it. The gaps in the data 

were therefore filled so as to retain the continuity and 

completeness that is necessary for the research to be 

reasonable. This could be done using different ways of 

imputing data, for example, by utilizing average filling-in, 

linear interpolation or the most advanced methods like 

predictive modeling. 

With outliers cleaned and missing values filled, the dataset 

is now more robust and reliable for creating accurate 

predictive models. This preprocessing improves the quality of 

the input data, which is essential when employing ML 

algorithms for time-series forecasting, as these methods 

require complete and consistent datasets to function optimally. 

The end goal is to use this refined data to predict hourly air 

temperature with high precision, which could have significant 

implications for understanding and reacting to climate 

patterns. 

 

3.6 ML 

 

SVR with RBF Kernel: SVR with an RBF kernel is an 

extension of the support vector machine to regression 

problems. In SVR, we seek to find a function that 

approximates the relationship between the input features and 

the continuous target variable. The RBF kernel enables the 

SVR to capture complex, non-linear relationships by mapping 

input features into a higher-dimensional space where an LR 

can be performed. Unlike simple LR, SVR can tolerate errors 

up to a certain threshold (defined by epsilon) and focuses on 

ensuring that errors do not exceed this tolerance, which makes 

it robust to outliers. The RBF kernel’s capacity to handle non-

linearity by considering the radial distance between points in 

a multidimensional space makes SVR with an RBF kernel 

particularly powerful for datasets with non-linear distributions 

[19]. 

DTR: Decision trees are a form of supervised learning that 

can be used for both classification and regression tasks. The 

DTR builds a model in the form of a tree structure, breaking 

down a dataset into smaller subsets while at the same time 

developing an associated decision tree. At each node of the 

tree, a decision is made to split the data based on a certain 

threshold value of a feature that results in the largest reduction 

of a predefined loss function, usually variance. The final result 

is a tree with terminal nodes or leaves that represent 

predictions for the target variable. Trees can capture complex 

interaction structures in the data but are prone to overfitting if 

not properly tuned or pruned [20]. 

RR: Ridge regression is a technique for analyzing multiple 

regression data that suffer from multicollinearity, which 

occurs when predictor variables are highly correlated. By 

adding a degree of bias to the regression estimates, ridge 

regression reduces the standard errors. It achieves this through 

L2 regularization, which adds a penalty equivalent to the 

square of the magnitude of coefficients to the loss function. 

This penalty term forces the learning algorithm to not only fit 

the data but also keep the model weights as small as possible, 

which often leads to a model that generalizes better to new data 

[21]. 

Lasso Regressor (LSR): LSR is a type of LR that uses 

shrinkage. Shrinkage is where data values are shrunk towards 

a central point, like the mean. The lasso procedure encourages 

simple, sparse models (i.e., models with fewer parameters).  

This particular type of regression is well-suited for models 

showing high levels of multicollinearity or when you want to 

automate certain parts of model selection, like variable 

selection/parameter elimination. The L1 regularization adds a 

penalty equal to the absolute value of the magnitude of 

coefficients, which can lead to zero coefficients, effectively 

reducing the number of features upon which the given solution 

is dependent [22]. 

Linear Regression: LR is one of the most well-known and 

well-understood algorithms in statistics and ML. It assumes a 

linear relationship between the input variables (X) and the 

single output variable (y). When there is a single input 

variable, the method is referred to as simple LR. When there 

are multiple input variables, it is referred to as multiple LR. 

The LR model provides a sloped straight line representing the 

relationship between the variables. It’s simple yet powerful 

and provides an easy-to-understand measure of the importance 

of each input variable [23].  

Each of these models will be trained on historical data, 

learning the patterns of how humidity, solar radiation, and 

wind, for example, relate to air temperature. One such trained 

model can then be used to predict future air temperature. The 

precision of such a model can vary from providing just a 

ballpark figure to something very exquisitely precise, 

depending both on the sophistication of the model and the 

richness and quality of the dataset with which it has been 

constructed. 

 

3.7 Evaluation measure 

 

Evaluation of the ML models' performance is crucial to 

determining their accuracy in predicting the hourly air 

temperature. MSE is a widely used measure for the accuracy 

of regression models [24]. It is calculated as the average of the 

square of the differences between the predicted and actual 

values. It gives a bigger picture of the overall accuracy of a 

model. Higher values can indicate a larger error. The formula 

for MSE is: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖

𝑛

𝑖=1

− �̌�𝑖)
2 (1) 

 

where, n is the number of observations, Yi is the actual value 

of the target variable, and �̌�𝑖 is the model’s predicted value. By 

using MSE, we can quantitatively compare the predictive 

power of our models and select the one that minimizes error, 

thus ensuring the most accurate and reliable forecasts for air 

temperature. 

 

 

4. EXPERIMENTS AND RESULTS 

 

This section delves into the empirical evaluation of our 

predictive models, outlining the experimental setup and 

presenting the results of their performance in forecasting air 
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temperature in Karak City, Jordan. Our methodology hinges 

on rigorous testing within MATLAB’s robust computational 

environment, ensuring a comprehensive examination of each 

model’s prediction capabilities. 

 

4.1 Experimental settings 

 

The backbone of the experimental setup of our study is the 

MATLAB language, a computing platform that is high-

performing for technical applications. This is where the set of 

ML models will be developed and tested for predicting the air 

temperature. MATLAB, since it is equipped with a large 

variety of statistical and ML toolboxes, provides an integrated 

environment, which is very helpful for building the model. 

Thus, we can apply all these algorithms, such as SVR with 

RBF kernel, DTR, RR, lasso regressor, and LR, promptly and 

with high accuracy. 

MATLAB software makes the whole data analysis 

procedure possible right from the beginning, i.e., filling up the 

missing values, outlier detection, and repetition of modules to 

the end after segmenting the dataset into testing and training 

sets. These sets are used as benchmarking tools for the models 

to determine their accuracy; MSE is utilised as the evaluation 

metric. As part of our model development, we use MATLAB’s 

in-built functions for cross-validation, hyperparameter tuning 

(HT), and model assessment to examine whether our models 

are robust and of good generalization performance on new 

unseen data. 

One of MATLAB’s most convenient features is that it does 

not need to break down into separate matrix/number 

operations, unlike other software. This is very valuable as it 

enables the program to handle large-scale meteorological 

datasets quickly and effortlessly. In addition to that, the 

interface of the program is a breeze to use and makes it easy 

to make multiple changes and improvements. Also, the 

program has the facilities to see the visual results and conduct 

in-depth analyses.  

The integrative nature of this experimentation phase 

dictates that the implementation of the procedures followed is 

systemic and transparent, thus generating insights that are 

useful in assessing the forecasting algorithm used for the air 

temperature prediction task. 

 

4.2 Results 

 

This section summarizes the results of our machine-learning 

experiments. Figure 4 depicts the training process of a LR 

model over a series of iterations, plotted against two key 

metrics: (RMSE) and loss. 

In the upper graph, RMSE is quite high initially, a scenario 

that’s usual since the model begins with randomly initialized 

parameters. Nonetheless, the decay rate is low, suggesting that 

the model is showing signs of learning from the data. In the 

course of iterations, the RMSE becomes stable and converges 

to a low value, so a conclusion can be drawn that the model’s 

predictions are moving towards the actual values. RMSE, in 

general, doesn’t display big changes starting from the middle 

of iterations. This may indicate that the model used as much 

information as possible in the training data. 

The bottom graph displays the loss, which in LR is the sum 

of the squared difference between the predicted and actual 

values, also known as ‘the cost function’. The pattern is quite 

like RMSE, which has a high value in the beginning and 

rapidly starts from down and level. Thus, the model tends to 

get the same set of parameters (weights and biases) that 

minimize the loss function, and further training doesn’t change 

its parameters significantly. 

Both plots spotlight a "Final" marker, which signifies the 

ending of the training process. The reason for this could be 

either once the pre-fixed number of iterations is completed, or 

the stopping criterion is met, such as a minimum change in 

RMSE or loss over a pre-fixed number of iterations. 

The MSE values obtained by the ML models in the suite of 

our models endorse the compelling narrative on their 

respective predictive accuracies in estimating hourly air 

temperature, as shown in Table 1. (SVR) model with the MSE 

of 2.9099 turns out to be the most accurate model from our set 

of models. The SVR kernel trick, especially in the conditions 

when the RBF kernel is used, allows SVR to capture complex, 

non-linear patterns in the data that seem to be most effective 

in this case. It is superior, showing that it is strong enough to 

deal with the challenging nature of the atmospheric data, 

which sometimes has nonlinear relationships between 

predictors and target variables. 

 

Table 1. Model MSE comparison 

 
Model MSE 

Support Vector Regression 2.9099 
Decision Tree 3.0613 

Ridge Regression 4.2541 
Lasso Regression 4.4651 
Linear Regression 5.0532 

 

Similarly, the DT model shows a low MSE of 3.0613. This 

aspect indicates that the model’s hierarchical, nonparametric 

method is enough to capture the data variance pretty well but 

not as finely as the SVR. Regarding decision trees, their 

interpretability can be applied to reveal the interaction 

between the features and the target variable despite the 

accuracy of prediction with a small loss. 

 

 
 

Figure 4. Learning process of LR
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The Ridge Regression model yields an MSE of 4.2541, 

suggesting a moderate fit. The inclusion of L2 regularization 

helps prevent overfitting, which might be particularly 

beneficial if the dataset has multicollinearity among 

predictors. However, the linear nature of Ridge Regression 

may limit its ability to model more complex relationships in 

the data, which could explain the higher MSE compared to 

SVR and Decision Trees. 

LSR with an MSE of 4.4651, also imposes regularization, 

but with an L1 penalty, encouraging sparsity in the model. 

While it tends to perform feature selection by driving some 

coefficients to zero, it appears that this property did not 

translate into higher predictive accuracy in this specific case. 

This could be due to the loss of informative predictors that are 

important for capturing the full complexity of the air 

temperature’s variance. 

Lastly, the LR model records an MSE of 5.0532, the highest 

among the models. Being the simplest model with no 

regularization or mechanisms to handle nonlinearity, its 

performance suggests that the relationship between the 

predictors and air temperature is too complex for a simple 

linear model to capture accurately. 

These results emphasize the importance of choosing the 

suitable model for the dataset at hand. While simpler models 

are more interpretable, they may not always capture the 

underlying complexities of environmental data. Conversely, 

models that can handle complex relationships and have 

regularization to prevent overfitting can be more predictive. 

These insights could guide us in refining these models further 

or combining them in an ensemble method to leverage their 

respective strengths. 
 

 

5. DISCUSSION 
 

Table 1 presents a very persuasive story of the predictive 

accuracy in estimating hourly air temperature is presented by 

Mean Squared Error (MSE) values obtained from ML models. 

The SVR model having an MSE of 2.9099 is the most accurate 

out our suite of models. 

SVR with RBF Kernel: SVR also outperforms DT and RF 

shows the ability to robustly construct a model even in very 

complex and nonlinear situations. By using the RBF kernel, an 

SVR is capable of mapping input features to a higher-

dimensional space where linear separation between 

meteorological variables and air temperature exists. This 

attribute makes SVR a very strong technique when working 

with the non-stationary time-series data, which is notoriously 

difficult to predict due to complex interactions between 

predictors and target variables. 

DTR: DTR performs just behind SVR with an MSE of 

3.0613. Decision Trees are great for being interpretable, and 

modeling the variance in data by leveraging a hierarchical way 

of handling non-linear relationships. However, they suffer 

from overfitting unless correctly pruned. The interpretability 

of the model, where interactions are not neglected and can 

contribute to its high accuracy. 

Ridge Regression Model: MSE=4.2541, so fits a little bit 

better than the previous model The L2 regularization of Ridge 

Regression is a way to avoid overfitting and works particularly 

well on data with high multicollinearity amongst the 

predictors. The linear nature of the model allows it to fit well 

in case there is a probability distribution, but makes its 

capabilities quite limited for more complicated relationships 

hence yielding higher MSE than SVR or Decision Trees. 

LSR: L1 regularization is added to minimize the cost 

function (the MSE in this case) and generate a sparse model 

while eliminating some of coefficients [7], with an MSE score 

equivalent to 4.4651. Although beneficial, this feature 

selection did not lead to greater predictive accuracy (but 

perhaps partly because it excluded so many informative 

predictors that are needed to properly model the complexity of 

air temperature variability). 

LR: With a maximum MSE of 5.0532, the simple Linear 

Regression model (no regularization and no non-linearity) 

struggled to properly account for all interrelations among 

predictors air temperature. It means that the complexity of 

atmospheric data exceeds what a simply linear model could 

hope to capture. 

Interpreting Model Performance Results: The 

differences in performance between these models illustrate the 

significance of choosing appropriate model for our dataset. 

Less complex models such as Linear Regression and Lasso 

Regression are easier to explain, but they might not discover 

the hidden patterns of environmental data very well (like 

random forests). Conversely, SVR is able to catch nonlinear 

relationships and add regularization techniques due to 

Decision Trees we can induce that their prediction power is far 

greater. 

The higher performance of models like SVR and Decision 

Trees can be due to their capacity in modeling non-linear 

properties which occurs a lot within the atmospheric science 

data. Air temperature is largely influenced by nonlinear 

interactions among the variable’s humidity, solar radiation, 

wind patterns. While simple and interpretable linear models 

are not able to capture these complexities, which results in 

poor accuracy. 

Lessons and Future Work: Lessons learnt to refine these 

models individually or combined as ensemble methods 

depending on the nuances of each model are given in this 

section. Future work could investigate combining several 

models in an ensemble to achieve the right balance of 

prediction accuracy and interpretability, or deeper neural 

network structures capable of learning more intricate features 

from atmospheric data. 
 

5.1 Related work comparison 
 

Our selected models show clear advantages, comparing 

them to the classical time series model ARIMA and other 

machine-learning approaches, as we validated later on. 

Alomar et al. [8] examined 27 classical time series models. 

Chen et al. (2022) compared the performance of different 

models, such as ARIMA, and the ML model SVR was found 

to be better in forecasting daily temperature than ARIMA. 

These results are in line with our work, where SVR yielded the 

best precision against traditional time series models due to its 

ability to represent non-linear relationships better than a 

standard approach. 

Deep learning approaches: Ozbek et al. [7] used LSTM to 

forecast the temperature, and its results were well in short-term 

periods. Although this study did not specifically evaluate 

LSTM, the observation that SVR was able to capture complex 

non-linear patterns corresponds with other deep learning 

models for handling time series data. 

Comparisons across regions: Studies by Hou et al. [10] 

and Shin et al. [12] explored advanced models such as the 

CNN-LSTM and hybrids in each region with great 

improvements in predictive accuracy. Such studies are 

particularly relevant useful for scenario like Karak City, as the 

3686



 

selection of an appropriate model must consider regional data 

characteristics. Incorporating these hybrid models could 

potentially enhance the accuracy of our findings using SVR. 

Data sample size & feature engineering: Our dataset from 

the Dead Sea area has a large set of meteorological factors at 

high resolution, which stresses dedicated data. The approach 

is like that applied to detailed datasets in Kajewska-

Szkudlarek [9] for predicting heating and cooling degree 

hours, stressing the importance of feature engineering as a tool 

for improving model performance. 

Altogether, these findings corroborate the case for ML 

approaches but are not dissimilar to conclusions from work in 

other countries that stress optimal model selection should be 

sensitive to differences in climatic dynamics and data quality 

when applied elsewhere. 

 

 

6. CONCLUSION 

 

The novelty of this research is to use ML models effectively 

for predicting the hourly atmospheric air temperature (AAT) 

in Karak City, Jordan. Using a highly enriched dataset and 

stringent preprocessing, we tested multiple prediction models 

with Support Vector Regression (SVR) using RBF Kernel 

yielding the highest accuracy reflecting inherent dynamical 

changes of most climatic data. 

This research sheds light on the theoretical progression in 

environmental prediction demonstrating that ML models, 

especially SVR performed much better than linear multivariate 

regression model to capture non-linear and complex 

associations inherit in atmospheric data. This aspect adds to an 

evolving picture of how ML has benefitted climatology. 

The study highlights the ways in which ML can deliver 

practical improvements to regional temperature predictions. 

Improved forecasts could have large applications in 

agriculture, the urban sector and disaster management, thereby 

providing decision makers with valuable tools to effectively 

utilize resources seamlessly for weather resilient planning. 

The novelty of this study could be explained in terms that it 

is a tailored application data with the ML models to local 

climatic dynamics which are important in understanding world 

climate variability but has fewer case studies where global 

information processing was not used. 

 

6.1 Future work 

 

Future work will be pursued in following aspects: 

⚫ Combining many models together as model fusion to 

create ensemble methods that can complement the strengths 

of each model and lead to improvements in predictive 

accuracy. 

⚫ Exploring the use of advanced deep learning models, 

such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Network (RNNs), for potentially improved 

performance in capturing even more complex relationships 

amongst various atmospheric features. 

⚫ Expanding the method to larger datasets across longer 

periods for improved models' robustness and generalization. 
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