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Many modern industrial processes involve multiple quality measures, and using 

individual control charts for each measure can be misleading if these measures are 

highly related. This paper proposes a new method for statistically controlling electronic 

products with multiple, interconnected quality characteristics. The method utilizes a 

combined model: a multivariate autoregressive (MAR) model with neural networks, to 

handle the presence of both correlation and autocorrelation in the data. The study 

compares the effectiveness of MCUSUM, MEWMA, and T2 Hotelling charts in 

detecting small shifts in the overall process quality. To pinpoint the specific variables 

causing out-of-control signals in the T2 Hotelling chart, we introduce a novel 

decomposition technique. This technique allows us to identify which measures are 

contributing most to these signals. Additionally, the MCUSUM and MEWMA charts 

demonstrate excellent performance in detecting small quality changes, leading to faster 

corrective actions. Overall, these findings suggest that our proposed method can 

significantly improve the reliability and responsiveness of quality control in electronics 

manufacturing. 
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1. INTRODUCTION

The complexity and increasing correlation of product 

features over time have made the requirements of product 

inspection more difficult. Statistical process monitoring is a 

method of quality control since variability is a primary 

indication of poor quality [1]. In many continuous processes 

of the electronic device manufacturing business, statistical 

process monitoring (SPM) typically develops over time to 

handle auto-correlated, multivariate quality data. Any changes 

in a process that may be the consequence of unforeseen and 

uncontrollable factors can be quickly identified by an effective 

SPM system. 

Traditional control charts relied on the idea that the process 

would be dispersed independently across time, but as 

electronic device manufacture has advanced, this assumption 

is no longer valid. Control charts are produced for variables 

that defy one of the primary assumptions, serial-sample 

independence, when autocorrelation is present. The average 

run length (ARL) and stability of the control charts are both 

impacted by the violating of the presumption of independence 

[2]. Furthermore, if there are too many false alarms, the 

process engineer may prefer to completely ignore the control 

charts or misidentify the true source of variation. This explains 

why control charts are used on continuous-flow systems very 

infrequently [3]. 

Due to the fact that the industry that manufactures electrical 

products typically bases its product quality on a number of 

interconnected quality criteria and variables, SPM is also faced 

with multivariate problems [4]. The statistical characteristics 

of classic control charts are greatly impacted by interrelated 

variables, which can also result in a notable rise in the average 

false alarm rate and a fall in the capacity to identify process 

changes. Applying univariate control charts to every variable 

has the potential to mislead in decisions about quality. 

Consequently, multivariate based quality control techniques 

needed to take such characteristics into account at the same 

time. 

As electronic products become more intricate and their 

quality characteristics show stronger connections over time, 

ensuring proper inspection becomes increasingly difficult. 

Traditional statistical process monitoring (SPM) systems 

struggle to keep pace with these complexities in modern 

manufacturing. One major issue is that traditional control 

charts assume data is independently distributed, which is often 

violated due to autocorrelation, leading to instability, and 

increased false alarms. Additionally, traditional control charts 

are not designed to handle multiple interrelated quality 

attributes simultaneously, which can mislead quality decisions 

and reduce the ability to detect process changes. These 

challenges have resulted in a low adoption of control charts in 

continuous-flow systems. This paper aims to address these 

gaps by proposing advanced SPM techniques that account for 

autocorrelation and introducing multivariate-based quality 

control methods to handle interrelated attributes 

simultaneously. Through these enhancements, we seek to 

increase the reliability and practical utility of control charts, 

encouraging their broader adoption in the electronic product 
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manufacturing industry. 

Traditional SPM methods, such as Shewhart, CUSUM, and 

EWMA control charts, assume that process data is 

independently distributed over time. However, this 

assumption is often violated in modern manufacturing 

environments where autocorrelation is prevalent. The 

violation of the independence assumption leads to several 

issues with traditional control charts: increased false alarms, 

decreased sensitivity, and complexity in handling multivariate 

data. Existing multivariate control charts, such as T2 

Hotelling’s, MCUSUM, and MEWMA, address these 

correlations but are often complex to implement and may not 

effectively decompose out-of-control signals to identify 

specific variable contributions. 

To address these limitations, our study proposes a novel 

ANN-based multivariate statistical process control model that 

integrates a multivariate autoregressive (MAR) approach with 

neural networks. This model aims to enhance detection 

sensitivity, improve robustness to autocorrelation, and provide 

detailed decomposition of out-of-control signals. By 

leveraging the capabilities of neural networks, our model 

improves sensitivity to small shifts in the process mean vector, 

ensuring timely detection of quality issues. The integration of 

MAR with neural networks effectively manages 

autocorrelated data, reducing false alarms and improving the 

stability of average run length (ARL). Additionally, our model 

offers a detailed decomposition of out-of-control signals, 

using univariate charts and a decomposition approach to 

identify specific variable contributions. This feature allows 

process engineers to pinpoint and address root causes of 

variations more accurately. By addressing these specific gaps 

and limitations in current multivariate autocorrelated process 

monitoring approaches, our study aims to enhance the 

reliability and practicality of SPM systems in modern 

manufacturing environments, ultimately improving product 

quality and manufacturing efficiency. 

The present study will address the auto-correlated, 

multivariate quality control for electronic product 

manufacturing. We propose a model based on ANN to predict 

and build the residual based control chart for multivariate data 

with autocorrelation order p (AR(p)) processes. 

The rest of this paper is organized as following. Section 2 

discusses relevant literature review, such as SPM of 

multivariate auto-correlated observations, multivariate control 

chart, and ANN for multivariate and auto-correlated 

observations. Section 3 details the research methodology 

including manufacturing process and research variables. 

Section 4 illustrates a practical application and discussion. 

Finally, conclusions are provided in Section 5. 

 

 

2. LITERATURE REVIEW 

 

2.1 Multivariate auto-correlated control charts  

 

Many industrial processes, both continuous and batch 

operations, frequently exhibit autocorrelation in their data, 

leading to ongoing efforts to find solutions [5]. Studies by 

Loredo et al. [6] and Psarakis and Papaleonida [7] highlight 

that even minor autocorrelation can significantly disrupt 

traditional control charts, causing them to signal false alarms 

more often and miss actual process changes. One solution 

involves filtering out autocorrelation using time series models 

and focusing control charts on the resulting uncorrelated 

residuals. This approach allows standard control charts to 

function effectively, as demonstrated by Callao and Rius [8] 

with their AR (1) model-based residual control charts. The 

concept can be extended beyond single variables. Issam and 

Mohamed [9] proposed using multivariate autoregressive 

(MAR) models to handle systems where multiple correlated 

variables exhibit serial dependence. Their work introduces an 

MAR control chart specifically designed for these multivariate 

autocorrelated processes. Their research proposed an MAR 

control chart for multivariate auto-correlated processes. For an 

MAR process with m variables, it is denoted by 𝒙𝒕 =
(𝒙𝟏𝒕, 𝒙𝟐𝒕, … , 𝒙𝒎𝒕) as a (m×1) vector. 

Psarakis and Papaleonida [7] explained that shifts in the 

mean or variance of residuals signal changes in the actual 

process's mean or variance. By plotting residuals on a control 

chart, shifts in the process can be detected. The principle of 

residual charts is that, with a correct time series model, 

residuals become independently and identically distributed 

random variables, satisfying traditional quality control criteria 

and enabling the use of standard SPC charts. Therefore, 

developing an accurate time series model for multivariate 

autocorrelated data is essential in statistical process control. 

Although the ARIMA model is widely used for linear time 

series prediction, it struggles to capture nonlinear patterns. 

Autocorrelation in process data is a persistent challenge, 

prompting researchers to develop solutions. Alwan and 

Roberts [10] addressed this issue by proposing residual-based 

control charts, which rely on data where autocorrelation has 

been removed. Woodall and Faltin [11] investigated the 

impact of self-correlation on control charts and explored 

various strategies to manage it. Their work included 

developing methods like the CUSUM control chart 

specifically designed for autocorrelated data [12-14]. 

Additionally, researchers have explored using exponentially 

weighted moving average (EWMA) control charts for data 

with autocorrelation [15-18]. 

A range of multivariate control charts exist in the literature, 

including T2 Hotelling, multivariate CUSUM (MCUSUM), 

and multivariate EWMA charts [19-22]. Additionally, 

researchers have made advancements in control charts to 

address situations with multivariate data exhibiting 

autocorrelation and time series effects [23-27]. Notably, Jarrett 

and Pan [28] proposed separate approaches for independent 

and autocorrelated processes. They introduced a dedicated 

multivariate autoregressive (MAR) control chart specifically 

designed for handling multivariate data with autocorrelation. 

 

2.2 Residual control chart 

 

2.2.1 T2 Hotelling control chart 

The T2 Hotelling control chart, a more versatile version of 

the Shewhart chart, was introduced by Harold Hotelling in 

1947 to handle multivariate observations. Unlike the Shewhart 

𝑋̅-chart which deals with single variables, the T2 Hotelling 

chart can handle multiple variables simultaneously. It comes 

in two versions: for data grouped by subgroups and for 

individual observations. The Shewhart X-chart is basic tool for 

univariate control charts, where it measures process stability 

against significant changes. It assumes residuals (differences 

between observed values and expected values) have a zero 

mean and a standard deviation 𝜎𝑟 . An observation is 

considered in-control if its residual value falls within control 

limit defined by a factor λ. The T2 Hotelling chart uses a 

different approach. It leverages the Mahalonobis distance [25] 
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to compress residuals from multiple variables into a single 

value. An observation is considered in control if it satisfies a 

specific equation as the following Eq. (1). This equation 

considers factors like the number of observation (n); the 

number of variables (m); the residual vector of each 

observation (𝑅𝑖 ); and a value from the Fisher distribution 

𝐹𝑚;𝑛−𝑚;(𝛼) . The Fisher distribution is chosen based on a 

desired risk level (α), which helps determine the expected 

frequency of false alarms when in-control observations 

flagged as out-of-control. By analyzing the T2 statistic value 

for each observation, the T2 Hotelling control chart can 

effectively monitor processes with multiple interrelated 

variables. 

 

𝑇𝑖
2 = 𝑅𝑖

𝑇 ∑ 𝑅𝑖

−1

𝑅

𝑚(𝑛 − 1)

𝑛 − 𝑚
𝐹𝑚;𝑛−𝑚;(𝛼);  

for 𝑖 = 1,2, ⋯ , 𝑛 

(1) 

 

2.2.2 Multivariate CUSUM control chart 

The CUSUM control chart was developed to overcome a 

weakness in Shewhart and T2 Hotelling charts. These 

traditional charts often miss gradual process changes because 

they only consider the most recent data point [9]. CUSUM 

charts address this by accumulating the deviations from a 

target value across residuals of past observations, making them 

more sensitive to subtle shifts. The most common CUSUM 

control method is Crosier's chart [29]. This method uses a 

statistical procedure defined by Eqs. (2) and (3). It starts with 

𝑆0 = 0, a matrix of zeros representing the initial state. Then, 

for each observation (i), it calculates a new 𝑆𝑖 value based on 

the previous 𝑆𝑖−1, the current residual 𝑅𝑖, a reference value (k) 

and the estimated residual covariance matrix Σ𝑅
−1 . The 

reference value (k) helps determine how quickly the CUSUM 

chart reacts to changes. Crosier's chart signals a potential 

process shift when a statistic called 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅 , calculated 

using 𝑆𝑖  and the inverse covariance matrix, exceeds a 

predefined limit (H). In simpler terms, the CUSUM scheme 

raises an alarm when the S statistic goes above a certain 

threshold (H), indicating a possible change in the process. 

 

𝑆𝑖 = {

0                                             , if 𝐶𝑖 ≤ 𝑘

(𝑆𝑖−1 + 𝑅𝑖) (1 −
𝑘

𝐶𝑖

)           , otherwise
 (2) 

 

𝐶𝑖 = (𝑆𝑖−1 + 𝑅𝑖)Σ𝑅
−1(𝑆𝑖−1 + 𝑅𝑖)

𝑇 (3) 

 

Crosier’s chart signal a shift when 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅  

overcomes a predetermined limit H. Thus, if 𝑆𝑖 > 𝐻, the chart 

indicates a process shift. To achieve the desired in-control run 

length (RL) characteristic, the parameters k and H must be 

determined beforehand. In CUSUM procedures, it is standard 

practice to assume a sample size of one. This simplification is 

widely adopted as it allows for the continuous monitoring of 

individual observations, facilitating the prompt detection of 

small shifts in the process. However, in some cases, it might 

be beneficial to consider larger sample sizes to account for 

variations and provide more robust detection capabilities, 

especially in processes where data is naturally grouped or 

collected in batches. Adapting the CUSUM procedure to 

accommodate different sample sizes can enhance its flexibility 

and effectiveness in various industrial and statistical 

applications. The multivariate CUSUM (MCUSUM) statistic 

𝑆𝑖  is designed to detect specific shifts in the process mean 

vector. This capability enables the identification of changes 

across multiple variables simultaneously, making MCUSUM 

particularly useful for monitoring complex processes where 

interactions between variables may signal deviations from the 

expected process behavior. By accumulating deviations from 

the target mean vector over time, the MCUSUM statistic 

provides a sensitive measure for detecting even small shifts, 

thus enhancing the ability to maintain quality control and 

process stability in multivariate settings. Additionally, the 

MCUSUM approach can be tailored to different types of shifts 

and can incorporate various weighting schemes to prioritize 

certain variables or shifts, further improving its applicability 

and effectiveness in diverse industrial and research 

environments: 

 

𝑆𝑖 = 𝑚𝑎𝑥{𝑆𝑖−1 + 𝑎𝑇𝑅𝑖 − 𝑘, 0} (4) 

 

where, 

𝑎𝑇 =
𝛿𝑟

𝑇Σ𝑟
−1

√𝛿𝑟
𝑇Σ𝑟

−1𝛿𝑟

 

 

The residual mean vector is denoted as 𝛿𝑟 , while Σ𝑟  

represents the variance-covariance matrix. In a MCUSUM 

scheme, any deviation from the target mean that exceeds k 

units is aggregated. In this context, k serves as the benchmark 

value for the scheme. The control scheme signals an out-of-

control state when 𝑆𝑖 surpasses a specified decision threshold, 

labeled as H [9]. 

 

2.2.3 Multivariate EWMA control chart 

While CUSUM charts consider all past measurements 

equally, EWMA (Exponentially Weighted Moving Average) 

charts assign weights to recent observations based on their 

significance in depicting process behavior. A higher value of 

λ amplifies the impact of the most recent observation [5]. The 

iterative expression for EWMA statistics is described by Eq. 

(5), 

 

𝑍𝑖 = (1 − 𝜆)𝑍𝑖−1 + 𝜆𝑅𝑖;  for 𝑖 = 1,2, ⋯ , 𝑛 (5) 

 

where, λ is diagonal matrix of value 0 ≤ 𝜆𝑗 ≤ 1, 𝑗 =

1,2, ⋯ , 𝑚.  The multivariate EWMA (MEWMA) scheme 

signals if the 

 

𝑇𝑍
2 = 𝑍𝑖

𝑇 ∑ 𝑍𝑖

−1

𝑍
 (6) 

 

surpasses a predetermined value H, where H>0 is chosen to 

achieve a specified in-control (on-target) ARL0. The 

asymptotic form of the covariance matrix is Σ𝑍 = (
𝜆

2−𝜆
) Σ𝑅  

[30]. 

Reynolds and Lu's study [31] explored the use of AR (1), 

AR (2), and ARMA (1, 1) models with residual X-charts. They 

identified a potential limitation: the residual X-chart might not 

be sensitive enough to detect certain types of process changes, 

specifically mean shifts. Those research, however, considered 

only for processes which has small order of p on 

autoregressive AR (p) model. Whereas real condition 

sometimes autocorrelation with high order (p>5) are occurred. 

Besides that, multivariable with high autocorrelation also must 

considered in one time. This condition usually occurs in the 

manufacturing industry with mass production and fast flow 

production. Therefore, the general multivariate autoregressive 
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(MAR) models should be developed to overcome 

multivariable and autocorrelation problem on statistical 

process monitoring using residual based multivariate control 

chart. 

 

2.3 Applying ANN to SPM of multivariate auto-correlated 

observations 

 

Artificial neural networks (ANNs) are increasingly used as 

powerful tools to estimate and forecast process outputs [32]. 

In particular, the multi-layer perceptron (MLP) is a versatile 

estimator, working for both classification and prediction tasks. 

For forecasting problems, a multilayer feed-forward ANN 

with a continuous output layer is ideal. When dealing with 

quality data exhibiting autocorrelation through an 

autoregressive model of order p (AR(p)), the average values 

for each time period depend on the averages of the previous p 

periods. Consequently, when using an ANN for forecasting, 

the input layer feeds the network with quality characteristic 

data from the past p periods. The output layer then predicts the 

quality characteristic vector for the target time period. During 

implementation, the network processes information from the 

previous p periods through the input layers to generate the 

forecast vector at the output layer. As highlighted by Arkat et 

al. [3], the residual vector for each period is simply the 

difference between the predicted and actual quality 

characteristic values. 

Machine learning has seen growing adoption in statistical 

process monitoring (SPM) research over the past two decades. 

This trend reflects the potential of machine learning to detect 

and diagnose faults in industrial processes and production 

outcomes. ANNs, specifically, have been used for data 

analysis in SPM since the 1980s, as demonstrated by Arkat et 

al. [3]. Research has explored ANN applications in both 

univariate [33-35] and multivariate control charts [36-40]. 

Arkat et al. [3] proposed an ANN-based model for forecasting 

and building residual CUSUM charts for AR (1) multivariate 

processes. Additionally, Khediri et al. [5] explored using 

support vector regression to create control charts for 

monitoring more complex, non-linear, and autocorrelated 

multivariate processes. 

 

2.4 Summary 

 

Traditional methods often assume independence between 

observations, which is violated in continuous-flow 

manufacturing processes due to autocorrelation. This violation 

leads to increased false alarm rates and reduced average run 

length (ARL). While multivariate control charts address 

correlation among variables, they can be complex and 

computationally intensive, and they may not effectively 

identify specific variable contributions in out-of-control 

signals. Our proposed ANN-based model addresses these 

limitations by integrating a multivariate autoregressive (MAR) 

approach with neural networks, improving sensitivity to small 

shifts in the process mean vector and enhancing robustness to 

autocorrelation. The model offers better detection capabilities, 

reducing false alarms and improving ARL stability. 

Additionally, it provides detailed decomposition of out-of-

control signals, allowing process engineers to pinpoint and 

address root causes of variations more effectively. These 

improvements enhance the reliability and practicality of SPM 

systems in modern manufacturing, leading to more timely and 

accurate quality control interventions, ultimately improving 

product quality and manufacturing efficiency. 

In recent years, several studies have advanced the field of 

SPM, particularly in addressing the limitations of traditional 

control charts in handling autocorrelated and multivariate data. 

For instance, Wang and Asrini [41] proposed an enhanced 

EWMA control chart that incorporates machine learning 

techniques to better handle autocorrelated data, demonstrating 

improved sensitivity and reduced false alarm rates. Similarly, 

Yang and Sutrino [42] developed a hybrid SPM model that 

combines neural networks with traditional statistical methods 

to monitor complex manufacturing processes, showing 

significant improvements in detection capabilities and 

robustness to data variability. 

With advancements in many automation processes, such as 

electronic component manufacturing, the assumption of 

independent distribution is frequently violated because the 

high frequency of sample selection results in observations that 

are closely related and dependent. It is crucial to understand 

how to apply and evaluate control charts designed to account 

for autocorrelation. Residual control charts offer valuable 

insights into device behavior over time and have effective 

detection capabilities. However, they do not entirely address 

the needs for handling autocorrelation and multiple variable 

observations. 

 

 

3. METHOD 

 

This study aims to present a residual control chart using 

MAR model with ANN (MAR-ANN) to solve the SPM 

problem related to multivariate with auto-correlated 

observations. Moreover, this study makes diagnostic of out-of-

control signal in multivariate control chart using 

decomposition technique. Comparison of multivariate control 

chart with univariate one is also conducted. Figure 1 shows the 

operational procedure of the proposed mothed. Multiple 

variables are defined as the quality parameter which correlate 

to each other, and each variable is of time series. 

 

 
 

Figure 1. Procedure to build the proposed control chart 
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Correlation test is employed to know the strength of 

correlation between variables. In this study, correlation test 

determines the correlation between quality parameters of a 

product. If there is a correlation between quality parameters, 

then the control chart preparation is based on a multivariate 

control chart approach because it will involve more than one 

quality parameter in one chart. The hypothesis used in testing 

the correlation between quality parameters is as follows. To 

determine whether there is a correlation between quality 

parameters is based on the p-value. 

 

H0: 𝜌 = 0 or there is no correlation 

H1: 𝜌 ≠ 0 or there is a correlation 

 

This study tackles autocorrelation in process data using a 

method developed by Loredo et al. [6]. This method prioritizes 

residual-based control charts, which have proven more 

effective than traditional charts in detecting mean shifts when 

dealing with short-run, autocorrelated data. To identify 

variables potentially affected by autocorrelation, the study 

performs an autocorrelation test on each variable. These tests 

assess whether a variable exhibits a relationship with its own 

past values over time. A helpful tool for visualizing 

autocorrelation is the autocorrelation function (ACF) plot. If a 

variable's ACF plot shows a significant lag, it suggests the 

presence of autocorrelation. To address autocorrelation, the 

study employs time series modeling. This modeling process 

ensures the model's errors (residuals) meet the assumption of 

white noise, meaning they are uncorrelated with each other. 

The autocorrelation coefficient, calculated at a specific time 

lag (k), measures the correlation between a variable's value at 

a given time (t) and its value k periods earlier (t-k). Essentially, 

it indicates how closely the variable's past values influence its 

current value. If the autocorrelation plot dips below the 95% 

confidence interval at a particular lag, it signifies the presence 

of significant autocorrelation at that time lag. 

Figure 1 presents a four-step procedure. First, data are 

checked for each variable by ACF and correlation between 

variables by Pearson’s correlation. Second, MAR modelling 

process determines the model considering autocorrelation and 

multivariate. To estimate MAR, this research proposes an 

ANN with MLPRegressor approach. Third, residual white-

noise checking is conducted to ensure all residual variables can 

be used for the multivariate control chart. White noise residual 

checking involves multivariate normality, independence and 

identical test. Then, fourth step builds a residual-based 

multivariate control chart where residual is the difference 

between actual value and estimated value based on the MAR 

model of each variable. 

If the quality characteristics of an autocorrelated process 

follow an AR (p) model, the mean vector for each period 

depends on the mean vectors from the previous p periods. In 

such cases, the inputs for the desired artificial neural network 

(ANN) consist of the quality characteristic vectors from the 

previous p periods, while the output represents the quality 

characteristic vector to be forecasted for the next period. 

Before constructing the ANN, the multivariate autoregressive 

(MAR) model is typically applied to determine the 

autoregressive order p for each factor in the time series. This 

helps in understanding the dependencies and lagged effects 

among the quality characteristics over time, ensuring that the 

ANN model captures the relevant temporal relationships 

effectively. 

This study, following the work of Khediri et al. [5], utilizes 

time series estimation for a multivariate process using a 

multivariate autoregressive (MAR) model. The MAR model 

considers the influence of past values on each variable in the 

process. Suppose a process with m variables where each 

variable 𝑌𝑖 for i ranges from 1 to m at specific time t denoted 

as 𝑌𝑖𝑡 . The MAR model considers the values of all m variables 

at p previous time steps to influence the current value (t) of 

variable 𝑌𝑖. In other words, 𝑌𝑖𝑡  is determined by the values of 

𝑌𝑗 at times (t-1), (t-2), ..., (t-p) for all j variables (from 1 to m). 

Eq. (7) summarizes this concept mathematically. It represents 

𝑌𝑖𝑡  as a function of the lagged values of all m variables. The 

MAR model then estimates this function, denoted by 𝑓 , 

allowing to predict future values (𝑌𝑖𝑡) for each variable using 

Eq. (8). Eq. (8) essentially replaces the unknown function 𝑓 

with its estimated version (𝑓) to predict 𝑌𝑖 at time t. 

 
𝑌(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (7) 

 

𝑌̂(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (8) 

 

If the estimation is accurately performed, the error term 

vector is calculated based on Eq. (9). This vector will be used 

to generate the control chart, which will be time-independent 

and typically distributed with a mean of zero. 

 

𝑒𝑡̂ = 𝑌(𝑖=1,2,⋯,𝑚)𝑡 − 𝑌̂(𝑖=1,2,⋯,𝑚)𝑡 (9) 

 

If a shift occurs in the process, it will no longer be accurately 

described by the function f, and consequently, the estimated 

residual term 𝑒𝑡̂ will also be affected and shifted. To determine 

the residual used for the control chart, this study employs the 

multivariate autoregressive (MAR) model, as specified in Eq. 

(10). 

 

𝑦𝑡 = 𝑐 + ∅(𝐵)𝑦𝑡 + 𝑒𝑡 (10) 

 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝑒𝑡 (11) 

 

where, 

𝑦𝑡 = (𝑦1,𝑡 , 𝑦2,𝑡 , … , 𝑦𝑚,𝑡)′ is (mx1) vector of variable Y 

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑚)′ is (mx1) vector of constant value 

𝑒𝑡 = (𝑒1,𝑡 , 𝑒2,𝑡 , … , 𝑒𝑚,𝑡)′  is (mx1) vector residual, with 

assumption 𝑒𝑡~IIDN (0, 𝛺) and 𝑣𝑎𝑟(𝑒𝑡𝑒𝑡)=Ω. 

∅ =coefficient of MAR model, matrix (mxm) 

t=1, 2, …, n 

B=backshift operator 

m=number of variables 

p=order of MAR 

In this study, the MAR residual control chart, which 

involves a number of input and output variables and a fitting 

technique to find the satisfied residual, is empowered by a 

multilayer perceptron regressor (MLPRegressor) (Alpaydin, 

2010) to obtain good fitting result. MLPRegressor can 

approximate the nonlinear functions of the input for regression 

by forming higher-order representations of the input features 

using intermediate hidden layer. 

 

 

4. EXPERIMENT RESULT AND DISCUSSIONS  

 

4.1 Manufacturing process 

 

This study applies the MAR-ANN model to electronics 
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product manufacturing processes, encompassing stages like 

stamping, electroplating, injection molding, assembly, and 

packaging (depicted in Figure 2). These processes operate on 

a high-speed continuous production line characterized by 

multivariate and autocorrelated properties. An automatic 

optical inspection (AOI) system is integral to the process, 

facilitating data collection. High-precision instruments, 

regularly calibrated for accuracy, including digital calipers, 

micrometers, and AOI systems, are utilized to measure 

product dimensions and features. Specifically, AOI systems 

record product feature measurements. The MAR-ANN model 

proposed in this study aims to enhance defect detection 

capabilities, leveraging the structured data from AOI and other 

instruments to improve quality monitoring throughout the 

manufacturing stages. 

 
Raw 

Material
Stamping Plating Injecting Assembly Packaging

AOI: detection 

for appearance  
 

Figure 2. Manufacturing process of the product under 

investigation 

 

Table 1. Product feature and variable notation 

 
Feature Variable Notation 

Excess metal material is present at the 

terminal. 
Y1_1 

Excess colloids appear in the hold-

down of the metal. 
Y1_2 

Excess metal material is found on the 

plastic body. 
Y2_1 

Excess plastic material is present on 

the product's edge. 
Y2_2 

Overflow occurs on both sides. Y3 

The root is overflowed. Y4 

 

In this study, the automatic optical inspection (AOI) system 

detects key defect types such as "overflowed", "extra-

materials", and "metal debris". These defects are identified 

based on numerical specifications such as length, width, and 

area measured by the AOI system. Each product is 

characterized by six features, as detailed in Table 1, which 

describes each variable. The data collection process involves 

measuring products in batches, with each batch comprising 

100 units. For the MAR-ANN control chart analysis, this study 

collects samples from 300 such batches. This structured 

approach ensures that a comprehensive dataset is used to 

develop and validate the MAR-ANN model for effective 

quality control in the manufacturing process. 

 

4.2 Residual-based multivariate control by MAR-ANN 

model 

 

The proposed MAR-ANN model is implemented according 

to Figure 1. 

 

4.2.1 Data checking 

The MAR (multivariate autoregressive) model assumes that 

each time series in the system influences others, allowing 

predictions based on past values of all series involved. 

Granger’s causality test is a method used to assess these 

dependency relationships by testing whether past values of one 

series help predict another. In the study, Table 2 presents the 

results of Granger’s causality test for all possible combinations 

of time series in a given dataset, storing the corresponding p-

values in an output matrix. A p-value less than the 5% 

significance level indicates a significant causal relationship, 

where the series in the column influences the series in the row. 

For example, a p-value of 0.0000 in (row 1, column 2) 

suggests that Y1_2 (column) causes Y1_1 (row). Conversely, 

a p-value of 0.000 in (row 2, column 1) indicates that Y1_2 

(row) causes Y1_1 (column). Therefore, Table 2 demonstrates 

that there are significant correlations among the variables 

overall. Specifically, it can be concluded that variables Y1_1 

and Y1_2; Y1_1 and Y2_2; Y1_1 and Y3; Y2_1 and Y2_2; 

Y2_1 and Y4; Y2_2 and Y3 are correlated based on the p-

values obtained from Granger’s causality test. These findings 

help validate the interconnectedness assumed by the MAR 

model in your analysis. 

ACF test of each variable is shown in Figure 3, showing that 

almost all variables have lags over than the red likelihood limit 

(95%), which means every variable has significant 

autocorrelation. Vector autoregressive model found that the 

optimal lag to define order p is 16 (p=16). This order was 

chosen based on the minimum Akaike Information Criterion 

(AIC) value. 
 

4.2.2 MAR modeling process-constructing residuals control 

chart using ANN model 

This approach tackles the challenges of analyzing complex, 

autocorrelated, and multidimensional quality data by 

combining a MAR model with an ANN. The MAR model 

excels at capturing the data's temporal nature and the 

interconnectedness between variables. The ANN, on the other 

hand, is adept at learning non-linear relationships and 

becoming more sensitive to subtle changes in the average 

values of the entire quality measurement process. To train and 

validate the effectiveness of this MAR-ANN model, we 

utilized a dataset gathered from a continuous-flow electronic 

product manufacturing line. The data was meticulously 

divided into training (70%), validation (15%), and testing 

(15%) sets. This methodical split ensures the model's 

robustness and generalizability. The training set serves as the 

foundation for model fitting, while the validation set allows 

for fine-tuning crucial hyperparameters that influence the 

ANN's performance. Finally, the test set provides an unbiased 

assessment of the model's overall accuracy. Selecting the 

optimal hyperparameters is paramount for maximizing the 

ANN's effectiveness. We employed a grid search technique to 

identify the ideal configuration, encompassing factors like the 

number of hidden layers, the number of neurons within each 

layer, the learning rate, and parameters for controlling 

overfitting. This grid search was meticulously conducted using 

cross-validation on the training data. Ultimately, the 

combination of hyperparameters that yielded the best 

performance on the validation set was chosen for the final 

model. 

Eq. (12) represents an autoregressive process with 6 

variables and order p=16. 

 

𝑌(𝑖=1,2,…,6)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) (12) 

 

Estimation of the process using ANN provides 𝑓  which 

allows to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. (13). 

 

𝑌̂(𝑖=1,2,…,6)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) (13) 
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Table 2. Pearson’s correlation test between variables 

 
 Y1_1_x Y1_2_x Y2_1_x Y2_2_x Y3_x Y4_x 

Y1_1_y 1 0.000* 0.003* 0.170 0.003* 0.071 

Y1_2_y 0.000* 1 0.000* 0.155 0.813 0.000* 

Y2_1_y 0.145 0.000* 1 0.027* 0.101 0.000* 

Y2_2_y 0.000* 0.2957 0.282 1 0.000* 0.027* 

Y3_y 0.031* 0.7830 0.094 0.000* 1 0.281 

Y4_y 0.085 0.000* 0.381 0.101 0.115 1 
Note: (*) at 5% significance level 

 

The specific ANN model that used to figure out the 

autoregressive model with 6 variables and order p=16 in this 

case is MLPRegressor. The model, trained on 14,000 

observations from an electronic product manufacturing 

process, includes a single hidden layer with 50 neurons and 

uses the 'relu' activation function. Key hyperparameters 

include an alpha of 0.0001 for regularization, a learning rate 

of 0.001, and the Adam optimizer. The model underwent up to 

1000 iterations, with early stopping disabled, and employed 

cross-validation (70% training, 15% validation, 15% test split). 

These details ensure the model's reproducibility and highlight 

the robustness and appropriateness of our approach. Using the 

MLPRegressor which involved multiple outputs, the selected 

optimal model that used in this study is shown as following 

code: 

 

# Simple MLPRegressor with ReLU activation and Adam 

optimizer 

regressor = MLPRegressor( 

    activation='relu'; # Non-linear activation 

    solver='adam',# Efficient optimizer 

    hidden_layer_sizes=(50,);# Single hidden layer with 50 

neurons 

    learning_rate_init=0.001; # Initial learning rate 

    max_iter=1000#Maximum training iterations) 
 

The R-square value of 91.4% indicates that the 

MLPRegressor model explains a substantial portion, 91.4%, 

of the variance in the data, highlighting a strong fit for the 

MAR-ANN model to the observed values. To verify the white 

noise assumption of the residuals, the residuals are computed 

by subtracting the predicted values from the actual 

observations for each Y variable. Subsequent checks include 

ensuring the residuals have a mean close to zero, exhibit no 

significant autocorrelation through plots or tests like the 

Durbin-Watson test, and demonstrate constant variance 

(homoscedasticity) across different values. Meeting these 

criteria indicates that any remaining patterns in the data are 

likely due to random noise, validating the accuracy and 

reliability of the model's predictions. 

Moreover, in terms of white noise checking, residuals 

should follow multivariate normal distributions with mean of 

zero and variance equal to one, and the residuals are free of 

auto-correlation effects. The following step is a checking of 

white noise assumptions of residuals. Firstly, multivariate 

normal distribution checking in this study is done by the 

Henze-Zirkler test [43]. According to this test, we found that 

the p-value is equal to 0.150, which means all of residual 

variables have already followed multivariate normal 

distributions with significance value at 5%. 

Next, independence assumption checking for residuals is 

conducted by ACF, as shown in Figure 4. The lags of residual 

variables Y1_1; Y1_2; Y3 and Y4 are lower than the red 

likelihood limit (95%) and the autocorrelation value is around 

zero. Meanwhile, the lags are over than the red likelihood limit 

(95%) and the autocorrelation value is lower than 0.4 for 

residual variables Y2_1 and Y2_2, which means the 

correlation is weak so the effect can be ignored. Therefore, it 

can be concluded that all residual variables are free of the 

autocorrelation effect. Therefore, those residual variables can 

be used to create multivariate control chart. 
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Figure 3. Autocorrelation test of each variable 

 

Table 3. Descriptive of residual model of each variable 

 
Residual of Variable Mean Variance 

Y1_1 -0.001 0.0234 

Y1_2 0.081 0.3685 

Y2_1 -0.037 0.2193 

Y2_2 0.024 0.148 

Y3 -0.002 0.0004 

Y4 0.052 0.627 

 

Third step is residual white noise checking. Table 3 shows 

that the mean and variance of each residual variable almost 

near zero. Therefore, all residual variables have already 

satisfied the white noise assumption. The application of 

residual data satisfied the assumption of normality distribution 

and absence of autocorrelation effects. 

All quality characteristics are monitored simultaneously. 

Table 4 illustrates the correlation among the six residual 

variables. 

Multivariate T2 Hotelling control chart 

Multivariate T2 Hotelling control chart is constructed. 

Multivariate T2 Hotelling control chart for original data with 

upper control limit (UCL) value equal to 29.2 is illustrates in 

Figure 5(a) showing that there were 50 instances where the 

mechanism failed, which shown by some points are out of 

control. There are oscillating and it fails out at points 

particularly after sample 157th. This behavior comes from the 

dependence of measurements over the time on original data. 

Instead, by using residual data, the number out-of-control 

samples decreases down to 9 samples. Multivariate T2 

Hotteling control chart using residual data is more stable than 

multivariate T2 Hottelling control chart using original data, as 

shown in Figure 5(b). 

 

  

  

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n
Autocorrelation Function for Y3

(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Y4
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Residual of Y1_1
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Residual of Y1_2
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Residual of Y2_1
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Residual of Y2_2
(with 5% significance limits for the autocorrelations)

2520



 

  
 

Figure 4. Autocorrelation test of each residual variable 

 

Table 4. Correlation test between residual variables 

 
Characteristics Variables Residual of Y1_1 Residual of Y1_2 Residual of Y2_1 Residual of Y2_2 Residual of Y3 

Residual of Y1_2 
Correlation 0.046 

   

 

  

 

 

 

 

  

 

 

 

 

 

 

  

P-Value 0.431 

Residual of Y2_1 
Correlation -0.092 0.064 

P-Value 0.111 0.266 

Residual of Y2_2 
Correlation 0.105 0.112 -0.019 

P-Value 0.069 0.052 0.743 

Residual of Y3 
Correlation 0.189 0.087 0.035 0.064 

P-Value 0.001* 0.133 0.542 0.268 

Residual of Y4 
Correlation 0.272 0.033 0.131 -0.014 0.144 

P-Value 0.000* 0.571 0.023* 0.808 0.013* 

Note: (*) at 5% significance level 

 

  
(a) by original data (b) by residual data 

 

Figure 5. T2-Hotteling multivariate control chart 

 

Table 5. Decomposed T2 Hotteling value 

 

Sample 
Variables 

Y1_1 Y1_2 Y2_1 Y2_2 Y3 Y4 

42 11.44 0.922 3.919 0.756 41.316 3.766 

90 14.47 0.187 0.007 4.659 0.518 4.742 

151 0.033 0.726 0.312 0.115 1.314 39.02 

154 10.73 0.390 15.44 2.142 0.145 0.559 

158 1.450 0.622 7.821 0.239 0.044 19.47 

208 5.918 8.376 0.967 40.04 1.127 1.883 

221 0.066 0.101 4.608 26.74 1.552 0.113 

231 3.693 24.50 0.721 2.862 7.022 0.302 

278 21.09 1.052 0.119 0.005 2.198 3.815 

Decomposition is a valuable diagnostic technique for 

identifying out-of-control signals in multivariate control charts, 

particularly in T2 Hotelling charts. It breaks down the T2 

statistic into components that represent the contribution of 

each individual variable to the out-of-control signal. This 

approach involves estimating values 𝑑𝑖 for each variable and 

focusing on those variables where 𝑑𝑖 ) values are relatively 

large. Table 5 typically displays the variables with the highest 

𝑑𝑖  values, indicating which variables contribute most 

significantly to the out-of-control signals detected in the 

multivariate T2 Hotelling control chart. This helps pinpoint 

specific factors or characteristics that may need attention or 

correction in the manufacturing or process control 
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environment. Y1_2, Y2_1, and Y3 are responsible for out-of-

control signals on sample 231st, 154th, and 42nd, respectively. 

Y1_1 is responsible for samples 90th and 278th. Y2_2 is 

responsible for samples 208th and 221st. Y4 is responsible for 

samples 151st and 158th. 

MCUSUM and MEWMA control chart 

The study utilized RStudio (version 2020) and the MSQC 

package to create MCUSUM and MEWMA control charts. 

These charts were designed to identify subtle changes in the 

process by setting a specific false alarm rate (chosen to be 5%). 

The configuration also included a reference value (k=0.5) and 

a decision limit (h=5.5). The MCUSUM chart, analyzing the 

data's residuals, proved to be significantly more adept at 

detecting small shifts in the overall process mean compared to 

the standard T2 Hotelling chart. This improved sensitivity is 

evident in Figure 6(a), where the MCUSUM chart detects the 

first process change much earlier (sample 14) compared to the 

T2 chart (which only signals at sample 42) under identical test 

conditions (number of variables: p=6, subgroup size: n=1, and 

desired false alarm rate: ARL0=200). 

Conversely, Figure 6(b) illustrates that the MEWMA 

control chart exhibits comparable sensitivity to the 

multivariate T2 Hotelling control chart in detecting process 

changes. This comparison highlights the effectiveness of 

MCUSUM and MEWMA charts in differentiating their 

capabilities in sensitivity relative to traditional T2 Hotelling 

control charts in process monitoring and quality control 

scenarios. 

 

 
(a) MCUSUM control chart 

 
(b) MEWMA control chart 

 

Figure 6. Multivariate control charts using residuals data 

 

Implementing T2 Hotteling control chart, MCUSUM chart 

and MEWMA chart for the obtained residual data can 

overcome multivariate autocorrelated data effectively. When 

compared with MCUSUM and MEWMA, T2 Hotteling has 

better performance in detecting small shifts in the process. 

Meanwhile, the MCUSUM residual chart and the MEWMA 

residual chart show a large shift from the average. In addition, 

T2 Hotteling also shows stable shifts around the average. 

However, the MCUSUM chart and the MEWMA chart show 

oscillations in shifts and even show a trend. This shows that 

the T2 Hotteling residual chart has better performance than the 

MCUSUM and MEWMA residual control charts. 
 

4.3 Comparison univariate control chart between original 

and residual data 
 

In this section, Figure 7 presents a comparison between 

univariate control charts based on original data and residual 

data. The findings illustrate that the residual control chart 

outperforms the original data-based chart, particularly when 

the original data exhibit significant time series effects 

indicated by high autocorrelation. Specifically, Figure 7 

demonstrates that control charts based on the original data 

exhibit more instances of out-of-control signals compared to 

those based on residual data. This indicates that using residuals, 

which account for the modeled effects and reduce 

autocorrelation, leads to improved performance in detecting 

deviations from the expected process behavior. Thus, 

employing residual-based control charts can enhance the 

accuracy and reliability of quality control measures in 

manufacturing or other monitored processes. Using three 

times of standard deviation from the center line rules, based on 

original data control chart, there are 181 samples, 6 samples, 

6 samples, 16 samples, 18 samples, and 11 samples are out-of-

control for each variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and 

Y4; respectively. Otherwise, using the same rules for testing, 

based on the residual data control chart, number of samples 

out of control decreasing into 11 samples, 4 samples, 7 

samples, 11 samples, 6 samples and 6 samples for each 

variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and Y4; respectively. 

Even though variable Y2_1 has increasing number of samples 

out of control in residual data control chat, but there five 

consecutive points of out-of-control samples are getting large 

shift from the centerline. 

The overall impression of process stability shown by control 

charts using residual data are rather different than was 

obtained from the control charts based on the original data. 

Otherwise, univariate control chart by original data for each 

variable, the pattern also shows the trend and large shift from 

the average. It might cause by the autocorrelation effects that 

happened on original data. As shown by the Figure 3, we see 

that the autocorrelation effect of the original data is very high 

which shown by the significant lag. 

To address the practical implications of our proposed model 

in a real-world manufacturing context, we emphasize several 

key benefits. Firstly, the MAR-ANN model enhances 

detection sensitivity, enabling the early identification of 

potential quality issues. This allows for prompt corrective 

actions, reducing the incidence of defective products and 

minimizing rework, ultimately enhancing overall product 

quality. Additionally, the model effectively handles 

autocorrelation, a common challenge in traditional control 

charts, ensuring more reliable monitoring and reducing false 

alarms. This reliability is crucial for maintaining consistent 

product quality in continuous-flow manufacturing processes. 

Furthermore, our model is scalable and adaptable to various 

manufacturing processes with complex, multivariate, and 

autocorrelated data, making it suitable for diverse industries, 

from electronics to automotive. The implementation can be 

seamlessly integrated with existing manufacturing execution 
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systems (MES) and statistical process control (SPC) software, 

allowing manufacturers to leverage advanced analytics 

without overhauling their current systems. This integration, 

coupled with the model's ability to lower operational costs by 

improving detection of process deviations and reducing false 

alarms, highlights its economic impact. Additionally, 

successful implementation requires comprehensive training 

for operators and engineers, demonstrating the model's 

benefits in improving process control and reducing false 

alarms. By promoting a culture of continuous improvement, 

manufacturers can use insights gained from the model to refine 

their processes continuously and maintain a competitive edge. 
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Figure 7. Univariate control chart: (a) 𝑥̅ control chart of original data; (b) 𝑥̅ control chart of residual data 

 

 

5. CONCLUSION 

 

This case study highlights the importance of checking for 

autocorrelation and analyzing time series data before using 

control charts. Autocorrelation, where observations are 

dependent on previous ones, can negatively impact control 

chart performance. It can lead to more false alarms, as seen in 

charts built with raw data. Furthermore, in multivariate control 

charts, autocorrelation can mask the true relationships between 

variables. Additionally, dependence between variables can 

affect the performance of even univariate control charts. 

Therefore, using multivariate control charts is generally 

recommended. 

To address the issue of autocorrelation in multivariate data, 

the paper suggests employing a combined approach: an ANN-

based MAR (multivariate autoregressive) model. This 

approach aims to mitigate the effects of autocorrelation and 

improve the effectiveness of control charts. While univariate 

control charts are simpler to implement, they can be 

misleading when dealing with correlated variables. In such 

cases, the T2 Hotelling control chart with decomposition 

techniques is a better option. This method helps identify which 

specific variables are contributing to out-of-control signals. 

The residual control charts, derived from the ANN-based 

model, perform significantly better in detecting mean shifts. 

This improvement is particularly evident in terms of 

sensitivity, where residual control charts showed a higher 

capability in identifying small process changes compared to 

traditional control charts. By emphasizing the practical 

benefits of residual control charts in handling autocorrelated 

multivariate data, our study contributes to the field by 

showcasing an effective solution for improved process 

monitoring and quality control. This approach offers valuable 

insights and practical implications for practitioners aiming to 

enhance their process control systems. 

Based on the analysis of the case study, it is evident that in 

scenarios where detecting small changes in process parameters 

is critical, MCUSUM and MEWMA charts offer advantages 

over the T2 Hotelling control chart. These alternative control 

charts exhibit superior run length performance and greater 

sensitivity in detecting minor shifts in the process's mean 

vector. This heightened sensitivity enables quicker response 

and action in maintaining process quality and efficiency. 

Given that the data in this study were derived from product 

specifications measured by an AOI system, which operates on 

numerical values, an intriguing area for future research 

involves exploring the application of P control charts. P 

control charts are pertinent for monitoring defect proportions 

and could provide valuable insights when applied to control 

charts using image data as input. Analyzing and interpreting 

control charts with image data presents a promising avenue to 

enhance quality control methodologies, particularly in sectors 

reliant on visual inspection and image-based measurements. 

This potential research direction could further advance 

understanding and implementation of robust quality control 

strategies in manufacturing and related industries. 

In future studies, we aim to investigate the optimal selection 

and sensitivity of ANN models for handling multivariate time 

series data in industrial processes. This will involve 

conducting comprehensive experiments to compare various 
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ANN architectures (e.g., MLP, RNN, LSTM, GRU) and 

configurations (e.g., number of layers, neurons per layer, 

activation functions) to identify the most suitable models. 

Additionally, we will perform a sensitivity analysis by 

systematically varying key ANN parameters such as learning 

rate, hidden layer sizes, and regularization terms, as well as 

introducing variations in data quality like noise and missing 

data. By evaluating the impact of these changes on 

performance metrics, we intend to determine the robustness 

and stability of the ANN models and identify the 

configurations that produce the most representative and 

reliable residuals for process monitoring. This research will 

provide deeper insights into optimizing ANN models, 

enhancing the effectiveness of residual control charts, and 

offering valuable guidance for practitioners and researchers in 

improving industrial process monitoring and quality control. 

 

 

REFERENCES 

 

[1] Hawkins, D.M. (1991). Multivariate quality control 

based on regression-adiusted variables. Technometrics, 

33(1): 61-75. 

https://doi.org/10.1080/00401706.1991.10484770 

[2] Noorossana, R., Vaghefi, S.J.M. (2006). Effect of 

autocorrelation on performance of the MCUSUM control 

chart. Quality and Reliability Engineering International, 

22(2): 191-197. https://doi.org/10.1002/qre.695 

[3] Arkat, J., Niaki, S.T.A., Abbasi, B. (2007b). Artificial 

neural networks in applying MCUSUM residuals charts 

for AR (1) processes. Applied Mathematics and 

Computation, 189(2): 1889-1901. 

https://doi.org/10.1016/j.amc.2006.12.081 

[4] Qin, S.J. (2012). Survey on data-driven industrial process 

monitoring and diagnosis. Annual Reviews in Control, 

36(2): 220-234. 

https://doi.org/10.1016/j.arcontrol.2012.09.004 

[5] Khediri, I.B., Weihs, C., Limam, M. (2010). Support 

vector regression control charts for multivariate 

nonlinear autocorrelated processes. Chemometrics and 

Intelligent Laboratory Systems, 103(1): 76-81. 

https://doi.org/10.1016/j.chemolab.2010.05.021 

[6] Loredo, E.N., Jearkpaporn, D., Borror, C.M. (2002). 

Model‐based control chart for autoregressive and 

correlated data. Quality and Reliability Engineering 

International, 18(6): 489-496. 

https://doi.org/10.1002/qre.497 

[7] Psarakis, S., Papaleonida, G.E.A. (2007). SPC 

procedures for monitoring autocorrelated processes. 

Quality Technology & Quantitative Management, 4(4): 

501-540. 

https://doi.org/10.1080/16843703.2007.11673168 

[8] Callao, M.P., Rius, A. (2003). Time series: A 

complementary technique to control charts for 

monitoring analytical systems. Chemometrics and 

Intelligent Laboratory Systems, 66(1): 79-87. 

https://doi.org/10.1016/S0169-7439(03)00009-1 

[9] Issam, B.K., Mohamed, L. (2008). Support vector 

regression based residual MCUSUM control chart for 

autocorrelated process. Applied Mathematics and 

Computation, 201(1-2): 565-574. 

https://doi.org/10.1016/j.amc.2007.12.059 

[10] Alwan, L.C., Roberts, H.V. (1988). Time-series 

modeling for statistical process control. Journal of 

Business & Economic Statistics, 6(1): 87-95. 

https://doi.org/10.1080/07350015.1988.10509640 

[11] Woodall, W.H., Faltin, F.W. (1993). Autocorrelated data 

and SPC. ASQC Statistics Division Newsletter, 13(4): 

18-21.  

[12] Atienza, O.O., Tang, L.C., Ang, B.W. (2002). A 

CUSUM scheme for autocorrelated observations. 

Journal of Quality Technology, 34(2): 187-199. 

https://doi.org/10.1080/00224065.2002.11980145 

[13] Chatterjee, S., Qiu, P. (2009). Distribution-free 

cumulative sum control charts using bootstrap-based 

control limits. Annals of Applied Statistics, 3(1): 349-

369. https://doi.org/10.1214/08-AOAS197 

[14] Li, J., Jeske, D.R., Zhou, Y., Zhang, X. (2019). A 

wavelet-based nonparametric CUSUM control chart for 

autocorrelated processes with applications to network 

surveillance. Quality and Reliability Engineering 

International, 35(2): 644-658. 

https://doi.org/10.1002/qre.2427 

[15] Montgomery, D.C., Mastrangelo, C.M. (1991). Some 

statistical process control methods for autocorrelated 

data. Journal of Quality Technology, 23(3): 179-193. 

https://doi.org/10.1080/00224065.1991.11979321 

[16] Harris, T.J., Ross, W.H. (1991). Statistical process 

control procedures for correlated observations. The 

Canadian Journal of Chemical Engineering, 69(1): 48-57. 

https://doi.org/10.1002/cjce.5450690106 

[17] Zou, C., Tsung, F. (2010). Likelihood ratio-based 

distribution-free EWMA control charts. Journal of 

Quality Technology, 42(2): 174-196. 

https://doi.org/10.1080/00224065.2010.11917815 

[18] Zhou, Q., Zou, C., Wang, Z., Jiang, W. (2012). 

Likelihood-based EWMA charts for monitoring Poisson 

count data with time-varying sample sizes. Journal of the 

American Statistical Association, 107(499): 1049-1062. 

https://doi.org/10.1080/01621459.2012.682811 

[19] Murphy, B.J. (1987). Selecting out of control variables 

with the T2 multivariate quality control procedure. 

Journal of the Royal Statistical Society Series D: The 

Statistician, 36(5): 571-581. 

https://doi.org/10.2307/2348668 

[20] Woodall, W.H., Ncube, M.M. (1985). Multivariate 

CUSUM quality-control procedures. Technometrics, 

27(3): 285-292. 

[21] Healy, J.D. (1987). A note on multivariate CUSUM 

procedures. Technometrics, 29(4): 409-412. 

[22] Lowry, C.A., Woodall, W.H., Champ, C.W., Rigdon, S.E. 

(1992). A multivariate exponentially weighted moving 

average control chart. Technometrics, 34(1): 46-53. 

[23] Dyer, J., Conerly, M., Adams, B.M. (2003). A simulation 

study and evaluation of multivariate forecast based 

control charts applied to ARMA processes. Journal of 

Statistical Computation and Simulation, 73(10): 709-724. 

https://doi.org/10.1080/0094965031000062168 

[24] Kalgonda, A.A., Kulkarni, S.R. (2004). Multivariate 

quality control chart for autocorrelated processes. 

Journal of Applied Statistics, 31(3): 317-327. 

https://doi.org/10.1080/0266476042000184000 

[25] Moraes, D.A.O., Oliveira, F.L.P.D., Duczmal, L.H., 

Cruz, F.R.B.D. (2016). Comparing the inertial effect of 

MEWMA and multivariate sliding window schemes with 

confidence control charts. The International Journal of 

Advanced Manufacturing Technology, 84: 1457-1470. 
https://doi.org/10.1007/s00170-015-7822-7 

2525



 

[26] Chiang, J.Y., Lio, Y.L., Tsai, T.R. (2017). MEWMA 

control chart and process capability indices for simple 

linear profiles with within‐profile autocorrelation. 

Quality and Reliability Engineering International, 33(5): 

1083-1094. https://doi.org/10.1002/qre.2101 

[27] Liang, W., Pu, X., Xiang, D. (2017). A distribution-free 

multivariate CUSUM control chart using dynamic 

control limits. Journal of Applied Statistics, 44(11): 

2075-2093. 

https://doi.org/10.1080/02664763.2016.1247784 

[28] Jarrett, J.E., Pan, X. (2007). The quality control chart for 

monitoring multivariate autocorrelated processes. 

Computational Statistics and Data Analysis, 51(8): 3862-

3870. https://doi.org/10.1016/j.csda.2006.01.020 

[29] Crosier, R.B. (1988). Multivariate generalizations of 

cumulative sum quality-control schemes. Technometrics, 

30(3): 291-303. https://doi.org/10.2307/1270083 

[30] Prabhu, S.S., Runger, G.C. (1997). Designing a 

multivariate EWMA control chart. Journal of Quality 

Technology, 29(1): 8-15. 

https://doi.org/10.1080/00224065.1997.11979720 

[31] Reynolds Jr, M.R., Lu, C.W. (1997). Control charts for 

monitoring processes with autocorrelated data. Nonlinear 

Analysis: Theory, Methods & Applications, 30(7): 4059-

4067. https://doi.org/10.1016/S0362-546X(97)00011-4 

[32] Guh, R.S., Hsieh, Y.C. (1999). A neural network based 

model for abnormal pattern recognition of control charts. 

Computers & Industrial Engineering, 36(1): 97-108. 

https://doi.org/10.1016/S0360-8352(99)00004-2 

[33] Lin, S.Y., Guh, R.S., Shiue, Y.R. (2011). Effective 

recognition of control chart patterns in autocorrelated 

data using a support vector machine based approach. 

Computers and Industrial Engineering, 61(4): 1123-1134. 

https://doi.org/10.1016/j.cie.2011.06.025 

[34] Masood, I., Hassan, A. (2010). Issues in development of 

artificial neural network-based control chart pattern 

recognition schemes. European Journal of Scientific 

Research, 39(3): 336-355. 

[35] Yang, W.A., Zhou, W., Liao, W., Guo, Y. (2015). 

Identification and quantification of concurrent control 

chart patterns using extreme-point symmetric mode 

decomposition and extreme learning machines. 

Neurocomputing, 147(1): 260-270. 

https://doi.org/10.1016/j.neucom.2014.06.068 

[36] Wang, T.Y., Chen, L.H. (2002). Mean shifts detection 

and classification in multivariate process: A neural-fuzzy 

approach. Journal of Intelligent Manufacturing, 13: 211-

221. https://doi.org/10.1023/A:1015738906895 

[37] Niaki, S.T.A., Abbasi, B. (2005). Fault diagnosis in 

multivariate control charts using artificial neural 

networks. Quality and Reliability Engineering 

International, 21(8): 825-840. 

https://doi.org/10.1002/qre.689 

[38] Chongfuangprinya, P., Kim, S.B., Park, S.K., Sukchotrat, 

T. (2011). Integration of support vector machines and 

control charts for multivariate process monitoring. 

Journal of Statistical Computation and Simulation, 81(9): 

1157-1173. 

https://doi.org/10.1080/00949651003789074 

[39] Lee, S., Kwak, M., Tsui, K.L., Kim, S.B. (2019). Process 

monitoring using variational autoencoder for high-

dimensional nonlinear processes. Engineering 

Applications of Artificial Intelligence, 83(April): 13-27. 

https://doi.org/10.1016/j.engappai.2019.04.013 

[40] Phaladiganon, P., Kim, S.B., Chen, V.C.P., Jiang, W. 

(2013). Principal component analysis-based control 

charts for multivariate nonnormal distributions. Expert 

Systems with Applications, 40(8): 3044-3054. 

https://doi.org/10.1016/j.eswa.2012.12.020 

[41] Wang, K.J., Asrini, L.J. (2022). Deep learning-based 

automatic optical inspection system empowered by 

online multivariate autocorrelated process control. The 

International Journal of Advanced Manufacturing 

Technology, 120(9): 6143-6162. 

https://doi.org/10.1007/s00170-022-09161-9 

[42] Yang, C.L., Sutrisno, H. (2021). Reducing response 

delay in multivariate process monitoring by a stacked 

long-short term memory network and real-time contrasts. 

Computers & Industrial Engineering, 153: 107052. 

https://doi.org/10.1016/j.cie.2020.107052 

[43] Henze, N., Zirkler, B. (1990). A class of invariant 

consistent tests for multivariate normality. 

Communications in Statistics-Theory and Methods, 

19(10): 3595-3617. 

https://doi.org/10.1080/03610929008830400 

 

2526




