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Recognizing different kinds of modifications and identifying the altered portions of the 

face region have been the main focus of recent developments in face image 

manipulation detection. In actual applications, the ability to restore the facial region 

after modification localization would be highly helpful, but this was not addressed in 

earlier studies. This research utilizes integer wavelet transform (IWT) coefficients to 

produce recovery information from the face region and watermarking-based technique 

for incorporating the generated data into the cover face image. Three distinct algorithms 

have been proposed for producing the recovery data, and the one demonstrating superior 

performance, specifically IWT (cdf 3.5), is employed within main algorithms. The 

novelty of the suggested technique stems from its integration of an IWT-based recovery 

method, along with the manipulation detection process, which has not been showcased 

in prior research studies. The main contributions of the suggested algorithm include its 

efficiency to precisely identify altered blocks within the facial area and to reinstate the 

unaltered version when modifications are present. The advantage of the proposed 

algorithm is demonstrated through the comparisons with earlier methods where it can 

be used in digital art to ensure the originality, integrity, and security of facial images. 

The practical applications include various fields such as forensic investigations, digital 

image authentication, online safety, content moderation, medical imaging, security 

systems, entertainment, privacy protection, historical documentation, The limitation of 

the proposed algorithm is the restricted embedding capacity. The future researches can 

be conducted in different directions such as enhancing the embedding capacity, 

implementing a real-time detection system for live video streams, and investigating the 

main requirements for efficient algorithm’s execution on hardware devices. 
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1. INTRODUCTION

Rapid technological advancements that make online photo 

sharing easier are said to be the main reason why so many 

people now rely on digital information exchange. Over the 

years, while the technology is improved, the digital images 

have been easily shared through internet for many purposes [1-

3]. Nowadays, it is very convenient for the technology users to 

upload their images and personal information on the cloud to 

be available whenever they need it, however, the users’ main 

anxieties revolve around the safety of the uploaded data [4, 5]. 

Various methods and security mechanisms have been 

introduced to guarantee safe sharing of sensitive data and 

digital images, including encryption, steganography, and 

watermarking [6-8]. The face image, which is a crucial kind of 

data in digital multimedia, has been shared through internet for 

different intends such as identity discrimination in biometric 

systems (i.e., for security and access control) [9], celebrity and 

fame intentions, social news, face recognition applications, 

and many others [9-12]. 

In recent years, due to the rapid advancements in technology, 

digital facial manipulation methods, algorithms, and 

applications have seen extensive dissemination [13-17]. Facial 

images manipulation techniques are either intentional attacks 

(i.e., there are some harmful intentions behind applying the 

manipulation process) or unintentional attacks (i.e., the 

manipulation process is applied for innocent intentions such as 

beautifying the face, changing the lighting, adding sum funny 

stickers, …) which in both cases are changing the contents of 

the facial image thus changing its features [18]. The field of 

data security has experienced a growing fascination with facial 

image manipulation techniques and their impact on data 

security systems. Over the past few years, the term 

'DeepFakes' has captured the curiosity of the research 

community, paving the way for a burgeoning area of research 

[19-24]. Generally, the DeepFakes referred to the fake digital 

data that has been created using deep learning techniques. 

DeepFakes have been used maliciously for financial fraud, 

disinformation campaigns, and the production of phony 

pornography. Therefore, the researchers dedicated their efforts 
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for developing face image manipulation detection (FIMD) 

algorithms that can serve the general media forensics [25-30]. 

To current date, the FIMD algorithms have many 

limitations and there is no global FIMD algorithm, therefore, 

the doors of this research topic are opened to find new 

contributions in this field. Some FIMD restrictions and 

difficulties have been highlighted by Salih et al. [31] such as:  

• Swift advancements in manipulation tools: Ongoing

development and refinement of applications and tools

for generating counterfeit images and videos pose an

enduring challenge for detection techniques. As

manipulators become more sophisticated, detection

methods must adapt swiftly.

• Restricted access to datasets: The availability of

extensive, top-quality datasets necessary for training

and validating detection algorithms is often constrained.

Gaining permissions from dataset owners can be

cumbersome and limiting.

• Generalization concerns in deep learning: Methods

rooted in deep learning hinge on specific training

datasets, and their effectiveness diminishes when faced

with input images significantly different from the

training data. Achieving robust generalization remains

a challenge.

• Standardization deficiency: The absence of

standardized datasets, experimental procedures, and

evaluation metrics makes it challenging to consistently

compare and assess different detection studies and

methods.

• Resource-intensive supervised algorithms: Many

detection techniques rely on supervised learning,

demanding substantial time and effort for data labeling

and model training.

• High-quality counterfeit images: The process of

producing high-quality fake photos has progressed,

making it harder for detection algorithms to discern

between altered and genuine contents.

• Complexity of deep learning-based approaches:

Most available detection techniques are founded on

deep learning, which involves considerable 

computational complexity, constraining their 

applicability in resource-constrained contexts. 

One of the suggested solutions to these limitations is the use 

of digital image watermarking [31] to introduce new FIMD 

techniques that can detect different manipulations without the 

need for training and with high detection accuracy. Inspired by 

this suggestion, the work [32, 33] presents a new FIMD 

scheme using content-based image watermarking algorithm 

[34-36]. The scheme [32, 33] obtained promising results in 

detecting different types of manipulations with 100% accuracy, 

however, it cannot recover the original face region. In data 

security and forensics systems, it will be very useful if the 

FIMD scheme can detect the manipulations and recover the 

original face when manipulations exist. Face recovery after 

manipulation detection is a critical aspect of data forensics, 

serving multiple essential purposes. It preserves the integrity 

of digital evidence, ensuring that manipulated images don't 

compromise the accuracy and trustworthiness of evidence in 

forensic investigations. In legal proceedings, it bolsters the 

admissibility of evidence by verifying its unaltered state, 

enhancing its legal validity. Face recovery also plays a pivotal 

role in identifying and attributing individuals involved in 

cybercrimes, fraud, or identity theft. By restoring the original 

face, it aids in accurately connecting individuals to criminal 

activities. 

Moreover, face recovery helps complete the forensic puzzle 

by addressing cases in which manipulated images obscure 

vital information. It assists in piecing together the full picture, 

providing essential details and clues for thorough analysis. 

Privacy protection is another key facet; when images are 

manipulated for privacy invasion or harassment, face recovery 

safeguards individuals' privacy and dignity. Additionally, it 

can prevent false accusations by exonerating innocent 

individuals wrongly incriminated through manipulated images. 

The face recovery offers a clear reference point and expedites 

the analysis process. In digital forensics, it contributes to 

comprehensive evidence examination, and in matters of public 

safety, it aids in accurate identification, ensuring the safety and 

security of the public.  

Drawing inspiration from concepts related to tamper 

detection and image recovery in medical contexts [37-40], we 

propose incorporating a recovery algorithm into the FIMD 

scheme as part of the process [32, 33]. Based on previous 

studies of the medical images’ authentication techniques [41-

45] which have been applied to grayscale medical images, we

suggest three different algorithms (i.e., average of each (4×4)

pixels image’s block, average of each (2×2) pixels image’s

block, and IWT based algorithms) for generating recovery data

of the color face region. To test the suggested methods for

producing recovery information for the face region, initial

experiments have been carried out. The objective is to choose

the approach that can minimize the payload length while

restoring the facial region with good visual quality. Based on

the preliminary study, we found that the IWT-based algorithm

obtained the best results compared to average (4×4) and

average (2×2) based algorithms, therefore, a new algorithm is

proposed based on IWT and image watermarking technology.

The presented work’s innovations and contributions can be

summed up as follows:

• The capacity of the suggested technique to restore the

original face region in addition to precisely identifying

the altered face region, a feature that has not been

highlighted in earlier studies in this field.

• The preliminary algorithms provide the details of the

three suggested recovery algorithms which are useful

for future researches in this field.

• The inclusion of the proposed IWT (cdf 3.5)-based

algorithm in face image authentication scheme to

generate and recover the color face region with high

visual fidelity.

The remaining portion of the paper is divided into four 

sections: an overview of relevant works, an explanation of the 

suggested algorithms for producing recovery data from the 

color face region, specifics of the extraction and embedding 

algorithms, the outcomes of the experiments carried out, and 

research conclusions. 

2. RELATED WORKS

In recent years, there has been a proliferation of deep 

learning-based techniques for FIMD. The subsequent 

paragraphs briefly introduce some of these techniques and 

briefly illustrate the pros and cons of each technique, which 

served as the driving force for conducting this research. 
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In the study [46], a hybrid CNN-LSTM model was 

developed to distinguish between altered and unaltered regions 

within images. Notably, this approach focuses on the 

distinctive features found in the borders shared between 

manipulated and nearby unmanipulated pixels, emphasizing 

spatial structures as a key characteristic. A forgery detection 

method based on supervised learning was presented in another 

paper [47]. This technique made use of the Fruit Fly 

Optimization Algorithm (FOA) for optimization and a Support 

Vector Neural Network (SVNN) for supervised learning. The 

input data for the classifier was created by using texture 

operators, wavelet transforms, and Gabor filters to extract 

features from facial photographs. The fruit fly optimization 

method was then used to train the classifier to identify 

manipulation. It is worth noting that conventional methods 

mentioned by Bappy et al. [46] and Cristin et al. [47] are 

heavily relied on manually crafted features, which proved 

inefficient and time-consuming, as they necessitated extensive 

testing to select relevant features and classification algorithms. 

To enhance accuracy and reduce complexity, an alternative 

FIMD technique has been introduced relying on a specialized 

Convolutional Neural Network (CNN) [48]. This approach 

avoids concentrating solely on specific manipulation attributes 

to achieve dependable detection results. The method employs 

a network model which incorporates multiple convolutional 

layers for effective feature extraction at various levels of 

abstraction within manipulated regions. Furthermore, to tackle 

the challenge of an unbalanced dataset, adaptive boosting 

(AdaBoost) and extreme gradient boosting were employed. 

Other FIMD techniques have explored the utilization of 

capsule networks for face image forensics applications [49-52]. 

In the study [49], a capsule network was employed, offering 

performance comparable to traditional convolutional neural 

networks (CNNs) but with fewer parameters. This was done to 

mitigate domain-specific limitations and inefficiencies. The 

study advanced and improved the knowledge of this strategy 

within the field of picture forensics by introducing the use of 

capsule networks in forensics. Nguyen et al. [50] elaborated 

on how CNN-based detectors have historically sought 

performance improvements by increasing depth, width, 

internal connections, or merging characteristics and predicted 

probabilities from different CNNs. Consequently, CNN-based 

detectors grew in size, necessitated more training data, and 

demanded increased memory and processing resources. Their 

ability to generalize across various manipulation techniques 

was also a concern. 

To address these challenges, a capsule network tailored for 

forensics, known as the "Capsule-Forensics" network, was 

proposed. To improve performance, the method used a 

dynamic routing and a pretrained feature extractor with 

pooling process. Another FIMD strategy employing capsule 

networks was used in the study by Khalil [51] with the goal of 

overcoming low-generalization concerns and thwarting face 

swap manipulations. Preprocessing was used in this method to 

reduce noise in the data and enhance input quality, which may 

have improved the detection model’s accuracy and 

dependability. However, this enhancement came at the 

expense of increased processing time and complexity. Finally, 

Cao et al. [52] presented that shortcoming in the capsule 

network-based method from the study [49] were highlighted, 

particularly the use of a single network with only three layers 

in the feature extraction module, leading to inconsistencies 

between features and the human visual process. The 

supervised network is another FIMD technique that Cao et al. 

[52] designed to address this problem. These capsule-based 

strategies are innovative attempts to improve FIMD methods; 

each strategy focuses on particular difficulties and constraints 

associated with the detection of image alteration. 

Furthermore, different FIMD techniques are categorized 

based on the domains that they target for image feature 

assessment, with two prominent categories being spatial-

domain based references [26-30, 53-56] and transform-

domain based references [57-62]. In the study [53], an FIMD 

technique was introduced that incorporates a preprocessing 

stage employing a modified Capsule Network (CapsNet) with 

an enhanced routing mechanism. This approach showcased 

superior performance when applied to the DFDC-P dataset. 

Moving to Hu et al.’s study [26], the algorithm detects corneal 

specular reflections by analyzing the disparity in light source 

reflections in the eyes. Handcrafted features extracted from the 

spatial domain are employed for manipulation detection. A 

drawback here is the reliance on high-quality images, which 

may not align with the typical quality of images found on most 

social networks. Addressing the limitations [26], an enhanced 

algorithm [27] incorporated a super-resolution module to 

improve image quality before utilizing a CNN and analyzing 

differences in handcrafted features for manipulation detection. 

Meanwhile, Yang et al. [28] relied on handcrafted features 

containing facial landmark locations, such as eye, nose, and 

mouth tips, to identify manipulation through the detection of 

unnatural feature placements. In the reference [29], another 

handcrafted feature-based algorithm detected manipulation by 

identifying deviations in natural correlations among color 

bands. In references [29, 30], an improved version was 

introduced using special features to identify tampering and 

applying filtering to the image’s chrominance components. 

Nataraj et al. [54] introduced yet another handcrafted 

feature-based algorithm that uncovered invisible artifacts in 

high-frequency image components. Co-occurrence matrices 

were extracted from image channels and used as input for 

manipulation detection via a CNN. To expedite processing, 

Barni et al. [55] utilized pre-trained CNN models [63] instead 

of traditional CNN modules. In the study [56], manipulation 

detection relied on network layer activity using the 

Deepxplore algorithm. These FIMD approaches span a 

spectrum of techniques within the spatial-domain category, 

each addressing distinct challenges and employing various 

feature extraction methods for image manipulation detection. 

Frequency artifacts serve as input features for the networks 

[57-62]. In the study [57], the approach employs a k-nearest 

neighbors (KNN) classifier [64] with energy spectral 

distribution as an input feature. Mi et al. [58] used the 

frequency spectrum as input for a CNN, detecting pronounced 

peaks in the spectrum when manipulation occurs. Zhang et al. 

[59] explored various network architectures, datasets, and 

resolutions to identify artifacts used as input for a CNN 

classifier. It involves post-processing and spectral loss during 

GAN training to derive fitting parameters for manipulation 

detection [60-62]. 

To avoid the limitations of the deep learning-based methods, 

Salih et al. [32, 33] presented a watermarking-based FIMD 

technology. The scheme consists of two main stages that are 

face region detection using Multi-task Cascaded Neural 

Network (MTCNN) and Slantlet transform (SLT)-based 

algorithms. The process commences with the identification of 

the facial area through MTCNN, providing data about the 

boundaries of the face box. Subsequently, the output from 

MTCNN is fine-tuned to define the precise pixels within the 
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facial region. Based on the adjusted outcome, a mask image is 

then generated for the purpose of categorizing image blocks. 

The mask image is generated using zeros then the pixels 

related to the face region are set to ones. The initial facial 

image and the mask image are both segmented into blocks 

each measuring 16×16 pixels. These blocks are then 

categorized into two distinct groups: those included in the 

facial region and those located outside it. The manipulation 

localization data is derived from the blocks within the facial 

region and is subsequently incorporated into the blocks 

situated outside the facial region using the SLT-based 

watermarking method. The scheme obtained promising 

performance compared to the deep learning-based methods, 

however, the capability of restoring the face region after 

alterations is not available. Each FIMD technique has its pros 

and cons, and no method capable of addressing all limitations. 

Based on the abovementioned review, this study proposes 

three distinct algorithms that are applied in order to enable the 

recovery of the original facial region. The best-performing 

method is then incorporated into the major algorithms of the 

proposed system. The suggested algorithms are explained in 

detail in the section that follows. 
 

 

3. PROPOSED ALGORITHMS 
 

The proposed approach comprises two primary algorithms 

known as the embedding and extraction algorithms. During the 

embedding phase, information related to manipulation 

detection and facial recovery is generated from the facial 

region and subsequently integrated into the non-facial area. In 

the extraction phase, this embedded information is retrieved 

from the non-facial area and employed for detecting 

manipulations and restoring the facial region in case 

manipulations are detected. The succeeding subsections 

elaborate on these proposed algorithms. 

 

 
 

Figure 1. The algorithm suggested for creating recovery data through average (2×2) 
 

3.1 Proposed algorithms for generating recovery 

information 

 

Three suggested techniques are shown in this part for 

recovering the face region from the generated bits after 

obtaining recovery information from the face region and 

transforming it into a binary sequence. These techniques are 

based on the average of 2×2 and 4×4-pixel blocks, as well as 
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the Integer Wavelet Transform (IWT). To find the best 

algorithm for producing recovery information for the face 

region, a preliminary analysis was carried out on color face 

regions from different face images. 
 

3.1.1 Recovery data generation using average (2×2) method 

The first proposed recovery algorithm shown in Figure 1 

starts at the sender side by reading the face image and 

detecting the face box using MTCNN-based algorithm [33]. 

The output parameters of the resultant face window are the 

width (𝑤), height (ℎ), top left corner (𝑥1, 𝑦1), and bottom right 

corner (𝑥2, 𝑦2). The parameters 𝑥2 and 𝑦2 are adjusted using 

the following equations to make the size of the window 

divisible by 16 (which is required at the embedding procedure): 
 

𝑥2_𝑛𝑒𝑤 = 𝑥2 − 𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟 (ℎ, 16) (1) 

 

𝑦2_𝑛𝑒𝑤 = 𝑦2 − 𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟 (𝑤, 16) (2) 

 

The pixels of the selected face window are defined as 

(𝑥1: 𝑥2_𝑛𝑒𝑤 , 𝑦1: 𝑦2_𝑛𝑒𝑤). The chosen face window is split into 

2×2-pixel blocks, and the average value of each block is 

computed and rounded to the closest integer number. After 

that, these average values are transformed into 8-bit binary 

sequences. The recovery data is created by concatenating these 

binary sequences to create a single binary sequence. To 

retrieve the average values, the binary sequence is split into 8-

bit subsequences at the receiving end. Then, every 2×2-pixel 

block in the face region is rebuilt using these average values. 
 

 
 

Figure 2. The algorithm suggested for creating recovery data through average (4×4) 
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3.1.2 Recovery data generation using average (4×4) method 

The second proposed recovery algorithm shown in Figure 2 

starts by reading the input image and identifying the face box. 

The size of the blocks, which are 4×4 pixels rather than 2×2 

pixels, is the main distinction between this algorithm and the 

previous one. The generated recovery sequence has less length 

compared to the (2×2)-based algorithm which is at the cost of 

low visual quality of the recovered face region. 

3.1.3 Recovery data generation using IWT method 

The third proposed recovery algorithm shown in Figure 3 

has the same starting procedure as explained in Section 3.1.1. 

After applying the parameters adjustment process using Eqs. 
(1) and (2), the selected face region is transformed using IWT. 

The resultant coefficients after transform are divided into four 

subbands called (approximation (CA), horizontal (CH), 

vertical (CV), and diagonal (CD)). The 𝐶𝐴  subbands is 

selected to generate the recovery data while the other subbands 

are ignored. The coefficients are adjusted using adjustment 

rules that have been presented by Tareef et al. [45]. Then, the 

resultant coefficients are converted to binary sequences each 

of length 8 bits and concatenated to form a single binary 

sequence which represents the recovery data. 

Figure 3. The algorithm suggested for creating recovery data through IWT 

At the receiver side, the binary sequence is divided into 

subsequences and CA coefficients are recovered and 

rearranged to form the CA subband. The other three subbands 

(i.e., CH, CV, and CD) are set to zeros, then the face region is 

retrieved using inverse IWT. 

The wavelet transform has different families, therefore, a 

test of visual quality using Peak Signal-to-Noise Ratio (PSNR) 

at different wavelet types has been performed to discover the 
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wavelet type that gives the highest PSNR values. Samples of 

experimental outcomes for testing various wavelet families are 

shown in Table 1 which proved that the IWT (cdf 3.5) obtained 

the best results. 

 

Table 1. Comparison of PSNR for different wavelet families 
 

Wavelet Type 
PSNR (dB) 

Image 1 Image 2 Image 3 Image 4 Image 5 

bior5.5 24.3623 18.0065 18.8657 17.415 17.7289 

cdf1.1 32.0368 37.178 33.5153 34.9857 30.2974 

cdf1.3 31.9584 37.0745 33.4299 34.9069 30.2254 

cdf1.5 31.8989 37.0062 33.3642 34.8596 30.1664 

cdf2.2 32.0336 37.3676 33.2941 33.263 29.6802 

cdf2.4 32.0741 37.4101 33.3312 33.2974 29.717 

cdf2.6 32.079 37.4246 33.3373 33.3031 29.7214 

cdf3.1 32.7623 38.1706 34.5836 35.4071 30.3429 

cdf3.3 32.9486 38.3417 34.7419 35.5681 30.5224 

cdf3.5 32.9982 38.394 34.788 35.6123 30.5773 

cdf4.2 31.9031 37.0988 33.3159 33.397 29.5387 

cdf4.4 32.1684 37.4017 33.5695 33.7094 29.8129 

cdf4.6 32.2646 37.5202 33.6766 33.8286 29.9253 

cdf5.1 31.1605 36.3035 33.2491 33.8112 28.7295 

cdf5.3 30.5142 35.307 32.6954 33.0712 28.0457 

cdf5.5 32.2911 37.0001 34.016 34.5233 29.7416 

cdf6.2 28.9913 33.5113 30.3685 30.808 27.007 

cdf6.4 30.1049 34.5366 31.3998 31.7553 28.0684 

cdf6.6 30.5497 34.9254 31.7538 32.1625 28.4905 

db2 32.7411 37.6525 34.4431 35.2105 29.9604 

db3 32.5144 36.8807 34.222 33.9149 28.7998 

db6 31.274 34.1777 32.7085 30.8518 26.2203 

db8 30.1001 32.0581 30.9866 29.0037 24.9296 

Haar 32.0368 37.178 33.5153 34.9857 30.2974 

sym2 32.7411 37.6525 34.4431 35.2105 29.9604 

sym3 14.6255 10.4511 10.2051 9.8947 11.1383 

sym4 32.3373 37.7897 33.7536 34.0072 30.0528 

sym5 32.856 37.8219 34.5598 35.3588 30.5005 

sym6 24.8445 26.9725 24.1389 20.751 18.4486 

sym7 25.0551 27.7253 24.8635 21.3963 19.0716 

Max. PSNR 32.9982 38.394 34.788 35.6123 30.5773 

 

 
 

Figure 4. Comparison between the three recovery algorithms for sample test images 
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Figure 5. Block diagram for the proposed embedding 

algorithm 

 

3.1.4 Comparison between the three suggested algorithms 

The proposed work in this paper is intended to be applied in 

real-world applications, therefore, different face images have 

been collected from various websites [65-67] for experimental 

tests.  

To evaluate the three recovery algorithms, sample test 

images have been used. The recovered face regions, their 

corresponding 𝑃𝑆𝑁𝑅  values, and the payload lengths are 

shown in Figure 4. The strength of the average (2×2) and the 

average (4×4) algorithms is their easy to implement procedure 

which requires direct processing of the image pixels. While the 

limitation of these two methods is the degradation in the PSNR 

values. The results proved that the payload of average (4×4) 

method is lower than the other methods, however, the PSNR 

values are very low, therefore, this method has not been 

adopted in the proposed scheme. The average (2×2) and IWT 

(cdf 3.5) obtained the same length of the binary sequence but 

the visual quality results using IWT (cdf 3.5) are higher, 

consequently, the IWT (cdf 3.5)-based algorithm has been 

adopted in the proposed scheme. Although the IWT-based 

algorithm is complex compared to the two other suggested 

algorithms, it can be recommended for practical applications 

because it can obtain a good compromise between the length 

of the generated data and the PSNR values of the retrieved face 

region. 

 

3.2 Embedding algorithm 

 

The embedding algorithm introduced here operates on the 

sender’s end, taking the original facial image 𝐼𝑓(𝑀 × 𝑁 × 3) 

as input and producing the watermarked facial image 𝐼𝑤(𝑀 ×
𝑁 × 3) as output, with M representing the height and N 

signifying the width of the original facial image. Figure 5 

illustrates the block diagram of this embedding algorithm, 

while the specific steps of the algorithm are detailed below: 

 

3.2.1 Face area detection and selection 

MTCNN is utilized for face box detection within 𝐼𝑓, and the 

outcome of this process is adjusted to isolate the pixels within 

the facial area, following the procedure detailed by Salih et al. 

[32]. 

 

3.2.2 Mask image generation 

Based on the outcome of the prior step, a binary mask image 

with dimensions (M×N) is produced, where pixels within the 

facial region are set to ‘1’ while pixels outside the facial region 

are set to ‘0’. 

 

3.2.3 Generation of recovery data 

The algorithm starts by reading the face region and applying 

the IWT (cdf 3.5) to each channel from the face region. The 

output coefficients are divided into four subbands called (CA, 

CH, CV, and CD). Only CA coefficients are selected and 

adjusted to ensure their values are between (0 to 255) using the 

following: 

 

𝐶𝐴𝑛𝑒𝑤(𝑖, 𝑗) = {

0 𝑖𝑓 𝐶𝐴(𝑖, 𝑗) < 0

255 𝑖𝑓 𝐶𝐴(𝑖, 𝑗) > 255

𝐶𝐴(𝑖, 𝑗) 𝑖𝑓 0 ≤ 𝐶𝐴(𝑖, 𝑗) ≤ 255

  (3) 

 

where, 𝐶𝐴(𝑖, 𝑗) and 𝐶𝐴𝑛𝑒𝑤(𝑖, 𝑗) are the original and the 

adjusted approximation coefficients, respectively. 

Each coefficient in 𝐶𝐴𝑛𝑒𝑤(𝑖, 𝑗) is converted to 8 bits binary 

number thereafter one binary sequence called 𝐵𝑖𝑛𝐶𝐴  is 

generated from the binary representation of the coefficients. 

The process of generating the recovery information from one 

channel of the color face region is repeated to obtain the 

recovery data binary sequences for the three channels. 

 

3.2.4 Dividing images and blocks classification 

As depicted in Figure 5, a single channel from 𝐼𝑓  is 

subdivided into blocks. The mask image is processed using the 

same process. The channel blocks are then divided into two 

groups based on the average of the mask image blocks: those 

that belong to the non-facial region and those that belong to 

the facial region. The equivalent channel block at the same 

place is classed as part of the face region if the average of a 

mask image block is not zero, and as part of the non-facial 

region otherwise. 

 

3.2.5 Generation of localization data 

The localization data is produced by deriving average 

values for each block within the facial region. These average 

values are transformed into binary format, and the resulting 

binary sequences are combined to form a single binary 

sequence referred to as 𝐵𝑖𝑛𝐴𝑉𝐺 . This procedure of generating 

the localization data is replicated for all three channels of 𝐼𝑓. 
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3.2.6 Binary sequence embedding 

The 𝐵𝑖𝑛𝐶𝐴  and 𝐵𝑖𝑛𝐴𝑉𝐺  are concatenated to form 𝐵𝑖𝑛𝑆𝑒𝑞

which must be embedded in the blocks belong to non-facial 

region. As explained by Salih et al. [32], the SLT-based 

watermark embedding procedure is applied to embed the 

𝐵𝑖𝑛𝑆𝑒𝑞 in the blocks and obtain the watermarked ones.

3.2.7 Watermarked image construction 

The watermarked blocks are structured to create the 

watermarked channel, and this process is iterated to acquire 

the three watermarked channels. The final watermarked facial 

image is assembled by combining these watermarked channels. 

3.3 Extraction algorithm 

The extraction algorithm suggested here is implemented on 

the receiver’s end, with the watermarked facial image as the 

input and the output representing the outcome of facial image 

authentication. The block diagram of this extraction technique 

is presented in Figure 6, and the individual steps of the 

algorithm are described below: 

Figure 6. Block diagram for the proposed extraction 

algorithm 

3.3.1 Face area detection and selection 

The process that was applied at subsection (3.2.1) is 

replicated here. 

3.3.2 Mask image generation 

The process that was applied at subsection (3.2.2) is 

replicated here. 

3.3.3 Dividing images and blocks classification 

The process that was applied at subsection (3.2.4) is 

replicated here. 

3.3.4 Binary sequence extraction and separate sequences 

At this point, the binary sequence encoded in the blocks 

outside of the face region is extracted using the data extraction 

technique from [32]. Two subsequences are separated from the 

extracted 𝐵𝑖𝑛𝑆𝑒𝑞 : one for recovery and the other for

localization (i.e., 𝐵𝑖𝑛𝐶𝐴 and 𝐵𝑖𝑛𝐴𝑉𝐺).

3.3.5 Manipulation localization 

Calculate the average values of the face region blocks from 

step 3.3.3. Recover the average values from binary sequence 

𝐵𝑖𝑛𝐴𝑉𝐺  that have been extracted in step 3.3.4. Compare the

extracted and calculated average values to detect alterations. If 

the average values are identical, the block is deemed authentic. 

If the average values differ, the block is considered 

unauthentic, and it is localized by drawing a border around its 

pixels. The procedure then continues to recover the face region. 

3.3.6 Recovery of face region 

Recover 𝐶𝐴 coefficients from the binary sequence (𝐵𝑖𝑛𝐶𝐴)

then set the other subbands (i.e., 𝐶𝐻, 𝐶𝑉, and 𝐶𝐷) to zeros. 

Apply inverse IWT (cdf 3.5) to recover the face region. 

4. EXPERIMENTAL RESULTS AND DISCUSSION

Using a range of test images, experiments have been 

conducted to assess the effectiveness of the suggested 

technique. Examples of these test images can be seen in Figure 

7, featuring images of varying dimensions and different sizes 

of facial regions [65-67]. The subsequent sections will present 

the experiments along with their discussions, culminating in a 

comprehensive comparison with existing FIMD schemes. 

Figure 7. Sample test image 

The major findings of these tests showed that the size of the 

chosen face region affects the overall number of bits in the 

binary sequence, while the dimensions of the original image 

and the face region dictate the embedding capacity. The 
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suggested approach is able to recover the face region with 

excellent visual quality and embeds the binary sequence into 

the image correctly and without producing any visual 

distortions. Various manipulations have been imposed to the 

test images and the outcomes are promising as illustrated in 

the following subsections. The efficiency of the suggested 

algorithms in identifying various manipulations and retrieving 

the original face region when such manipulations are detected 

was demonstrated by a comparison with earlier FIMD systems. 

4.1 Capacity and payload test 

The payload is the length of the binary sequence created 

from the localization and recovery data, whereas capacity is 

the total amount of bits that can be placed in the non-face 

region. The experiment's findings for the sample photos in 

Figure 7 are presented in Table 2. The results verified that the 

payload grows along with the face region size and vice versa. 

The size of the face region and the original image both affect 

capacity; a larger ratio between the size of the face region and 

the original image results in a lower capacity. 

Table 2. Capacity and payload test results 

Image 

Name 

Image 

Size 

M×N×3 

Size of Face 

Region 

H×W×3 

Payload 

(bits) 

Capacity 

(bits) 

Img_1 570×1014 160×128 170880 404352 

Img_2 600×1200 112×80 74880 523584 

Img_3 1152×2048 432×384 1379520 1639872 

Img_4 1152×2048 288×224 537216 1714752 

Img_5 536×1024 144×144 172992 386304 

Img_6 600×1200 224×192 358464 495360 

Img_7 640×800 80×64 43008 378240 

Img_8 1669×2500 256×224 477120 3069312 

Img_9 455×728 128×128 136896 226368 

Img_10 608×1080 224×176 328512 454272 
Notes: M = height and N = width of the original face image. 

H = height and W = width of the selected face region.  

4.2 Visual quality and time complexity test 

The PSNR between the original facial image and its 

watermarked version was computed in order to assess the 

images’ visual quality after embedding data. To calculate the 

time complexity of the extraction and embedding techniques, 

MATLAB’s “tic toc” commands were utilized. Eight 

gigabytes of RAM and a 2.60GHz Intel® Core TM i7 CPU 

powered the experiment’s PC. The outcomes, displayed in 

Table 3, demonstrate the efficacy of the suggested algorithms 

in generating images of superior quality. In addition, the 

analysis in this experiment showed that the embedding process 

is faster than the extraction procedure. 

Table 3. Visual quality and time complexity test results 

Image 

Name 

PSNR 

(dB) 

Embedding Time 

(sec.) 

Extraction Time 

(sec.) 

Img_1 45.0877 0.872964 11.360993 

Img_2 54.0449 0.960417 7.56287 

Img_3 44.3761 3.070259 23.72201 

Img_4 48.2253 2.479163 37.787807 

Img_5 42.1705 0.881936 17.123695 

Img_6 46.1548 1.094932 24.019591 

Img_7 53.0178 0.76407 10.367643 

Img_8 56.5061 3.642619 35.756902 

Img_9 38.336 0.867687 13.792615 

Img_10 46.1699 1.021984 24.837479 

Figure 8. Manipulations reveal and face region recovery for 

‘Img_1’ 

Figure 9. Manipulations reveal and face region recovery for 

‘Img_8’ 

Figure 10. Manipulations reveal and face region recovery for 

‘Img_7’ 

4.3 Face manipulation localization and recovery 

The watermarked facial images were subjected to a variety 

of attacks in order to evaluate the scheme’s capability to 

identify manipulations within the facial region and restore the 

original facial area when such manipulations occur. Sample 

findings, shown in Figures 8 to 10, show that, regardless of the 

size of the modified area, the suggested scheme can 

successfully recover the original facial area and identify the 

altered region with accuracy. 

4.4 Comparison with the state-of-the-art schemes 

By efficiently detecting different types of manipulations, 

precisely identifying the modified parts within the facial area, 

and reconstructing the facial region when manipulations are 

identified, the suggested methodology outperforms multiple 

state-of-the-art methods. A thorough comparison of this 

method and other FIMD systems is provided in Table 4. 

Compared to deep learning-based algorithms that 

necessitate extensive training times, watermarking-based 

algorithms demonstrate greater efficiency in terms of both 
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speed and accuracy. Deep learning-based algorithms tend to 

excel when applied to specific test images closely resembling 

the training dataset, while watermarking-based algorithms 

exhibit versatility, capable of being employed on a wider range 

of input images. Notably, the proposed algorithm outperforms 

the scheme described in studies [32, 33] because it possesses 

the capability to recover the original facial region, an aspect in 

which the latter schemes fall short. 

 

Table 4. Comparison with existing FIMD schemes 

 

Characteristics 
Schemes 

[25-30] 

Scheme 

[32, 33] 

Proposed 

Scheme 

Methodology 
Deep-

learning 
Watermarking 

Watermarking 

& IWT 

Detection of various 

manipulations 
× ✓ ✓ 

Manipulation 

localization 
× ✓ 

✓ 

 

Required training ✓ × × 

Accuracy 
Less than 

100% 
100% 100% 

Specific test images ✓ × × 

Recover the face 

region after detection 
× × ✓ 

 

 

5. CONCLUSIONS 

 

This paper introduces a new algorithm designed to detect 

alterations in digital facial images and, in the event of 

detecting manipulations, restore the original facial region. 

Three distinct algorithms have been proposed to generate 

recovery information, each based on different approaches: an 

average (2×2) method, an average (4×4) method, and an IWT 

method. When employing the IWT-based algorithm, various 

wavelet families were tested to identify the one yielding the 

highest visual quality in the recovered facial region. The 

outcomes of the best IWT variant (specifically, cdf 3.5) were 

compared with the results obtained from the other two 

algorithms. The IWT (cdf 3.5)-based approach struck a 

favorable balance between visual quality and payload length, 

leading to its inclusion in the proposed facial image 

authentication scheme. 

Extensive experiments were conducted to assess the 

effectiveness of the proposed scheme, demonstrating its 

capability to detect various facial image manipulations and 

subsequently restore the facial region following manipulation 

detection. A comprehensive comparison with existing state-

of-the-art methods affirmed the superiority of the proposed 

scheme. 

The proposed algorithms carry significant implications 

across various domains. In digital forensics, it can be used to 

ensure the reliability of evidence by preserving the integrity of 

images, strengthening their admissibility in legal proceedings, 

and aiding in the identification of cybercriminals, fraudsters, 

and identity thieves. It can help in uncover critical information 

hidden within manipulated images, facilitating thorough 

analysis and potentially solving complex cases. On the privacy 

front, face recovery safeguards individuals by countering 

invasive image manipulation and harassment, maintaining 

their privacy and dignity. Moreover, it plays a pivotal role in 

preventing false accusations, exonerating innocent individuals 

wrongly implicated through manipulated images. This 

contributes to a fairer legal system and protects innocent 

individuals from unwarranted harm. In matters of public safety, 

face recovery ensures accurate identification, enhancing 

security measures and aiding law enforcement in maintaining 

order and protecting citizens. 

As illustrated in this work, the proposed algorithm can 

successfully be applied in various fields, however, the 

restricted embedding capacity can be considered as a 

limitation. For instance, the algorithm cannot be applied when 

the face region is very large compared to the size of the 

original image. The future researches can be conducted in 

different directions such as enhancing the embedding capacity, 

implementing a real-time detection system for live video 

streams, and investigating the main requirements for efficient 

algorithm’s execution on hardware devices. 
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