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Water temperature plays a crucial role in aquatic ecosystem health, affecting oxygen 

solubility, organism metabolism, and overall water quality. This study evaluates Linear 

Interpolation, Polynomial, and Gaussian Models for predicting the Temperature Change 

Sub-Index in a Water Quality Index (WQI). Using a dataset from NSF-WQI, we 

propose a new formula based on polynomial and Gaussian approaches, offering 

improved accuracy over the traditional linear interpolation method for better water 

quality assessment. The Gaussian Model 1 emerged as the most accurate, with a 97.54% 

accuracy and a mean error of 2.46, outperforming the Cubic Polynomial and Fourth-

Degree Polynomial Models, which achieved accuracies of 94.60% and 96.03%, 

respectively. The Gaussian Model’s ability to capture peak characteristics and 

symmetrical declines makes it particularly effective for applications requiring precise 

water quality predictions. The integration of Gaussian Model 1 into IoT-enabled real-

time monitoring systems presents significant potential, enabling continuous, accurate 

predictions critical for managing sensitive aquatic environments. However, the study 

acknowledges limitations, including the narrow data range that may limit Model 

generalizability and the complexity of higher-degree polynomial models, which could 

reduce practical applicability. Future research should focus on validating these Models 

across more diverse datasets, exploring hybrid Models that combine Gaussian and 

polynomial strengths, and enhancing computational efficiency to support broader real-

time applications. 
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1. INTRODUCTION

Water temperature plays a critical role in aquatic 

environments [1], influencing the solubility of gases like 

oxygen [2], metabolic rates of organisms [3], and overall 

ecosystem health [1]. Fluctuations in temperature, driven by 

natural factors such as seasonal changes and human activities 

like industrial discharges, can disrupt species composition and 

ecosystem balance [4]. As a key parameter in water quality 

assessments [5], temperature changes can lead to thermal 

stress [6], migration [7], and even species extinction [8], 

underscoring the importance of continuous monitoring and 

adaptive management to maintain ecosystem resilience in the 

face of climate change [9]. 

Table 1 summarizes key research studies on the 

implementation of temperature, given the significant impact of 

temperature changes on aquatic ecosystems, Water Quality 

Indexes (WQI) that incorporate temperature are essential tools 

for assessing these effects [10]. WQIs evaluate how 

temperature affects critical factors like oxygen solubility and 

help identify thermal pollution [11]. By monitoring these 

changes, WQIs provide early warnings of environmental stress 

[12], guiding conservation efforts to maintain the health and 

sustainability of aquatic habitats [13]. To quantify the impact 

of temperature within these indexes, calculating a sub-index is 

crucial [14]. 

One common method for calculating the sub-index of water 

temperature in a WQI is linear interpolation [15]. This method 

involves mapping the measured temperature values onto a 

predefined sub-index range, assuming a linear relationship 

between data points [16]. While linear interpolation is 

straightforward and easy to apply [17], it has limitations. The 

primary drawback is its assumption of linearity [18], which 

may not accurately reflect the complex [19], non-linear nature 

of temperature impacts on aquatic ecosystems [20]. 

Additionally, this method is sensitive to outliers, which can 

distort the accuracy of the sub-index calculation, necessitating 

the exploration of more sophisticated approaches [21]. 

To address these limitations, this study proposes exploring 

Gaussian and polynomial approaches for calculating the sub-

index of water temperature changes in WQIs. The Gaussian 

approach, effective in Modeling bell-shaped data distributions 

[22], is suited for capturing complex patterns in temperature 

fluctuations [23]. Meanwhile, the polynomial approach offers 
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flexibility in Modeling non-linear relationships [24], 

providing a more nuanced understanding of temperature 

impacts on water quality [25]. Both methods, widely used in 

statistics for data fitting and prediction [26-28], offer the 

potential to improve the accuracy of Modeling variable 

interactions, particularly in environmental science where 

precise analysis is crucial for decision-making [29]. 

In summary, this research addresses the limitations of linear 

Models in calculating the water temperature sub-index in 

WQIs by exploring Gaussian and polynomial approaches. As 

part of the second phase of developing the Internet of Things 

(IoT) Water Quality Index (WQI) [30], focused on data 

normalization, this study aims to find more accurate formulas 

for better assessing water quality in IoT-enabled systems. 
 

Table 1. Temperature in environmental monitoring 
 

Researcher Location Parameters Used Research Results 

Islam [31] 
Jamalpur District, 

Bangladesh 
Temperature, pH, Turbidity 

An IoT system for water quality monitoring in five ponds. Only 

three ponds are suitable for fish farming, and the Random Forest 

algorithm performed best. 

Pasika and 

Gandla [32] 
Hyderabad, India 

Temperature, pH, Turbidity, 

Humidity, Water Level 

An efficient and cost-effective IoT-based water quality monitoring 

system for real-time water quality monitoring. 

Lakshmikantha 

et al. [33] 
Mysuru, India 

Temperature, pH, 

Conductivity, Turbidity 

An efficient and cost-effective IoT system for real-time water 

quality monitoring, tested with three water samples, and data sent to 

a cloud server for further analysis. 

Sugiharto et al. 

[34] 

Troso River, 

Indonesia 

Temperature, pH, TDS, 

Turbidity 

A real-time IoT-based water quality monitoring system with high 

accuracy for temperature (98.54%) and other parameters. 

Irawan et al. 

[35] 
 Temperature, pH, 

Intelligent quality control of shrimp aquaculture based on real-time 

system and IoT using mobile device. 

Vasudevan and 

Baskaran [36] 

Tiruchirappalli, 

India 

Temperature, pH, Dissolved 

Oxygen, Turbidity 

A real-time water quality monitoring system using unmanned 

surface vehicles that improves monitoring efficiency and reduces 

water pollution. 
 

 

2. THEORETICAL BACKGROUND 
 

2.1 Temperature in environmental monitoring 
 

Temperature is a crucial parameter in environmental 

monitoring due to its significant impact on various ecosystem 

processes and life [1]. In this context, temperature is used to 

assess the physical conditions of the environment [37], such as 

the atmosphere [38], water [39], and soil [40]. Temperature 

changes can affect the health of plants [41], animals [42], and 

humans [43], as well as influence biological and chemical 

processes within ecosystems [44]. For example, water 

temperature affects oxygen solubility and aquatic life [2], 

while air temperature impacts weather patterns and climate. 

Environmental temperature monitoring is essential for 

detecting climate changes, such as global warming, which can 

lead to significant shifts in ecosystems [45]. 

The implementation of technology in monitoring, such as 

the use of IoT (Internet of Things) sensors [46], enables real-

time and continuous data collection [47]. This technology 

enhances the efficiency and accuracy of temperature 

monitoring [48], providing vital data that can be used to build 

predictive Models and understand temperature change patterns 

over time [49]. This data is also valuable for assessing 

environmental risks [50], such as wildfires [51], droughts [52], 

or floods [53], which are often associated with extreme 

temperature changes [54]. With this information, scientists, 

policymakers, and the general public can take more effective 

and adaptation measures in response to environmental changes 

[55]. 

Table 1 summarizes key research studies on the 

implementation of temperature as a parameter in 

environmental monitoring. It highlights the researchers, 

locations of the studies, the parameters used, and the 

significant findings from each study. 

 

2.2 Temperature as parameter Water Quality Index 

 

Temperature is a crucial parameter in the Water Quality 

Index (WQI) because it directly impacts the physical, 

chemical, and biological characteristics of water [10]. It 

affects oxygen solubility [2], chemical reaction rates [56], and 

the overall health of aquatic ecosystems [1]. Deviations in 

water temperature can signal pollution or environmental 

stressors [57], such as industrial discharges or climate change 

[58, 59]. Integrating temperature into the WQI provides a 

comprehensive understanding of water quality [60], helping to 

identify risks and inform management strategies to protect 

aquatic life and ensure clean water availability [61]. The Table 

2 lists of Water Quality Indexes (WQI) that incorporate 

temperature as parameter. Each index uses temperature to 

assess various aspects of water quality, ranging from its impact 

on aquatic ecosystems to compliance with environmental 

standards. 
 

Table 2. Temperature as parameter Water Quality Index 
 

Water Quality Index (WQI) Name Description 

NSF WQI (National Sanitation Foundation) [15] Uses temperature as one of the indicators to assess overall water quality. 

Canadian Water Quality Index (CWQI) [62] Temperature is used to measure its impact on aquatic ecosystems and oxygen solubility. 

Oregon Water Quality Index [63] Considers temperature to evaluate the health of rivers and freshwater. 

Bhargava Water Quality Index [64, 65] Water temperature is used to determine water quality and its impact on aquatic life. 

Aquatic Toxicity Index (ATI) [66] Uses temperature to assess the potential toxicity of water to aquatic organisms. 

Comprehensive Water Quality Index [67] Temperature is included as a key parameter to evaluate various aspects of water quality. 

European Union Water Framework Directive 

Index [68] 

Temperature is used to ensure water quality meets environmental standards set by the 

European Union. 

EPA Water Quality Index [69] 
Uses temperature as part of the water quality assessment conducted by the U.S. 

Environmental Protection Agency. 
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2.3 Temperature change Sub Index (I) 

 

To calculate Temperature Change (ΔT), NSF WQI using 

linear interpolation between two known data points will use 

Eq. (1) [15]. This formula allows us to find the value of 𝑦 at a 

point 𝑥 that lies between two data points (𝑥0, 𝑦0) and (𝑥1, 𝑦1). 

By utilizing the difference in 𝑦 𝑥 values between these two 

points, linear interpolation provides the 𝑦 value that 

corresponds to the position of 𝑥 relative to 𝑥0 and 𝑥1.  

𝑥0 and 𝑦0 are the first known data points. 𝑥1 and 𝑦1 are the 

second known data points. 𝑥 is the ΔT value that is input, and 

I is the WQI value calculated through interpolation. These data 

points are shown in Table 3. 

 

𝑆𝑢𝑏 𝐼𝑛𝑑𝑒𝑥 (𝐼) = 𝑦0 +
(𝑦1 − 𝑦0)

(𝑥1 − 𝑥0)
. (𝑥 − 𝑥0) (1) 

 

Table 3. Temperature change Sub Index (I) 

 
Temp. Change (℃) Sub Index (I) 

-10 56 

-7.5 63 

-5 73 

-2.5 85 

-1 90 

0 93 (max) 

1 89 

02.05 85 

5 72 

07.05 57 

10 44 

12.05 36 

15 28 

17.05 23 

20 21 

22.05 18 

25 15 

27.05.00 12 

30 10 

 

Figure 1 is the curve that illustrates the relationship between 

Temperature Change (X) and Sub-Index (I) based on Table 3. 

This curve depicts how the Sub-Index (I) varies with changes 

in temperature, with the peak occurring at around 0℃ 

temperature change. 

 

 
 

Figure 1. Temperature change Sub Index (I) 

2.4 Polynomial model approach 
 

A polynomial model, with the general form Eq. (2), is a 

mathematical Model commonly used to analyze and predict 

non-linear relationships between variables [70], such as 

environmental temperature and other factors like time or 

humidity. In temperature analysis, a polynomial allows for the 

identification of non-linear temperature trends [71], capturing 

variations that may occur over time. By using least squares 

regression, the coefficients 𝑎 , 𝑏  and 𝑐  can be estimated to 

minimize prediction errors, making this Model useful for 

understanding past temperature patterns as well as predicting 

future temperature changes. This implementation is valuable 

in applications such as agricultural planning [72], energy 

management [73], and climate change impact mitigation 

enabling better decision-making in the face of extreme 

conditions [74]. 
 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +  ⋯ +  𝑎𝑛𝑥𝑛 (2) 
 

2.5 Gaussian Model approach 

 

Gaussian Model, or normal distribution, is a statistical 

Model that describes the spread of data around a mean with a 

bell-shaped symmetric curve, commonly used for analyzing 

the distribution of environmental [22]. In this context, the 

Gaussian Model allows for understanding the distribution of 

daily or annual temperatures, helping to identify anomalies 

and calculate the probability of extreme temperatures. This 

Model can also be used to predict shifts in temperature 

distribution in the future based on historical data and climate 

change trends, which is highly useful for sectors such as 

agriculture [75], energy management [76], and healthcare in 

dealing with dynamic environmental conditions [77]. 

The Gaussian, or normal, distribution is one of the most 

fundamental probability distributions in statistics, 

characterized by a symmetric bell-shaped curve centered 

around the mean [78]. Mathematically, this distribution is 

expressed form Eq. (3). 
 

𝑓(𝑥) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2
) (3) 

 

However, in many practical applications, adjustments to 

this basic distribution are often necessary to more accurately 

represent observed data. To achieve this flexibility, several 

additional parameters are introduced. The parameter 𝑎 is used 

to adjust the amplitude or height of the curve’s peak, allowing 

for vertical scaling. The parameter 𝑏 affects the width of the 

curve, with larger values of 𝑏 producing a narrower curve. The 

peak position of the curve along the horizontal axis can be 

shifted using the parameter 𝑐 , which replaces the standard 

mean 𝜇. Finally, the parameter 𝑑 is added to vertically shift the 

entire curve, providing an offset that is often required in 

various data analysis contexts, with these modifications, the 

Gaussian equation becomes Eq. (4). 

 

𝑓(𝑥) = 𝑎 . 𝑏−𝑏 ( 𝑥−𝑐)2
+ 𝑑 (4) 

 

 

3. METHODOLOGY 

 

Conducted to Sugiharto et al. [34], his study focuses on the 

data normalization stage, which is the second phase in the 

2427



 

development of the Water Quality Index (WQI) as shown in 

Figure 2. In this stage, determining the sub-index is crucial 

because the formula used must provide an accurate and 

representative picture of water quality. This ensures that the 

WQI framework and calculation model developed later can be 

more valid and effective.  

 

 
 

Figure 2. WQI development 

 

3.1 WQI development 

 

Conducted to Sugiharto et al. [34] previous research, this 

study continues suggested WQI system incorporates IoT 

technology and cloud computing to enable real-time collection, 

processing, storage, and analysis of water quality data. The 

detailed framework of this system has been outlined in earlier 

studies [34, 30]. Figure 2 provides a visual representation of 

the process for gathering data from rivers and conducting 

water quality assessments. 

 

3.2 Temperature change sub-index development 

 

To achieve this objective, this study employs 3 different 

approaches to calculate the Temperature Change sub-index. 

The current approach uses linear interpolation is a basic 

method used to determine the sub-index value based on 

temperature change. This method assumes that the relationship 

between ΔT and WQI is linear between two known data points. 

The sub-index value is calculated by interpolating the 

measured ΔT value between two reference points in the Table 

3 dataset, resulting in an estimated WQI. 

In this study, the Polynomial and Gaussian approaches will 

be used to Model the relationship between temperature change 

and the Sub Index (I) while considering the curve shape 

generated by the data in Table 3. 

The accuracy of these Models will be compared with the 

actual data in Table 1. This comparison will determine the 

extent to which each approach can replicate or approximate 

the actual Sub Index (I) and assess the effectiveness of these 

approaches in the context of calculating the Sub Index (I) 

within the Water Quality Index (WQI). 
 

 

4. RESULT 

 

The first step in developing the equation is selecting the 

appropriate model. Based on the curve shape, a polynomial 

model, along with the Gaussian approach, was chosen. After 

deriving the equation, verification is performed by plotting the 

results against the original data to assess how well the Model 

fits the actual data. 

 

4.1 Polynomial approach 

 

4.1.1 Curve fitting 

The cubic polynomial approach is used for curve fitting on 

the data points shown in Figure 1. The results of this fitting are 

presented in Figure 3 to evaluate how well the model fits the 

existing data, and the equation is Eq. (5). I represents the Sub-

Index and  𝑥  represents the temperature change in degrees 

Celsius. This equation consists of several key components: the 

cubic term 0.0084𝑥3, which determines the curvature of the 

graph; the quadratic term −0.2964 𝑥 2, which shapes the 

parabola of the curve; and the linear term −0.8492𝑥, which 

influences the slope of the line. Additionally, the constant 

83.65 serves to vertically shift the curve to better fit the 

existing data. 
 

𝐼 = 0.884𝑥3 − 0.2964𝑥2 − 0.8492𝑥 + 83.65 (5) 
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Figure 3. Cubic polynomial 
 

 
 

Figure 4. Fourth degree polynomial 

 

Tuning was performed in Figure 4 by increasing the 

polynomial degree, specifically by using a higher-degree 

polynomial to better capture the curve's details. The equation 

used in Figure 4 is Eq. (6). 

The more accurate fourth-degree polynomial equation 

where 𝐼  represents the Sub-Index and 𝑥  represents the 

temperature change in degrees Celsius. This equation includes 

several key components: the fourth-degree term −0.0002611𝑥4, 

which captures the curve's finer curvature details; the cubic 

term 0.01864𝑥3, which adds more flexibility to the curve; the 

quadratic term −0.3469𝑥2, which defines the parabolic shape 

of the curve; and the linear term −1.796𝑥, which influences the 

slope of the line. Additionally, the constant 85.80 serves to 

vertically shift the curve to better fit the existing data. 

 

𝐼 = −0.0002611𝑥4 + 0.01864𝑥3 − 0.3469𝑥2

− 1.796𝑥 + 85.80 
(6) 

 

4.1.2 Polynomial model validation  

The polynomial model is validated (Figure 5) by comparing 

the Model’s predicted results with the actual data from Table 

3. Accuracy is assessed through the percentage error between 

the Sub-Index (I) produced by the Model and the actual values, 

and Table 4 evaluates how well the Model represents the data. 

 

 
 

Figure 5. Polynomial model comparison 

 

Table 4. Polynomial model validation 

 
ΔT (℃) (I) Cubic Polynomial Fourth Degree Polynomial I Cubic Polynomial Error Fourth Degree Polynomial Error 

-10 56 54.10 47.82 1.90 8.18 

-7.5 63 69.80 71.07 6.80 8.07 

-5 73 79.44 83.61 6.44 10.61 

-2.5 85 83.79 87.82 1.21 2.82 

-1 90 84.19 87.23 5.81 2.77 

0 93 83.65 85.80 9.35 7.20 

1 89 82.51 83.68 6.49 5.32 

2.5 85 79.81 79.42 5.19 5.58 

5 72 73.04 70.31 1.04 1.69 

7.5 57 64.15 59.85 7.15 2.85 

10 44 53.92 49.18 9.92 5.18 

12.5 36 43.13 39.18 7.13 3.18 

15 28 32.57 30.50 4.57 2.50 

17.5 23 23.04 23.54 0.04 0.54 

20 21 15.31 18.46 5.69 2.54 

22.5 18 10.17 15.18 7.83 2.82 

25 15 8.42 13.35 6.58 1.65 

27.5 12 10.84 12.39 1.16 0.39 

30 10 18.214 11.49 8.21 1.50 

Average Error 5.40 3.97 
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4.2 Gaussian approach 

 

4.2.1 Curve fitting  

Gaussian curve fitting is particularly effective in capturing 

curves with a distinct peak and symmetrical decline on both 

sides. This study explores the use of the Gaussian approach to 

determine whether it can yield more accurate results in 

modeling the data. The Gaussian fitting is shown in Figure 6, 

with the resulting equation being Eq. (7). 

 

𝐼 = 74.18. 𝑒−0.0077(𝑥+0.475)2
+ 14.54 (7) 

 

Tuning was performed by increasing the coefficient that 

controls the height of the curve’s peak and narrowing the 

coefficient that controls the curve’s width. Eq. (8) is modifying 

the parameters 𝑎  (which controls the peak height) and 𝑏 

(which controls the curve's width) in the Gaussian equation. 

The curve now has a higher peak and a narrower width, The 

Gaussian tuning is shown in Figure 7, with the resulting 

equation being Eq. (8).  

 

𝐼 = 77. 𝑒−0.0153(𝑥+0.475)2
+ 14.54 (8) 

 

 
 

Figure 6. Gaussian Model 1 
 

 
 

Figure 7. Gaussian Model 2 

 

Further tuning was performed by widening the curve 

through lowering the coefficient 𝑏, so the Gaussian curve now 

fits the data points more closely. Eq. (9) represents the 

equation after tuning, where the curve has been adjusted to a 

peak height of 78.3, as shown in Figure 8. 

 

𝐼 = 78.3. 𝑒−0.0077(𝑥+0.475)2
+ 14.54 (9) 

 

Further tuning was performed by adjusting d so that the 

peak value at 𝑥=0 is Sub-Index (I)=93. This tuning is expected 

to provide more accurate results. Eq. (10) represents the 

equation after adjusting d, where the curve has been modified 

as shown in Figure 9. 

 

𝐼 = 74.47. 𝑒−0.0115(𝑥+0.125)2
+ 18.54 (10) 

 

4.2.2 Gaussian approach validation 

The Gaussian approach model is validated by comparing the 

Model’s predicted results with the actual data from Table 3. 

Accuracy is assessed through the percentage error between the 

Sub-Index (I) produced by the Model and the actual values, 

Table 5 displayed the predictions from each Gaussian Model 

alongside the actual Sub-Index (I) values in a table.  

Table 6 calculates the error for each Gaussian Model and 

compares it with the actual Sub-Index (I) data, including the 

mean error for each Gaussian Model. Figure 10 illustrate the 

accuracy each Model. 

 

 
 

Figure 8. Gaussian Model 3 

 

 
 

Figure 9. Gaussian Model 4 
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Figure 10. Gaussian Model comparison 

 

Table 5. Prediction result Gaussian Models 

 
ΔT (℃) Actual Sub Index (I) Gaussian Model 1 Gaussian Model 2 Gaussian Model 3 Gaussian Model 4 

-10 56 51.43 33.76 53.48 42.80 

-7.5 63 65.27 50.73 68.09 58.38 

-5 73 77.90 70.83 81.42 75.20 

-2.5 85 86.41 86.86 90.41 88.33 

-1 90 88.56 91.22 92.67 92.36 

0 93 88.59 91.27 92.70 93.00 

1 89 87.49 89.02 91.54 91.93 

2.5 85 83.83 81.79 87.68 87.34 

5 72 73.43 63.22 76.70 73.60 

7.5 57 60.00 43.64 62.52 56.70 

10 44 46.41 28.91 48.18 41.45 

12.5 36 34.83 20.40 35.96 30.45 

15 28 26.27 16.51 26.93 23.90 

17.5 23 20.70 15.09 21.05 20.63 

20 21 17.48 14.67 17.64 19.25 

22.5 18 15.81 14.56 15.88 18.75 

25 15 15.04 14.54 15.07 18.59 

27.5 12 14.72 14.54 14.73 18.55 

30 10 14.60 14.54 14.60 18.54 

 

Table 6. Mean error Gaussian Models 

 
ΔT (℃) Actual Sub Index (I) Gaussian Model 1 Gaussian Model 2 Gaussian Model 3 Gaussian Model 4 

-10 56 4.57 22.24 2.52 13.20 

-7.5 63 2.27 12.27 5.09 4.62 

-5 73 4.90 2.17 8.42 2.20 

-2.5 85 1.41 1.86 5.41 3.33 

-1 90 1.44 1.22 2.67 2.36 

0 93 4.41 1.73 0.30 0.00 

1 89 1.51 0.02 2.54 2.93 

2.5 85 1.17 3.21 2.68 2.34 

5 72 1.43 8.78 4.70 1.60 

7.5 57 3.00 13.36 5.52 0.30 

10 44 2.41 15.09 4.18 2.55 

12.5 36 1.17 15.60 0.04 5.55 

15 28 1.73 11.49 1.07 4.10 

17.5 23 2.30 7.91 1.95 2.37 

20 21 3.52 6.33 3.36 1.75 

22.5 18 2.19 3.44 2.12 0.75 

25 15 0.04 0.46 0.07 3.59 

27.5 12 2.72 2.54 2.73 6.55 

30 10 4.60 4.54 4.60 8.54 

Mean Error 2.46 7.07 3.16 3.61 
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5. DISCUSSION 

 

5.1 Model accuracy comparison 

 

To perform the model accuracy comparison analysis, Table 

7 shows the mean error of each Model that has been calculated 

previously. This mean error serves as the primary indicator to 

evaluate how well each Model is able to predict the Sub-Index 

(I) based on temperature change data. The results show that 

Gaussian Model 1 has the highest accuracy with 97.54%. 

 

Table 7. Model accuracy comparison 

 
Model Model Mean Error Accuracy 

Gaussian Model 

Gaussian Model 1 2.46 97.54 

Gaussian Model 2 7.07 92.93 

Gaussian Model 3 3.16 96.84 

Gaussian Model 4 3.61 96.39 

Polynomial 
Cubic Polynomial 5.40 94.60 

Fourth-Degree Polynomial 3.97 96.03 

 

5.2 Comparison of linear interpolation and Gaussian 

Model 1 
 

The comparison was made by calculating linear 

interpolation between two known data points, using ΔT values 

between the existing temperature change values in the table, 

instead of using the exact data points. Table 8 shows the 

comparison between the linear interpolation results for points 

between the given data points (excluding the exact data points) 

and the predictions from Gaussian Model 1. From this 

validation, the Gaussian Model achieved an accuracy of 

97.87%. 

 

Table 8. Comparison of linear interpolation and Gaussian Model 1 
 

ΔT (℃) Interpolated Sub Index (I) Gaussian Model 1 Prediction Error Accuracy 

-8.75 59.5 58.32 1.18 98.82 

-6.25 68 71.92 3.92 96.08 

-3.75 79 82.84 3.84 96.16 

-1.75 87.5 87.80 0.30 99.70 

-0.5 91.5 88.72 2.78 97.22 

0.5 91 88.18 2.82 97.18 

1.75 87 85.95 1.05 98.95 

3.75 78.5 79.19 0.69 99.31 

6.25 64.5 66.91 2.41 97.59 

8.75 50.5 53.06 2.56 97.44 

11.25 40 40.28 0.28 99.72 

13.75 32 30.16 1.84 98.16 

16.25 25.5 23.15 2.35 97.65 

18.75 22 18.85 3.15 96.85 

21.25 19.5 16.50 3.00 97.00 

23.75 16.5 15.35 1.15 98.85 

26.25 13.5 14.84 1.34 98.66 

28.75 11 14.64 3.64 96.36 

Average 2.13 97.87 

5.3 Comparison analysis 

 

Based on the model accuracy comparison in Table 7 and 

comparison of linear interpolation and gaussian Model 1 in 

Table 8, it is evident that the Gaussian Model, particularly 

Gaussian Model 1, shows the best performance with the 

highest accuracy of 97.54% and the lowest mean error of 2.46. 

The advantage of Gaussian Model 1 lies in its ability to capture 

specific peak characteristics and symmetrical decline on both 

sides of the curve, which is challenging for polynomial models. 

On the other hand, the Cubic Polynomial Model demonstrates 

fairly good results with an accuracy of 94.60% and a mean 

error of 5.40. However, this Model is less effective in 

capturing extreme temperature variations, especially in 

regions with sharper temperature changes, where the Gaussian 

Model excels. The Fourth-Degree Polynomial, although more 

complex than the cubic polynomial, provides an accuracy of 

96.03% with a mean error of 3.97. However, the increased 

complexity of this Model does not always correlate with a 

significant increase in accuracy compared to Gaussian Model 

1, which consistently shows superior performance in 

predicting the Sub-Index (I) based on temperature change data. 

 

5.4 Practical implication 

 

The higher accuracy of Gaussian Model 1 makes it 

particularly suitable for applications that require highly precise 

Temperature Change Sub-Index (I) predictions, such as water 

quality monitoring in highly sensitive environments where 

even minor deviations could have significant consequences. In 

these contexts, the Model's ability to accurately capture peak 

and symmetrical declines is critical. However, in scenarios 

where computational efficiency and simplicity are prioritized, 

especially when minor reductions in accuracy are acceptable, 

polynomial models might be preferred. Their simpler structure 

can lead to faster computations, which is advantageous in 

systems with limited processing power or where rapid analysis 

is required. Thus, the choice between Gaussian and 

polynomial models should consider both the specific accuracy 

needs and the computational constraints of the application 
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5.5 Limitation, potential and future work 
 

A key limitation of this study is the limited data range, 

which may restrict the Models' generalizability, as their 

accuracy could decline when applied to broader or different 

temperature ranges. The increased complexity of Gaussian and 

high-degree polynomial models, while improving accuracy, 

may also reduce interpretability and practicality in certain 

applications. Despite these challenges, there is significant 

potential to enhance these Models by incorporating additional 

variables like pH levels or dissolved oxygen, making them 

more comprehensive across diverse environmental conditions. 

Future work should validate these Models with varied datasets 

to ensure generalizability and explore hybrid Models that 

combine Gaussian and polynomial strengths for greater 

flexibility and accuracy.  

Conducted to Sugiharto et al. [34] previous research, with 

implementing these Models in real-time water quality 

monitoring systems could enable continuous prediction of the 

Sub-Index (I), allowing for timely responses to environmental 

changes. Furthermore, optimizing computational efficiency 

would make these models suitable for devices with limited 

processing power without compromising accuracy. 
 

 

6. CONCLUSIONS 
 

This study demonstrates that Gaussian Model 1 provides the 

highest accuracy for predicting the Sub-Index (I) based on 

temperature changes (ΔT), with an accuracy of 97.54% and a 

mean error of 2.46. Its ability to capture peak characteristics 

and symmetrical declines makes it particularly suitable for 

sensitive water quality monitoring applications. In contrast, 

the Cubic Polynomial and Fourth-Degree Polynomial Models, 

while offering reasonable accuracy of 94.60% and 96.03% 

respectively, fall short in scenarios with extreme temperature 

variations. The integration of Gaussian Model 1 into IoT-

enabled systems offers significant potential for real-time water 

quality monitoring, enabling timely responses to 

environmental changes and ensuring the protection of aquatic 

ecosystems. 

However, the study acknowledges limitations, particularly 

the restricted data range, which may limit the generalizability 

of these Models. The increased complexity of Gaussian and 

high-degree polynomial models, while improving accuracy, 

could reduce interpretability and practicality in certain 

contexts. Future research should focus on validating these 

Models with diverse datasets and broader environmental 

conditions to enhance their applicability. Additionally, 

incorporating other water quality parameters and optimizing 

computational efficiency could further improve these Models, 

making them more suitable for real-time monitoring systems. 
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