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Cancer remains a leading cause of global mortality due to delayed diagnoses and 

inadequate treatments from uncontrolled cell growth. Leveraging machine learning 

techniques can aid in early cancer prediction given available data. This study aims to 

improve tumor classification accuracy and efficiency based on gene expression patterns 

using deep learning algorithms. The primary approach involves constructing a feed-

forward network (FFN) for binary classification, distinguishing between cancerous and 

healthy samples using the Cancer Genome Atlas (TCGA) database. Breast cancer, with 

ample samples in TCGA, and kidney cancer, with high mortality rates, were chosen for 

this study. Three feature extraction methods—Principal Component Analysis (PCA), 

Analysis of Variance (ANOVA), and Random Forests—were employed for 

preprocessing. The FFN achieved the highest accuracy for the kidney dataset using PCA 

with 300 principal components, yielding optimal accuracy and low error rates. For the 

breast dataset, PCA also produced favorable results, though requiring more principal 

components to retain sufficient variance. Comparative analysis showed PCA excelled 

in preserving variance and optimizing accuracy, with ANOVA also performing well, 

especially in the breast dataset, whereas Random Forests were less effective overall. 

These results highlight the importance of tailoring feature extraction methods and 

model architectures to specific dataset characteristics for the most accurate and efficient 

predictive models. This study demonstrates the potential of optimizing these parameters 

to enhance tumor classification model accuracy and reliability, providing valuable 

insights for improving diagnostic and treatment approaches in breast and kidney 

cancers. 
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1. INTRODUCTION

Bioinformatics is the field of using computational tools and 

algorithms for storing, manipulating, and retrieving significant 

information from biological data. Since 1980s, bioinformatics 

has undergone many changes in definition, such as a mundane 

one of “the use of computers to retrieve, process, analyze, and 

simulate biological information”, to specific one such as “the 

application of information science to biology, medicine, and 

life sciences” [1]. This field has rapidly grown into a wide 

research area with many different categories of research such 

as genomics, proteomics, systems biology, modeling and 

simulation, data mining, big data, networks and analysis, 

evolutionary computing, statistics and probability, and others 

[2, 3]. The word cancer is derived from the Greek word 

“karkinos” which means crab [1]. Greek physician 

Hippocrates first time used cancer word to describe the tumors. 

According to Hippocrates observation the basic part of the 

tumor appears like a crab body and the several extensions of 

the tumor seem to be the legs and claws of the crab [4]. Cancer 

represents a perilous ailment stemming from irregular cell 

division and the unrestrained proliferation of cells. Typically, 

cancerous cells exhibit distinctive behavior compared to 

normal cells and possess the capability to disseminate to 

distant body regions. The dissemination of cancer cells to 

other bodily areas is known as metastasis [5]. The genesis of 

cancer initiates from the transformation of regular cells into 

malignant cancer cells, a multifaceted process typically 

advancing from pre-cancerous cells to the formation of 

malignant tumors. These alterations occur due to the interplay 

between an individual's genetic attributes and three primary 

external factors. Early identification and classification of 

cancer subtypes hold immense significance in providing 

improved diagnostic measures for patients. Consequently, 

predicting cancer subtypes (classes) during the initial stages 

has emerged as a crucial focal point in the realm of machine 

learning and medical science, garnering widespread attention 

from researchers and scientists worldwide. 

RNA sequencing (RNA-seq) can detect cellular changes 

and analyze gene expression patterns within RNA, offering 

insights into the transcriptome. With available data, machine 

learning techniques can aid in early cancer prediction. RNA-

seq helps researchers understand tumor classification and 

progression by monitoring gene expression and transcriptome 

changes in cancer RNA-seq data [6]. 

Several approaches have been proposed and investigated for 

classifying RNA-seq data. Recently, researchers have focused 

on quantile-transformed quadratic discriminant analysis for 
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high-dimensional RNA-seq data. They introduced a new 

classification method based on a model where the counts are 

marginally negative binomial but dependent. To select m 

genes for classification, they first filtered out genes with low 

expression and conducted a likelihood ratio test (LRT). 

There exist different clinical approaches to the diagnosis of 

cancer, which are described below. This paper presents two 

distinct approaches devised to tackle the binary classification 

challenge using TCGA mRNA sequencing data from breast 

and kidney cancer. Both approaches leverage FFN network 

structure for training. Furthermore, the study incorporates 

three diverse feature extraction algorithms PCA, ANOVA, and 

random forest as part of the pre-processing phase to assess 

their respective impacts on the outcomes. These methods 

collectively aim to discern the most effective strategy for 

handling and processing the data, shedding light on the 

significance of different feature extraction techniques in 

enhancing the classification performance of the networks [6].  

 

 

2. RELATED WORK 

 

Cancer, a feared illness initiated by genetic mutations, 

triggers uncontrolled and aberrant cell growth, manifesting as 

tumors in the initial stages that can swiftly metastasize to other 

body regions. This infection represents a basic worldwide 

wellbeing challenge. As per the Worldwide Disease 

Occurrence, Mortality, and Predominance (GLOBOCAN) 

project [7], an expected 8.2 million passings were credited to 

malignant growth in 2012 around the world. Consequently, 

early-stage cancer prediction has emerged as a pivotal focus 

area among scientists and researchers globally. Traditional 

cancer prediction methods rely on costly clinical diagnoses 

and tumor morphology analysis, which can be inaccurate and 

time-consuming [8]. Conventional approaches are frequently 

constrained by their reliance on expert assessments for tumor 

identification and their struggle to distinguish between various 

cancer subtypes. To overcome these challenges and offer a 

cost-effective initial diagnosis and prediction of cancer, 

contemporary computational techniques, such as microarray 

data analysis [9], have been employed. Microarray technology 

records thousands of concurrent gene expression profiles. The 

vast number of genes in microarray data far exceeds the 

available samples [10], leading to the presence of multiple 

ambiguous, overlapping, and indistinct cancer subtypes within 

the data [11]. Thus, developing classifiers equipped for 

accomplishing high prescient precision in characterizing 

malignant examples becomes basic [12]. Customary 

administered AI calculations [13], normally utilized for 

disease grouping using microarray quality articulation 

information, depend intensely on named tests to anticipate 

unlabeled ones. While gathering unlabeled quality articulation 

designs is somewhat clear, acquiring named tests is frequently 

costly, tedious, or testing. Accordingly, the shortage of marked 

examples habitually confines the relevance of conventional 

administered techniques for malignant growth arrangement 

and expectation. 

In situations where natural information is obliged because 

of the shortage of clinically marked examples, utilizing 

dynamic learning as well as semi-managed strategies becomes 

instrumental in accomplishing uplifted exactness in malignant 

growth forecast. On the other hand, semi-supervised learning 

methods [14] capitalize on the distribution of unlabeled 

samples. This technique involves computationally selecting 

'high confidence' unlabeled patterns, along with their predicted 

labels, from the unlabeled dataset. In recent studies on early 

cancer detection, various conventional machine learning 

methodologies, such as Support Vector Machines (SVM), k-

Nearest Neighbor (kNN), Naïve Bayes (NB), Random Forest 

(RF), and their counterparts, have been extensively employed 

by Zhang et al. [15]. For instance, in a study by Sathe et al. 

[16], a genome based SVM strategy was proposed genome-

based sarcoma classification. By employing Student's t-test, 

the authors selected 256 genes and used them to train a linear 

SVM classifier. The classifier successfully distinguished 

melanoma and soft tissue sarcoma, achieving high accuracy in 

leave-one-out cross-validation with 75 out of 76 instances 

correctly identified. To further enhance the performance of 

these machine learning methods, feature selection techniques 

have been incorporated. For example, in another study by 

Gunavathi et al. [17], SVM was combined with recursive 

feature elimination (SVM-RFE-PO). This approach utilized 

grid search and Partial Swarm Optimization for feature 

selection and a genetic algorithm for parameter tuning. The 

resulting model was able to identify a robust set of significant 

features for cancer classification. In a similar vein, Tabares-

Soto et al. [18] deployed a Random Forest ensemble to extract 

273 relevant genes while maintaining a robust classifier's 

predictability. Additionally, Li et al. [19] introduced a two- 

step feature selection strategy based on an attribute estimation 

method and Genetic Algorithm. Moreover, the Developmental 

Programming-prepared Help Vector Machine (EP-SVM) 

technique created by Mazlan et al. [20] used a probabilistic 

SVM way to deal with assess the results of double classifiers 

utilizing unmistakable class highlights. Overall, these studies 

demonstrate the use of various machine learning techniques, 

feature selection methods, and ensemble approaches to 

improve prediction accuracy in early cancer detection.  

The related work presented in the manuscript underscores 

the significance of employing computational techniques, 

particularly machine learning algorithms, for early cancer 

detection and prediction using genomic data [21, 22]. Various 

conventional machine learning methodologies such as Support 

Vector Machines (SVM), k-Nearest Neighbor (kNN), Naïve 

Bayes (NB), and Random Forest (RF) have been extensively 

explored for cancer classification. These studies have 

demonstrated the effectiveness of integrating feature selection 

techniques with machine learning models to enhance 

prediction accuracy [23, 24]. 

The proposed research extends existing studies by focusing 

on the application of deep learning, specifically feed-forward 

networks (FFN) with supervised learning and ladder networks 

with semi-supervised learning, for tumor classification based 

on gene expression data. By leveraging deep learning 

techniques, the research aims to achieve more robust and 

accurate classification of cancerous and healthy samples. 

Additionally, the selection of breast cancer and kidney cancer 

datasets from the Cancer Genome Atlas (TCGA) database 

provides a comprehensive evaluation of the proposed methods 

on different cancer types, considering factors such as sample 

availability and mortality rates. 

 

 

3. PROPOSED SYSTEM 

 

This paper aims to perform predictive analyses using 

various models, aiming to classify provided datasets into 

specific cancer types. The main objective is to discern the 
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origin of cancerous tissue by analyzing their gene expression 

counts. This section encapsulates comprehensive information 

regarding the datasets employed in the current investigation, 

accompanied by details concerning the methods compared 

against the proposed approach. Figure 1 illustrates the 

proposed methodology diagram for tumor classification based 

on gene expression patterns using deep learning algorithms.  

Subsequently, it highlights the assessment of performance 

evaluation measures. Lastly, a summary of the experimental 

setup is provided, encompassing the key aspects of the 

experimental configuration. 

 

 
 

Figure 1. Proposed methodology 

 

3.1 Data sets used 

 

The data used in this study comes from The Cancer Genome 

Atlas (TCGA), the world's largest repository of genomic data. 

This collaborative initiative, which was established in 2006, 

brings together the expertise of the National Cancer Institute's 

Center for Cancer Genomics and the National Human Genome 

Research Institute [25], TCGA has significantly contributed to 

advancements in accurate cancer diagnoses, treatment 

strategies, and preventive measures. Its public accessibility has 

greatly facilitated researchers, simplifying their investigations. 

The TCGA dataset employed herein comprises 8,293 samples 

categorized into 15 distinct cancer types. We constructed our 

model using this dataset and tested it on a separate dataset from 

the Genotype-Tissue Expression (GTEX) project. The 

ongoing GTEX project aims to develop a comprehensive 

public resource for analyzing tissue-specific gene expression 

and regulatory mechanisms, offering valuable insights into 

various biological processes [25]. 

 

3.1.1 Data description 

The dataset obtained from TCGA encompasses 38,019 

features and includes 8,293 samples. To facilitate utilization 

with machine learning models, the data was formatted into 

a .csv file format. Within this formatted file, the initial column 

signifies patient IDs, followed by the 'Type' variable 

representing the target to be predicted. The subsequent 

columns contain information pertaining to various gene 

expressions. The 'Type' variable serves as the indicator for 

cancer type, with each cancer subtype uniquely labeled. The 

dataset encapsulates 15 distinct cancer types, each labeled in 

accordance with the TCGA notation, as detailed in Table 1 

along with their respective descriptions and labels. 

 
Table 1. Cancel labels and description 

 
Label Description 

STAD Stomach adenocarcinoma 

BRCA Breast invasive carcinoma 

PAAD Pancreatic adenocarcinoma 

ESCA Esophagus carcinoma 

PCPG Pheochromocytoma and paraganglioma 

LUAD Lung adenocarcinoma 

KIRC Kidney renal papillary cell carcinoma 

COAD Colon adenocarcinoma 

UCEC Uterine corpus endometrial carcinoma 

THCA Thyroid carcinoma 

HNSC Head and neck squamous cell carcinoma 

PRAD Prostate carcinoma 

BLCA Bladder urothelial carcinoma 

LIHC Liver hepatocellular carcinoma 

CESC 
Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 

 
In this paper, we will focus solely on two types of cancer 

labels: Breast and Kidney cancers [26]. 

 

3.1.2 Feature selection 

The process of feature selection plays a pivotal role in 

model optimization by narrowing down the number of input 

variables to those most pertinent for predicting target labels. It 

involves the curation of relevant features from the dataset, 

significantly influencing the model's performance. In this 

study, we employed the SelectKBest algorithm from the 

sklearn library to execute feature selection. This algorithm 

retains only the top k highest-scoring features, based on a 

specified scoring function. By utilizing the chi-squared 

function, pairwise computations between features were 

conducted. Subsequently, the best features were identified by 

amalgamating various score values derived from both the Chi-

squared test and F-score. This selection process resulted in a 

reduction of features to 832, which were then utilized to 

evaluate different models' performance. 

 

3.1.3 Feature extraction 

In feature extraction, the primary aim is to identify the most 

relevant features that carry substantial information to 

effectively differentiate between distinct classes. While 
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manual selection of crucial features is considered optimal, in 

this scenario, it's unfeasible due to the dataset's complexity. 

Thus, for feature extraction, we employed PCA with varying 

principal components (200, 300, 500, and 700), ANOVA with 

selected features (200, 300, 500, and 700). Hence, 606 

components were the highest number selected for kidney data, 

simplifying comparisons across different feature selection 

methods and ensuring a manageable assessment of the optimal 

model and feature selection approach. 

This paper introduces three prominent feature extraction 

algorithms commonly employed in genomic classification 

studies: ANOVA, Random Forest, and PCA. ANOVA 

(Analysis of Variance), suggested by Bartík [5]. Random 

Forests, as described in the study conducted by Sathe et al. 

[16], comprises a set of decision tree classifiers that split 

datasets based on feature condition values, such as Gini 

impurity or information gain/entropy, effectively assessing 

each feature's impact on classification. On the other hand, 

Principal Component Analysis (PCA) isn't merely a feature 

selection method but a dimensionality reduction technique. 

PCA transforms high-dimensional datasets into lower 

dimensions, enabling faster algorithmic computations and 

simplified visualization by reducing the dataset's freedom of 

hypotheses. By focusing on components with the highest 

variance, PCA allows explaining a significant portion of 

dataset variance with fewer components, compared to only 

89% for the breast dataset. It's crucial to normalize the dataset 

before applying PCA to ensure each attribute contributes 

effectively to the analysis. 

The selection of ANOVA, Random Forest, and PCA for 

feature extraction in this study is motivated by their distinct 

advantages in handling complex and high-dimensional RNA-

seq data. ANOVA was chosen for its ability to statistically 

highlight significant differences between classes, making it a 

robust method for feature selection in datasets where inter-

class variability is crucial. Random Forest was selected for its 

effectiveness in ranking feature importance and its capability 

to handle large datasets with many features, providing insights 

into which features are most influential in classification tasks. 

PCA was employed to reduce the dimensionality of the dataset 

while preserving the variance, facilitating more efficient 

computation and visualization. By focusing on principal 

components with the highest variance, PCA allows us to 

manage the high-dimensional nature of RNA-seq data and 

improve the computational feasibility of subsequent analyses. 

By combining these methods, we ensure a comprehensive 

feature extraction approach that leverages the strengths of 

statistical analysis, machine learning, and dimensionality 

reduction, ultimately aiming to improve the accuracy and 

efficiency of cancer subtype prediction. 

 

3.1.4 Data splitting 

Using the same dataset for both training and testing can 

cause overfitting and limit the model's generalization ability. 

To avoid these issues, the dataset was divided into separate 

training and test sets. In this study, the TCGA data served for 

training the models, employing an 80/20 split where 80% of 

the data was allocated for model training and the remaining 

20% for testing. This division ensured that the model learned 

from a substantial portion of the data while being assessed on 

unseen data to gauge its performance accurately. Additionally, 

the independent GTEX dataset, unseen during model training, 

was employed exclusively for testing purposes, ensuring an 

unbiased evaluation of model performance. To achieve this 

splitting, the sklearn library's train/test split module was 

utilized, ensuring a systematic and unbiased segregation of the 

dataset for training and evaluation. 

 

3.1.5 Hyperparameter tuning 

Machine learning algorithms often comprise both 

parameters and hyperparameters. Hyperparameters, unlike 

parameters, are user-defined settings essential to the model 

and cannot be learned during training. They remain external 

and must be pre-determined by the model developer. 

Preceding the execution of a machine learning algorithm, 

configuring various hyperparameters becomes imperative. In 

this study, we employed GridSearchCV, a feature within the 

sklearn library, to systematically ascertain the optimal 

hyperparameters for the model. GridSearchCV extensively 

explores a range of specified parameters through cross-

validation, enabling a comprehensive search to identify the 

best hyperparameters that optimize model performance. 

 

3.2 Deep learning structure 

 

The application of feed-forward neural networks (FFNs) in 

cancer detection through gene expression data involves 

constructing a multilayer perceptron with distinct layers 

representing different aspects of the dataset. The input nodes 

signify gene expression values, while the output nodes classify 

samples into cancerous or non-cancerous categories. Through 

iterative backpropagation during training, the FFN learns 

intricate patterns within the gene expression data, following 

preprocessing steps like normalization, feature selection, and 

dataset partitioning for training and validation. The optimal 

FFN model consists of three layers: an input layer whose 

nodes vary depending on the extracted features, a hidden layer 

with 20 nodes, and an output layer reflecting the two output 

classes healthy and cancerous. The Rectified Linear Unit 

(ReLU) serves as the activation function in this model. Figure 

2 visualizes the final FFN model structure. 

 

 
 

Figure 2. Distribution of cancer labels for TCGA and GTEX 

 

To prevent over-fitting, various combinations of different 

complexity levels were tested. The best results were achieved 

using a Feedforward Neural Network (FFN) with three layers: 

an input layer, a hidden layer, and an output layer. The number 

of nodes in the input layer varied based on the feature selection 

method and the number of features extracted. The hidden layer 

consisted of 20 nodes, while the output layer had 2 nodes, 
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corresponding to the two classes (healthy and cancerous). The 

ReLU function was used for activation, with a batch size of 60, 

trained over 60 to 80 epochs. Stochastic gradient descent was 

used for optimization, and cross-entropy was used for the loss 

function. The structure of the FFN model is illustrated in 

Figure 3, where I1...In indicate the input nodes (n is the 

number of extracted features), H1...Hm indicate the hidden 

nodes (m=20), and O1...O2 indicate the output nodes. 

 

 
 

Figure 3. Deep neural architecture 

 

 
4. EXPERIMENT RESULTS 
 

The TCGA dataset was divided into training and validation 

sets. The Feedforward Neural Network (FFN) was trained on 

the training set, and various hyperparameters were tuned using 

cross-validation. After identifying the optimal 

hyperparameters, the entire TCGA dataset was used to fit the 

model. Finally, the independent GTEX dataset was used to test 

the models. This section will discuss the results from different 

feature selection algorithms using data representation from the 

marginalized stacked denoising autoencoder (mSDA). 

 

4.1 Deep neural network results 

 

Figure 4 and Figure 5 display the attained validation 

accuracy, showcasing the optimal outcomes achieved through 

distinct feature extraction methods and model structures for 

TCGA kidney and breast data. The study findings revealed 

that the use of Principal Component Analysis (PCA) as the 

feature extraction method, with 300 principal components, in 

conjunction with a 2-layered neural network structure, yielded 

the highest accuracy and lowest error rates when analyzing 

TCGA kidney data. On the other hand, when analyzing TCGA 

breast data, the most favorable results with the lowest error 

rates were achieved by employing PCA. These results 

highlight the importance of tailoring the feature extraction 

method and neural network architecture to the specific dataset 

being analyzed. By optimizing these parameters, the study 

demonstrates the potential to enhance the accuracy and 

reliability of tumor classification models, providing valuable 

insights for improving diagnostic and treatment approaches in 

the context of breast and kidney cancers. These findings 

underscore the significance of tailoring feature extraction 

methods and model architectures based on specific dataset 

characteristics to achieve the most accurate and efficient 

predictive models. 

 
 

Figure 4. The kidney dataset exhibited the most optimal 

accuracy 
 

 
 

Figure 5. The breast dataset showed the most favorable 

accuracy 

 

Effective feature extraction methods are crucial for 

advanced analysis in this context. Deep learning models often 

confront a scarcity of samples to establish connections among 

numerous features. The volume of features significantly 

influences learning accuracy; an excess of features can hinder 

the model's ability to accurately predict new samples. Figure 5 

demonstrates the overarching impact of features on the 

models' predictive capacity. The optimal number of features 

for classification tasks varies extensively based on the input 

data. To elaborate, approximately features are deemed to yield 

accurate predictions with TCGA breast data, while a reduced 

set of 300 features suffices for effective predictions with 

TCGA kidney data. This observation highlights the dataset-

dependent nature of feature requirements crucial for the 

model's predictive performance. The impact of Principal 

Component Analysis (PCA) on preserving variance is worth 

mentioning. Notably, within the kidney dataset, it was 

observed that utilizing 300 principal components is sufficient 

to retain 94% of the variance. The same number of 

components only captures 82% of the variance. These findings 

highlight the inherent differences in gene expression patterns 

between kidney and breast cancer. The higher percentage of 

variance retained in the kidney dataset suggests a more 

concentrated and distinct gene expression profile, whereas the 

lower percentage in the breast dataset indicates a higher level 

of heterogeneity. To reach the desired 94% variance in the 

breast dataset, an additional 400 principal components are 

essential. This variance discrepancy between the datasets 

directly impacts the requisite number of features to maintain 

accuracy, affirming the expectation that the feature count 

crucial for accurate predictions differs significantly for each 

dataset. 
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Figure 6. Impact of feature selection on analysis results 

 

The dissimilarities between the kidney and breast datasets 

also have implications for the complexity of constructing 

effective models. Interestingly, when training the kidney data, 

more complex structures tend to lead to overfitting or 

underfitting issues, necessitating the use of simpler models to 

achieve satisfactory results. Conversely, with the breast data, 

it is crucial to employ more complex structures to obtain a 

decent model. Both datasets are trained for binary 

classification tasks, but due to their inherent differences, 

distinct model structures are required to achieve desirable 

outcomes. In terms of feature extraction methods, PCA 

demonstrates superior performance, closely followed by 

ANOVA. Figure 6 displays the impact of feature selection on 

the analysis results. Notably, the model tends to underfit the 

healthy samples from the input, which could be attributed to 

the imbalance in the input data. 

 

4.2 Feature selection variation 

 

The experiments involved varying amounts of labeled data 

for model training. Initially, when the labeled sample count 

was too low, for instance, at 2, 10, or 20, the model struggled 

to improve beyond the null hypothesis. However, once the 

labeled sample count reached 50, which is relatively higher but 

still considered small, the model began exhibiting significantly 

high accuracy. 

The supervised learning part of the model received a 

balanced ratio of labeled data, with 50% representing both 

cancerous and healthy samples. Interestingly, beyond the 

threshold of 50 labeled data, there wasn't a noticeable accuracy 

improvement even with additional labeled samples, such as 

200. Surprisingly, the final accuracy between experiments 

using 50 and 200 labeled data appeared very similar. This 

suggests that the unsupervised learning aspect functioned 

effectively alongside the supervised learning, contributing to 

the model's performance. To ensure consistent training 

conditions, the batch size for these experiments was set at 60, 

aligning with the number of labeled data samples fed into the 

input for trials. This configuration allowed for a seamless and 

effective integration of both supervised and unsupervised 

learning components within the model. 

In addition to the established choice of 60 labeled data 

samples from the TCGA kidney and breast datasets, the 

experiment explored smaller and larger labeled data sample 

sizes. Employing the same feature selection methods used 

previously facilitated an easier comparison. The methods 

included PCA with different counts of principal components 

(200, 300, 500, 700), ANOVA with varying selected features 

(200, 300, 500, 700), and random forest with different 

importance levels (.001, .0005, .0001). The outcomes of this 

experiment are visually depicted in Figures 7-12. 

 
 

Figure 7. Performance evaluation of feature selection via 

PCA in kidney data classification 

 

 
 

Figure 8. Analyzing accuracy in breast data classification 

with PCA-based feature selection 

 

 
 

Figure 9. Examining accuracy in kidney data classification 

with ANOVA-based feature selection 

 

 
 

Figure 10. Analysis of accuracy in breast data classification 

using ANOVA-based feature selection 
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Figure 11. Performance evaluation: kidney data 

classification accuracy with random forest feature selection 

 

 
 

Figure 12. Performance evaluation: breast data classification 

accuracy with random forest feature selection 

 

The impact of feature extraction aligns closely with the prior 

findings observed in the FFN experiments. Without applying 

any feature extraction algorithm, the FFN network struggles to 

enhance the null hypothesis. However, the FFN network 

demonstrates stability and achieves better accuracy in most 

cases. Interestingly, it maintains consistent accuracy 

regardless of the number of iterations. A detailed analysis, 

particularly concerning the breast data, accentuates the notable 

discrepancy between PCA and ANOVA. Specifically, it 

becomes apparent that ANOVA achieves the highest final 

accuracy even with just 200 selected features. Conversely, 

PCA requires a larger count of principal components, ranging 

from 700 to 1000, to attain a similar accuracy level. 

Conversely, the features selected using random forest fail to 

reach even the null hypothesis. 

The overall performance of the FFN is shown in Table 2. 

We achieved 96% accuracy on the TCGA dataset and 80% 

accuracy on the GTEX dataset. This model produced results 

similar to KNN but required less computation time. Using the 

selected features, the model was computationally faster than 

before. Table 2 presents the classification report of the FFN, 

indicating ongoing issues with misclassified samples within 

the GI category. 

 

Table 2. Result of FFN using selectKbest 

 
Model Multilayer Perceptron 

Best hyperparameter 
hidden layer sizes=416, 

activation=tanh, alpha=0.001 

Best training accuracy 98.36% 

Test set accuracy (TCGA) 98.66% 

Accuracy on independent 

data (GTEX) 
97.54% 

4.3 Comparison 

 

In this study, a feed-forward network model was utilized to 

perform binary classification on TCGA breast and kidney data. 

The aim was to attain the highest possible accuracy by 

exploring and comparing different feature selection methods 

and their respective feature quantities. By employing these 

methods, the researchers sought to identify the most effective 

combination of features that would yield optimal results. 

Additionally, the study aimed to determine which feature 

selection methods were most suitable for each dataset. This 

comprehensive analysis allowed for a thorough evaluation of 

the performance and accuracy of the feed-forward network 

model in the classification of breast and kidney data from the 

TCGA dataset. The raw TCGA kidney dataset contains 606 

samples and 20,206 genes, while the TCGA breast dataset 

consists of 1,218 samples and 20,207 genes. The data was 

divided into training (60%), test (20%), and validation (20%) 

sets, resulting in 363 samples for kidney data training, and 730 

samples for breast data training. The testing and validation sets 

comprised 122 and 244 samples for kidney and breast data, 

respectively. To address data imbalance issues, the input data 

underwent batch processing following the same ratio across 

both used structures. 

The feed-forward network emerges as a favorable choice, 

especially for those less acquainted with deep learning, 

offering a clear and modifiable structure that allows easy 

experimentation. While it attained an acceptable accuracy rate 

with the kidney data, attempts to stabilize the results faced 

challenges, mainly stemming from imbalanced input data, 

leading to frequent biased predictions favoring cancerous data. 

The FFN's instability could be due to several factors such as 

an inappropriate learning rate, batch size, and weight 

initialization, as well as overfitting and the inherent variability 

in Stochastic Gradient Descent (SGD). To mitigate these 

issues, implementing a learning rate scheduler or using 

adaptive learning rate methods like Adam, adjusting the batch 

size, employing advanced weight initialization techniques, and 

incorporating regularization methods like dropout and L2 

regularization are recommended. 

The impact of different feature extraction algorithms varied 

across the selected structures and datasets. With the kidney 

data in the FFN structure, the principal components selected 

by PCA delivered the highest accuracy, closely followed by 

ANOVA, whereas Random Forest yielded the poorest results, 

reaching only 95% accuracy. Conversely, with the breast data, 

Random Forests showcased the best performance, Random 

Forest's efficacy differed significantly, implying its superior 

performance with more intricate datasets, such as the breast 

dataset. To maintain 94% variance preservation in the breast 

dataset, an additional 400 principal components were 

necessary. Enhancements in accuracy may ensue from 

employing diverse feature extraction methods or manual 

selection by domain experts. Future research avenues could 

explore multi-label classification as an alternative to binary 

classification 

 

 

5. CONCLUSION 

 

In biological data analysis, machine learning methods, 

especially deep learning, have gained attention. Deep 

learning's performance is notable; however, its reliance on 

substantial data can limit accuracy in data-limited scenarios. 
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This paper introduces FFN network structures for binary 

classification using TCGA mRNA data for breast and kidney 

cancer. The FFN achieves 99.2% accuracy with the kidney 

dataset, showing promising outcomes. Future work may 

expand this study to include various TCGA datasets, enabling 

experiment with different deep learning architectures beyond 

FFN, such as convolutional neural networks (CNNs) or 

recurrent neural networks (RNNs), to capture complex 

patterns in genomic data more effectively. These architectures 

may offer better performance and stability for cancer 

classification tasks, further refine the feature selection process 

by exploring additional methods or combinations of methods, 

investigate the impact of feature selection techniques on model 

stability and performance across different cancer types and 

datasets.  
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