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This study aims to make investigation for the free vibration problem of simply 

supported axial-FGB by applying the Rayleigh method. The model of (power law) is 

adopted to describe the change in physical mechanical and properties through the axial 

direction. The computer program is built in this work. The accuracy of Rayleigh method 

is checked by comparison of the results of Rayleigh method with the results available 

in literatures and a very good accuracy was found. The combined effects of power-law 

index, modulus-ratio and density-ratio on the fundamental frequency and mode shapes 

of axial-FGBs are investigated. The results explain that the non-dimensional frequency 

parameter at any modulus-ratio is approximately constant when the power-law index 

increases. When the power-law index is smaller than (1), the effect of modulus-ratio is 

greater than the effect of density-ratio. While the effect of modulus-ratio is smaller than 

the effect of density-ratio when the power-law index is greater than (1). Also, when 

density-ratio equals (1), the dimensionless deflection (or amplitude) increases with 

reducing of power-law index (β). When the modulus-ratio is smaller than (1), the 

dimensionless deflection increases with increasing the power-law index (β). From 

results, the Rayleigh method is able to calculate the natural frequency and mode shape 

of simply supported axial-FGM beam. 
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1. INTRODUCTION

In the last twenty years, a new kind of composite materials 

has been widely used in several engineering applications (such 

as space crafts, vehicles, aircrafts, electronics, biomedical field 

and defense and military industries) because of their 

developed properties, and this kind of composite is called 

"functionally graded material (FGM)" [1]. FGMs, like 

traditional composite materials, consist of a combination of 

two separated components which graded along one, two or 

three directions and the one dimension FGM is divided into 

two types thickness and axial-FGM [2-4]. This gradation in 

material properties of FGMs leads to reduce the effects 

residual stresses, shear stresses, thermal stresses and stress 

concentrations between the components [1, 5-9]. 

Due to the several advantages of FGMs, many engineering 

applications used these materials into several structures such 

as beams, plates and shells. In the last few years, a lot of 

studies were accomplished for understanding the impacts of 

FGMs on the static and dynamic behaviors of beams, plates 

and shells. The growing use of FG beams as structural 

components in numerous areas has necessitated the study of 

their dynamic behavior and particular vibration characteristics 

(natural frequency and mode shape) [10, 11]. 

In general, it is difficult to find an exact solution of the 

vibration phenomena of axial-FG beam due to the complexity 

of the governing differential equation. Therefore, various 

methods or techniques (such as finite element method, finite 

different method, power series technique, Homogenization 

technique, Semi-analytical technique, Rayleigh method, etc.) 

have been applied to solve and study the vibration phenomena 

of axial-FG beam. In 2004, the semi-inverse method was 

applied by Elishakoff and Guede to solve a free vibration 

problem of a large class of FG beam [12]. Çalım [13] studied 

the dynamic problem of nonuniform composite beams using 

an efficient method of analysis in the Laplace domain. Huang 

and Li [14] used a combination of differential equation with 

variable coefficients and the boundary conditions to find 

"Fredholm integral equation". They salved "Fredholm integral 

equation" to estimate the natural frequencies and buckling 

loads of axial-FG beams. 

Alshorbagy et al. [15] used a basic power law model to 

characterize the materials distribution in length direction to 

investigate the free vibration problem of axial-FG beams. 

They applied the finite element method by developing new 

element (element has two nodes and six-degree of freedom) 

basing on Euler-Bernoulli beam theory. Also, the finite 

element method was used by Shahba et al. to investigate the 

free vibration behavior of tapered axial-FG beam basing on 

Euler-Bernoulli and Timoshenko beam theories [16, 17]. 
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Shahba and Rajasekaran [18] applied the “differential 

transform element method” to calculate the natural frequency 

of tapered axial-FG beam basing on Euler-Bernoulli theory. 

For varying cross sections, the vibration behaviors of axial-FG 

beam with different supporting types were investigated by 

Hein and Feklistova [19] using “Haar wavelet series”. Huang 

et al. [20] considered Timoshenko theory to develop a new 

approach by presenting an auxiliary function. to study the 

effect of non-uniformity parameter of cross section on the 

vibration analysis of axial-FG beams. Akgöz and Civalek [21] 

used both modified couple stress and Bernoulli-Euler beam 

theory to estimate the natural frequency of axial-FG beams 

with linear variation of cross section. Li et al. [22] adopted 

exponential model to describe variation of material properties 

and cross-section area parameter along the length of FG beams 

by applying Euler-Bernoulli theory and Timoshenko beam 

theory [23]. For uniform axial-FG beam, Sarkar and Ganguli 

based Timoshenko theory to investigate the effect of 

supporting types on the natural frequency [24]. 

Garijo [25] applied "collocation technique" and "Bernstein 

polynomials" to study the impact of varying cross section of 

axial FG beam on the natural frequency. Basing on " 

Chebyshev polynomial " theory, the free vibration of non-

prismatic axial-FG was investigated by Zhao et al. [26] and 

Liu et al. [27] used the “spline finite point method” to study 

the same cases. Xie et al. [28] investigated the free vibration 

behavior of beams with varying in densities, moduli of 

elasticity and cross section in axial direction using 

decomposition technique, integrated polynomials and the 

spectral collocation approach. Kukla and Rychlewska [29] 

investigated the natural frequency of axial-FG beam by 

replacing functions characterizing FG beams with piecewise 

"exponential functions". The natural frequency of non-

prismatic axial-FG beam was estimated by Huang and Rong 

[30]. They based on integral technique and polynomial 

expansion as well as Euler-Bernoulli beam theory to propose 

a new simple approach in their analysis. Cao et al. [31] studied 

analytically the free vibration analysis of axial FG beam using 

“the perturbation theory and Meijer G-Function" and Euler-

Bernoulli beam theory. They found that “the new two 

analytical methods are simple and efficient and can be used to 

conveniently analyze free vibration of AFG beam”. Fogang 

[32] applied the finite difference method to analyze the 

vibration problems of non-uniform axial-FG beam basing on 

Timoshenko theory. He assumed that the material and 

geometry parameters (density, elastic and shear moduli, 

moment of inertia and cross section area) changed along the 

axial direction. Kılıç and Özdemir [33] investigated the 

buckling and vibration behaviors of axial-FG beam using 

finite element technique and basing on the classical and the 

first order shear deformation theories. They investigated the 

impact of rotational speed, radius of hub, material properties, 

material distribution parameter as well as supporting type. 

Selmi [34] estimated the mode shapes and natural frequencies 

of axial-FG beam by applying “Differential Transformation 

Method" and compared the results that obtained by the 

"Differential Transformation Method" with that obtained by 

finite element method. He studied the impact of material 

distribution parameter, density ratio and modulus ratio. 

In this study, Rayleigh method was modified to investigate 

the free vibration problem of simply supported axial-FG beam. 

The varying in physical and mechanical properties in the axial 

direction were defined by using the power law model. This 

varying in properties leads to complex the vibration behavior 

and increases the nonlinearity. The impact of modulus ratio, 

density ratio as well as material distribution parameter on the 

fundamental frequency and mode shape of simply supported 

axial-FG beam was investigated. 

 

 

2. PROBLEM CHARACTERIZATION 

 

The basic idea of FGMs can be summarized as “design the 

material properties to get on the required static or dynamic 

response”. Therefore, the material properties (i.e. mechanical 

and physical properties) are studied essentially in order to 

understand the behavior of FGMs. Generally, three 

mathematical equations are widely used to define the 

mechanical and physical properties of FGMs. These 

mathematical equations are power-law, sigmoid and 

exponential equations [35-37]. In this study, the distribution of 

material in axial direction is defined by "power-law equation". 

Using the rule of mixture, the mechanical (Modulus of 

Elasticity and Poison Ratio) and physical (Density) properties 

of power-law axial-FG beam can be written as (see Figure 1): 

 

𝑉𝐿 = (1 − (
𝑋

𝐿
))

𝛽

 (1) 

 

𝑉𝐿 + 𝑉𝑅 = 1 (2) 

 

𝐸(𝑋) = (𝐸𝐿 ∗ 𝑉𝐿) + (𝐸𝑅 ∗ 𝑉𝑅) 

                       = (𝐸𝐿 − 𝐸𝑅) ∗ (1 − (
𝑋

𝐿
))

𝛽

+ 𝐸𝑅 
(3) 

 

𝜇(𝑋) = (𝜇𝐿 − 𝜇𝑅) ∗ (1 − (
𝑋

𝐿
))

𝛽

+ 𝜇𝑅 (4) 

 

𝜌(𝑋) = (𝜌𝐿 − 𝜌𝑅) ∗ (1 − (
𝑋

𝐿
))

𝛽

+ 𝜌𝑅 (5) 

 

 
(a) Axial FG-beam 

 
 

(b) Distribution of modulus ratio 

 

Figure 1. Distribution of properties along the length of axial-

FGB 

2448



 

Generally, the stiffness of uniform beam is the main 

parameters effect on the response of beam and the stiffness 

equals to the multiplying of elastic modulus and second 

moment of cross section area of the beam. In axial functionally 

graded beam (axial-FGB), the elastic modulus is not constant 

along the axial direction (i.e. non-uniform properties). Due to 

this non-uniformity in material properties along the axial 

direction, the classical solutions (depending on Euler beam 

theory, Timoshenko beam theory and high order shear theory) 

of free vibration problem are not accurate [36]. Therefore, 

these theories or solutions must be modified to consider the 

variation in properties along the length of beam. 

 

 

3. RAYLEIGH METHOD 

 

The Rayleigh Method is a simple numerical method that 

used to calculate the natural frequency. This method considers 

Euler beam theory therefore it is not accurate when it is used 

for calculating natural frequency of axial-FGB because of 

varying the material properties along the length of beam (see 

Eqs. (3)-(5)). In this work, the Rayleigh Method is modified to 

overcome the varying in material properties. In order to 

compute the natural frequency and mode shape of axial-FGB 

with simply supported conditions, the problem of non-

uniformity in material properties must solved. In this study, 

the Rayleigh method (RM) is utilized to solve this problem 

using homogenization technique [2, 3]. The homogenization 

technique is applied to find the equivalent stiffness of axial-

FGB as illustrated in the following steps [2, 3]: 

1. Dividing the beam into (M) parts and (M+1) points and 

the length of each part is (ΔX=L/M). 

2. Calculating mechanical properties (modulus of 

elasticity and Poisons ratio) and physical property 

(density) at each point using Eqs. (6)-(8) as illustrated 

in Figure 2, the position of any point is 𝑋 = Δ𝑋 ∗
(𝑖 − 1); 𝑖 = 1,2,3, …  𝑀 + 1. 

 

𝐸(𝑋) = (𝐸𝐿 − 𝐸𝑅) ∗ (1 − (
Δ𝑋 ∗ (𝑖 − 1)

𝐿
))

𝛽

+ 𝐸𝑅; 

𝑖 = 1,2,3, …… .𝑀 + 1 

(6) 

 

𝜇(𝑋) = (𝜇𝐿 − 𝜇𝑅) ∗ (1 − (
ΔX ∗ (𝑖 − 1)

𝐿
))

𝛽

+ 𝜇𝑅; 

𝑖 = 1,2,3, …… .𝑀 + 1 

(7) 

 

𝜌(𝑋) = (𝜌𝐿 − 𝜌𝑅) ∗ (1 − (
ΔX ∗ (𝑖 − 1)

𝐿
))

𝛽

+ 𝜌𝑅; 

𝑖 = 1,2,3, …… .𝑀 + 1 

(8) 

 

 
 

Figure 2. Dividing the axial-FGB 

 

3. Calculating the modulus of elasticity, Poisons ratio and 

density of each part by taking the average value of start 

and end points of each part: 

𝐸(𝑝𝑎𝑟𝑡 𝑖) =
(𝐸(𝑝𝑜𝑖𝑛𝑡 𝑖 + 1) + 𝐸(𝑝𝑜𝑖𝑛𝑡 𝑖))

2
; 

𝑖 = 1,2,3, …… .𝑀 

(9) 

 

𝜇(𝑝𝑎𝑟𝑡 𝑖) =
(𝜇(𝑝𝑜𝑖𝑛𝑡 𝑖 + 1) + 𝜇(𝑝𝑜𝑖𝑛𝑡 𝑖))

2
; 

𝑖 = 1,2,3, …… .𝑀 

(10) 

 

𝜌(𝑝𝑎𝑟𝑡 𝑖) =
(𝜌(𝑝𝑜𝑖𝑛𝑡 𝑖 + 1) + 𝜌(𝑝𝑜𝑖𝑛𝑡 𝑖))

2
; 

𝑖 = 1,2,3, …… .𝑀 

(11) 

 

4. Calculating the equivalent stiffness of the simply 

supported axial-FGB by the following steps: 

(i) Compute the center of volume of the axial-FGB (Xc) 

using the following equation: 

 

𝑋𝑐 =
∑ 𝑋𝑖 ∗ 𝕍𝑖
𝑀
𝑖=1

∑ 𝕍𝑖
𝑀
𝑖=1

 (12) 

 

where, 𝕍𝑖 is the volume of (i) part. 

The center of axial-FGB in this case equals (0.5*L) 

(uniform area). 

i. Dividing the beam into two cantilever beams at the 

position 𝑋𝑐 as shown in Figure 3. 

ii. Calculating the equivalent stiffness of the two-cantilever 

axial-FGBs using the following equation: 

 

((𝐸𝐼)𝑒𝑞)𝐿 =
(𝐿𝐿𝑒𝑓𝑡)

3

∑
(𝐿𝑘)

3 − (𝐿𝑘−1)
3

(𝐸𝐼)𝑘

𝑀𝐿𝑒𝑓𝑡
𝑘=1

; 

𝐾 = 1,2, … .𝑀𝐿𝑒𝑓𝑡 

(13) 

 

((𝐸𝐼)𝑒𝑞)𝑅 =
(𝐿𝑅𝑖𝑔ℎ𝑡)

3

∑
(𝐿𝑘)

3 − (𝐿𝑘−1)
3

(𝐸𝐼)𝑘

𝑀𝑅𝑖𝑔ℎ𝑡
𝑘=1

; 

𝐾 = 1,2, … .𝑀𝑅𝑖𝑔ℎ𝑡 

(14) 

 

The total equivalent stiffness is: 

 

(𝐸𝐼)𝑒𝑞 =
(𝐿𝑅𝑖𝑔ℎ𝑡+𝐿𝐿𝑒𝑓𝑡)∗(𝐿𝑅𝑖𝑔ℎ𝑡)

2
∗(𝐿𝐿𝑒𝑓𝑡)

2

((∑  
𝑙𝐾−1

3−𝑙𝐾
3

𝐼𝐾

𝑀𝑅𝑖𝑔ℎ𝑡
𝐾=1 )∗𝐿𝑅𝑖𝑔ℎ𝑡

2)+((∑
𝑙𝐾
3−𝑙𝐾−1

3

𝐼𝐾

𝑀𝐿𝑒𝑓𝑡  

𝐾=1 )∗𝐿𝐿𝑒𝑓𝑡
2)

  
(15) 

 

 
 

Figure 3. Dividing the simply supported beam into two 

cantilever beam depending on the centroid of axial-FGB 
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5. Calculating deflections of simply supported beam by 

applying the equivalent stiffness and using Table 1 and 

the equation (considering W=1): 

 
[Y] = [𝛿][𝐹] (16) 

 

where, [𝐹] = 𝑓𝑖, 𝑖 = 1, 2,3, … .𝑀 + 1 and it is called "external 

force matrix" and in the free vibration the values of fi are 

calculated as: 

 

𝑓𝑖 =

{
 

 
𝜌(𝑝𝑎𝑟𝑡 1)∗∆𝑋∗𝐴∗𝑔

2
when 𝑖 = 1 

𝜌(𝑝𝑎𝑟𝑡 𝑀)∗∆𝑋∗𝐴∗𝑔

2
when 𝑖 = 𝑀 + 1

𝜌(𝑝𝑎𝑟𝑡 𝑖) ∗ ∆𝑋 ∗ 𝐴 ∗ 𝑔 when 𝑖 ≠ 1 and 𝑖 ≠ 𝑀 + 1

  (17) 

 

Table 1. Deflection equations of different points in simply 

supported beam 

 

 
𝛿𝑗𝑖=𝑊𝑏𝑐𝐿2−𝑏2−𝑐26𝐸𝐼𝐿 

𝛿𝑖𝑖 =
𝑊𝑎2𝑏2

3𝐸𝐼𝐿
 

𝛿𝑘𝑖 =
𝑊𝑎𝑑(𝐿2 − 𝑎2 − 𝑑2)

6𝐸𝐼𝐿
 

𝛿𝑚𝑖 =
𝑊𝑎𝑏𝑟(𝐿 + 𝑎)

6𝐸𝐼𝐿
 

 

6. Applying the boundary conditions of simply supported 

beam as: 

 

𝐴𝑡 𝑋 = 0 → 𝑓1 = 0; 𝛿1𝑗 = 𝛿𝑗1 = 0;  

𝑗 = 1,2,3, … .𝑀 + 1 
𝐴𝑡 𝑋 = 𝐿 → 𝑓(𝑀+1) = 0; 𝛿(𝑀+1)𝑗 = 𝛿𝑗(𝑀+1) = 0; 

𝑗 = 1,2,3, … .𝑀 + 1 

(18) 

 

7. Calculating the natural frequency using the following 

equation: 
 

ω2 =
𝑔 ∗ ∑ 𝑦𝑖 ∗ 𝑓𝑖

𝑀+1
𝑖=1

∑ (𝑦𝑖)
2 ∗ 𝑓𝑖

𝑀+1
𝑖=1

 (19) 

 

 

4. FINITE ELEMENT MODEL 

 

In this paper, the finite element model is used to calculate 

the natural frequency and mode shapes of the simply supported 

axial-FGB. The present finite element model applied the 

element “BEAM189” using ANSYS APDL software and the 

"Model Analysis" is adopted in this work. The convergence 

criteria applied by Wadi et al. [2] is also adopted in this work. 

The simply supported axial-FGB is divided into (20) parts (i.e. 

M=20) and each part contains five elements. The properties of 

element" BEAM189" were summarized in references [2, 3]. 

The boundary conditions of the simply supported beam are: 

(1) At X=0, Ux=Uy=Uz=0. 

(2) At X=L, Uy=Uz=0. 

These boundary conditions are assumed theoretically to 

satisfy that “the length of mid plane in simply supported beam 

remains constant”. Also, these boundary conditions were used 

in several engineering FGM applications. 

 

 

5. VALIDATION OF THE PRESENT MODELS 

 

For checking the accuracy of Rayleigh and ANSYS models 

of the present work, the fundamental frequency results of two 

models are compared with the results obtained by Alshorbagy 

et al. [15] and Al-Zaini et al. [35]. Mechanical and physical 

properties of simply supported axial-FGB used by Alshorbagy 

et al. [15] and Al-Zaini et al. [35] are listed in Table 2. They 

considered that the steel is the left material and they calculated 

the properties of right material according to modulus and 

density ratios (they assumed the density ratio =1). Alshorbagy 

et al. [15] used axial-FGB with length and width equal to 20m 

and 0.4m respectively, while the thickness (or height) of axial 

FGB is calculated with reference to the ratio of length to 

thickness. Alshorbagy et al. [15] used two values of the length-

to- thickness ratio and these values were 20 and 100. 

Alshorbagy et al. [15] and Al-Zaini et al. [35] used the 

parameter of the non-dimensional frequency to display this 

comparison. The parameter of the non-dimensional frequency 

is written as [15, 35]: 

 

𝜆2 = 𝜔𝐿2√
𝜌𝑅
𝐸𝑅

𝐴

𝐼
 (20) 

 

Table 2. The mechanical and physical properties of the 

materials used for checking accuracy of the present models 

[15, 35] 

 

Property Unit Metal (Steel) 
Ceramic (Alumina 

(Al2O3)) 

Modulus of 

Elasticity (E) 
Pa. 210.0*109 390.0*109 

Poisson Ratio (μ) … 0.28 0.33 

Density (ρ) kg/m3 7800 3960 

 
Table 3. Comparison of the frequency parameters for validation of the present models with different power law index (β), modulus ratio 

(EL/ER) and length-to-height ratio (L/h) 
 

EL/ER 

Power 

Law 

Index (β) 

L/h=20 

Author 

Present Work Al-Zaini et al. [35] 
Alshorbagy et al. 

[15] 
Rayleigh 

Method 

ANSYS-

BEAM189 

ANSYS-

SHELL281 

ANSYS-

SOLID186 

0.25 

0.1 2.329939 2.33845 2.3375 2.3394 2.3285 

0.2 2.413451 2.4154 2.4104 2.4204 2.4106 

0.5 2.590268 2.58385 2.5783 2.5894 2.5821 

1 2.767177 2.7529 2.7481 2.7577 2.7533 
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2 2.945109 2.9263 2.9221 2.9305 2.9278 

5 3.096288 3.0806 3.0766 3.0846 3.0834 

10 3.133192 3.12455 3.1205 3.1286 3.1265 

0.5 

0.1 2.688463 2.6891 2.6838 2.6944 2.6868 

0.2 2.727505 2.72805 2.7228 2.7333 2.7258 

0.5 2.817994 2.81635 2.8114 2.8213 2.8148 

1 2.91655 2.91115 2.9065 2.9158 2.9104 

2 3.021393 3.0117 3.0074 3.016 3.0122 

5 3.113747 3.1041 3.0999 3.1083 3.1052 

10 3.136731 3.1308 3.1266 3.135 3.1316 

1 

0.1 3.142715 3.14035 3.136 3.1447 3.14 

0.2 3.142715 3.14035 3.136 3.1447 3.14 

0.5 3.142715 3.14035 3.136 3.1447 3.14 

1 3.142715 3.14035 3.136 3.1447 3.14 

2 3.142715 3.14035 3.136 3.1447 3.14 

5 3.142715 3.14035 3.136 3.1447 3.14 

10 3.142715 3.14035 3.136 3.1447 3.14 

2 

0.1 3.702872 3.69705 3.6933 3.7008 3.6988 

0.2 3.670116 3.66345 3.6598 3.6671 3.6653 

0.5 3.582165 3.57365 3.57 3.5773 3.5758 

1 3.467642 3.46025 3.4564 3.4641 3.4611 

2 3.326629 3.3252 3.321 3.3294 3.3244 

5 3.188623 3.20415 3.2095 3.1988 3.1923 

10 3.152372 3.15455 3.1501 3.159 3.1531 

4 

0.1 4.38226 4.37375 4.3702 4.3773 4.3768 

0.2 4.321689 4.31055 4.3073 4.3138 4.3144 

0.5 4.151365 4.1344 4.1314 4.1374 4.1387 

1 3.911783 3.89045 3.8872 3.8937 3.8937 

2 3.592089 3.58005 3.576 3.5841 3.5795 

5 3.258158 3.26985 3.2653 3.2744 3.2668 

10 3.167217 3.1754 3.1709 3.1799 3.1726 

EL/ER 

Power 

Law 

Index (β) 

L/h=100 

Author 

Present Work Al-Zaini et al. [35] 
Alshorbagy et al. 

[15] 
Rayleigh 

Method 

ANSYS-

BEAM189 

ANSYS-

SHELL281 

ANSYS-

SOLID186 

0.25 

0.1 2.32994 2.332 2.3336 2.3304 2.3297 

0.2 2.413451 2.4138 2.415 2.4126 2.4118 

0.5 2.590267 2.58455 2.5852 2.5839 2.5834 

1 2.767177 2.7549 2.7552 2.7546 2.7546 

2 2.94511 2.9295 2.9296 2.9294 2.9293 

5 3.096287 3.0844 3.0844 3.0844 3.0849 

10 3.133192 3.1278 3.1278 3.1278 3.1281 

0.5 

0.1 2.688463 2.69025 2.6914 2.6891 2.6881 

0.2 2.727505 2.7291 2.7301 2.7281 2.7271 

0.5 2.817993 2.8176 2.8182 2.817 2.8162 

1 2.916549 2.91285 2.9131 2.9126 2.9119 

2 3.021392 3.01405 3.0141 3.014 3.0137 

5 3.113747 3.1068 3.1068 3.1068 3.1067 

10 3.13673 3.1334 3.1334 3.1334 3.1332 

1 

0.1 3.142715 3.14235 3.1423 3.1424 3.1415 

0.2 3.142715 3.14235 3.1423 3.1424 3.1415 

0.5 3.142715 3.14235 3.1423 3.1424 3.1415 

1 3.142715 3.14235 3.1423 3.1424 3.1415 

2 3.142715 3.14235 3.1423 3.1424 3.1415 

5 3.142715 3.14235 3.1423 3.1424 3.1415 

10 3.142715 3.14235 3.1423 3.1424 3.1415 

2 

0.1 3.702873 3.6993 3.6975 3.7011 3.7006 

0.2 3.670115 3.6658 3.664 3.6676 3.6671 

0.5 3.582166 3.5762 3.5746 3.5778 3.5775 

1 3.467642 3.46275 3.4618 3.4637 3.4628 

2 3.326628 3.3274 3.3272 3.3276 3.326 

5 3.188623 3.1959 3.1959 3.1959 3.1939 

10 3.152373 3.156 3.156 3.156 3.1547 

4 

0.1 4.382258 4.37575 4.3719 4.3796 4.3789 

0.2 4.321688 4.3125 4.3082 4.3168 4.3166 

0.5 4.151364 4.13625 4.1314 4.1411 4.1408 

1 3.911783 3.89285 3.8894 3.8963 3.8957 

2 3.592089 3.5828 3.582 3.5836 3.5812 

5 3.258157 3.2713 3.2713 3.2713 3.2684 

10 3.167217 3.1765 3.1765 3.1765 3.1742 
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L/h=20. 

 
L/h=100. 

Modulus Ratio=4 

 

Figure 4. Comparison of the frequency parameters for 

validation of the present models with different length-to-

height ratio (L/h), modulus ratio (Ec/Em) and power law 

index (β) 

 

Table 3 and Figure 4 show the comparison of fundamental 

frequency parameter results of the simply supported axial-

FGB estimated by Alshorbagy et al. [15], Al-Zaini et al. [35] 

(two ANSYS models using SOLID186 and SHELL281) and 

present models (Rayleigh and ANSYS-BEAM189 models) 

with various different modulus ratio and power-law index (𝛽). 

It is noted that an excellent agreement between the present 

models and the models used by Alshorbagy et al. [15] and Al-

Zaini et al. [35] at any modulus ratio and power-law index (𝛽). 

Also, the length-to-thickness ratio doesn’t affect the frequency 

parameter calculated by Rayleigh model. 

 

 

6. RESULTS AND DISCUSSION 

 

In this work, steel is chosen as a left material and when the 

modulus ratio or density ratio change, the material properties 

of the right material are varied only. The dimensions of axial-

FGB are: Length=1m and width=thickness=0.05m. Three 

important parameters, that effect on the natural frequency and 

mode shape of axial-FGB, are studied in this paper and these 

parameters are power-law index (β) (or material distribution 

parameters), modulus-ratio (EL/ER) and density-ratio (ρL/ρR). 

 

6.1 Fundamental frequency 

 

Figure 5 shows the effect of power-law index (β) on the non-

dimensional frequency parameter with various modulus-ratio 

(EL/ER) and the density-ratio (ρL/ρR) is constant. When 

(ρL/ρR=0.25), the non-dimensional frequency parameter 

reduces with decreasing the power-law index (β) as illustrated 

in Figure 5(a). The increase of power-law index (β) leads to 

increase the equivalent stiffness of axial-FGB. The increase in 

equivalent stiffness causes reducing non-dimensional 

fundamental frequency parameter. Also, the slop (i.e. rate of 

variation) of frequency parameter increases with increasing 

the value of modulus-ratio (EL/ER). The slop (i.e. rate of 

variation) frequency parameter when (EL/ER=4) is the largest 

slop when the power-law index (β) increases. Also, when 

(EL/ER=0.25), the non-dimensional fundamental frequency 

parameter is approximately constant with increasing power-

law index (β) (i.e. the slop (i.e. rate of variation) of frequency 

parameter is approximately zero). If (ρL/ρR=1), the non-

dimensional fundamental frequency parameter increases with 

increasing the power-law index (β) when the value of 

modulus-ratio (EL/ER) is smaller than (1). Also, the non-

dimensional fundamental frequency parameter decreases with 

increasing the power-law index (β) when the value of 

modulus-ratio (EL/ER) is larger than (1) (see Figure 5(c)). In 

Figure 5(e) (ρL/ρR=4), the non-dimensional fundamental 

frequency parameter increases with increasing the power-law 

index (β) when the modulus-ratio (EL/ER) is smaller than (4). 

While the non-dimensional fundamental frequency parameter 

is approximately constant with increasing the power-law index 

(β) when (EL/ER=4). 

In Figure 6, the fundamental frequency of axial-FGB is 

affected by power-law index (β) with various density-ratio 

(ρL/ρR) and the modulus-ratio (EL/ER) constant. The 

fundamental frequency is approximately constant with 

increasing when the power-law index (β) when density-ratio 

equals modulus-ratio (i.e. ρL/ρR=EL/ER). According to Eqs. (3) 

and (5), the summation variation of material properties 

(modulus and density) gives a constant value of fundamental 

frequency when the power-law index (β) increases. In other 

side, when the modulus -ratio is greater than density -ratio (i.e. 

ρL/ρR<EL/ER), the fundamental frequency reduces with 

increasing the power-law index (β). And the rate of decreasing 

of fundamental frequency increases with increasing the power-

law index (β) and modulus-ratio. While if the modulus-ratio is 

smaller than density-ratio (i.e. ρL/ρR>EL/ER), the fundamental 

frequency increases with increasing the power-law index (β) 

and the rate of increasing of fundamental frequency increases 

with increasing the power-law index (β) and decreasing 

modulus-ratio. This behavior occurs due to combined effects 

of two important factors (equivalent stiffness and mass 

distribution of axial-FGB). In Eqs. (3) and (5) and when (ρL/ρR 

=EL/ER), the elastic modulus and density of axial-FGB varied 

with the same way when the power-law index (β) increases. 

The variation in elastic modulus leads to vary the equivalent 

stiffness of axial-FGB and density along the axial-FGB leads. 

If the elastic modulus increases, the fundamental frequency 

increases, while the fundamental frequency decreases when 

density (i.e. mass distribution) increases. The increasing in 

fundamental frequency due to increase elastic modulus equals 

to the decreasing in fundamental frequency due to increase 

density. Therefore, the fundamental frequency is constant 

when (ρL/ρR =EL/ER). 
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(a) ρL/ρR=0.25 

  
(b) ρL/ρR=0.5 

  
(c) ρL/ρR=1 

  
(d) ρL/ρR=2 

  
(e) ρL/ρR=4 

 

Figure 5. Effect of power-law index (β) on the non-dimensional frequency parameters with various modulus and density ratios 
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(a) ρL/ρR=0.25 

  
(b) ρL/ρR=0.5 

  
(c) ρL/ρR =1 

  
(d) ρL/ρR =2 

  
(e) ρL/ρR=4 

 

Figure 6. Effect of power–law index (β) on fundamental frequency with various modulus and density ratios 
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Finally, Figure 7 displays the combination effects of 

modulus and density ratios on the non-dimensional frequency 

parameter with various power-law index (β). When (β=1) (i.e. 

linear variation), the effect of density-ratio (ρL/ρR) is similar to 

the effect of modulus-ratio (EL/ER). It is clear that the 

maximum non-dimensional frequency parameter occurs when 

(ρL/ρR=EL/ER=4) and the minimum non-dimensional 

frequency parameter occurs when (ρL/ρR =EL/ER=0.25). For 

(β<1), the effect of modulus-ratio (EL/ER) is greater than that 

of density-ratio (ρL/ρR). While the effect of modulus-ratio 

(EL/ER) is smaller than that of density-ratio (ρL/ρR) when (β>1). 

From the results, the combination effects of modulus ratio, 

density ratio and power law index are described and illustrated. 

Practically, the FGM beam is used is several engineering 

applications and some of these applications requires vibration 

criteria. Therefore, the designer of FGM beam can used the 

data in Figures 5-7 to select the suitable parents of FGM by 

choosing the modulus-ratio and density ratio. 

 

 
β=0.1 

 

 
β=0.5 

 

 
β=1 

 
β=5 

 

 
β=10 

 

 
β=10000 

 

Figure 7. Effect of power–law index (β), modulus ratio and 

density ratio on fundamental frequency with various 

 

6.2 Mode shape 

 

The effects of power-law index (β), modulus-ratio (EL/ER) 

and density-ratio (ρL/ρR) on the mode shapes of axial-FGBs 

illustrate in Figures 8-12. When (ρL/ρR=0.25), the effect of 

power-law index (β) on mode shape increases with increasing 

modulus-ratio (EL/ER) as shown in Figure 8. When the power-

law index (β) increases, the dimensionless deflection (or 

amplitude) increases too. In other side, the effect of power-law 

index (β) on mode shape increases with reducing modulus-

ratio (EL/ER) when (ρL/ρR=4) as shown in Figure 12 and the 

dimensionless deflection (or amplitude) increases with 

reducing power-law index (β). If (ρL/ρR=1), the effect of 

power-law index (β) on mode shape appeases sharply at the 

maximum and minimum modulus-ratio (EL/ER) (i.e. EL/ER=4 

and EL/ER=0.25) as illustrated in Figure 10. Also, the 

dimensionless deflection (or amplitude) increases with 
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reducing the power-law index (β) when (EL/ER<1), and 

increases with increment of the power-law index (β) at 

(EL/ER>1). 

 

 
EL/ER=0.25 

 

 
EL/ER=0.5 

 

 
EL/ER=1 

 

 
EL/ER=2 

 
EL/ER=4 

 

Figure 8. Effect of power-law index (β) and modulus ratio 

on the non-dimensional mode shape when the density 

ratio=0.25 
 

 
EL/ER=0.25 

 

 
EL/ER=0.5 

 

 
EL/ER=1 
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EL/ER=2 

 

 
EL/ER=4 

 

Figure 9. Effect of power-law index (β) and modulus ratio 

on the non-dimensional mode shape when the density 

ratio=0.5 

 

 
EL/ER=0.25 

 

 
EL/ER=0.5 

 
EL/ER=1 

 

 
EL/ER=2 

 

 
EL/ER =4 

 

Figure 10. Effect of power-law index (β) and modulus ratio 

on the non-dimensional mode shape when the density ratio=1 

 

 
EL/ER=0.25 
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EL/ER=0.5 

 

 
EL/ER=1 

 

 
EL/ER=2 

 

 
EL/ER=4 

 

Figure 11. Effect of power-law index (β) and modulus ratio 

on the non-dimensional mode shape when the density ratio=2 

 
EL/ER=0.25 

 

 
EL/ER=0.5 

 

 
EL/ER=1 

 

 
EL/ER=2 
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EL/ER=4 

 

Figure 12. Effect of power–law index (β) and modulus ratio 

on the non-dimensional mode shape when the density ratio=4 

 

 

7. CONCLUSIONS AND FUTURE WORKS 

 

In this paper, the Rayleigh method was adopted to simulate 

the free vibration problem of simply supported axial-FGB. The 

main purpose of this study is to investigate the combined 

effects of power-law index, (β), modulus-ratio (EL/ER) and 

density-ratio (ρL/ρR) on the fundamental frequency and mode 

shapes of axial-FGBs and that is reached by results. From the 

results discussed in previous section, the following points can 

be concluded. 
 

1) For fundamental frequency parameter, non-

dimensional fundamental frequency parameter is 

approximately constant with increment of power-law 

index (β) at modulus-ratio equals to density-ratio (i.e. 

EL/ER = ρL/ρR). 

2) For fundamental frequency parameter, the non-

dimensional fundamental frequency parameter 

increases with increasing the power-law index (β) 

when the value of modulus-ratio (EL/ER) is smaller 

than (1) and decreases with increasing the power-law 

index (β) when the value of modulus-ratio (EL/ER) is 

larger than (1) when (ρL/ρR=1). 

3) For fundamental frequency parameter, if (β=1) (i.e. 

linear variation), the effect of density-ratio (ρL/ρR) on 

the fundamental frequency parameter is similar to the 

effect of modulus-ratio (EL/ER). It is clear that the 

maximum and minimum non-dimensional frequency 

parameter occurs when (ρL/ρR =EL/ER=4) and 

(ρL/ρR=EL/ER=0.25) respectively. 

4) For fundamental frequency parameter, when (β<1), 

the effect of modulus-ratio (EL/ER) is greater than 

that of density-ratio (ρL/ρR). While the effect of 

modulus-ratio (EL/ER) is smaller than that of density-

ratio (ρL/ρR) when (β>1). 

5) For mode shape, when (ρL/ρR=1) the dimensionless 

deflection (or amplitude) increases with reducing the 

power-law index (β) at (EL/ER<1), and it increases 

with increment the power-law index (β) at (EL/ER>1). 
 

For future works, the combination effects of modulus-ratio 

(EL/ER), power-law index (β) and density-ratio (ρL/ρR) on the 

natural frequencies and mode shapes of second and third 

modes for axial-FGBs under different boundary conditions 

can be investigated using Rayleigh and finite element methods. 
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NOMENCLATURES 

 

A Cross Section Area, m2 

𝐸(𝑋) Modulus of Elasticity at any point (X), Pa 

𝐸𝐿 , 𝐸𝑅 
Modulus of Elasticity of Left and Right 

Material, Pa 
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[𝐹] Force Matrix, N 

𝑓𝑖 Applied Load of Each Point (i), N 

I Second Moment of Area, m4 

g Gravitational Acceleration, m/sec2 

L Length of Beam, m 

𝐿𝐿𝑒𝑓𝑡 , 𝐿𝑅𝑖𝑔ℎ𝑡 
Length of the Left and Right Cantilever 

Beams, m 

M Number of Dividing Parts  

𝑀𝐿𝑒𝑓𝑡 , 𝑀𝑅𝑖𝑔ℎ𝑡  
Number of Dividing Parts of the Left and 

Right Cantilever Beams 

Ux, Uy, Uz Displacement in x, y and z direction, m 

𝑉𝐿 , 𝑉𝑅 Volume Fraction of Left and Right Material 

𝕍𝑖 Volume of (i) part, m3 

W Applied Load, N 

X Coordinate 

Xc Centroid of the Axial FGB, m 
[𝑌] Deflection Matrix, m 

𝛽 Power Law Index 

[𝛿] Delta Matrix, m/N 

𝜆 The Non-dimensional Frequency Parameter 

𝜇(𝑋) Poison Ratio at any point (X) 

𝜇𝐿 , 𝜇𝑅 Poison Ratio of Left and Right Material 

𝜌(𝑋) Density at any point (X), kg/m3 

𝜌𝐿 , 𝜌𝑅 Density of Left and Right Material, kg/m3 

ω Frequency, rad/sec 
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