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This study investigates the feasibility of using a basic 24 GHz one-dimensional (1D) 

radar for Human Activity Recognition (HAR), focusing on differentiating between 

walking and standing movements. We evaluate the radar's performance using various 

machine learning models, including K-means, GMM, SVM, and LSTM. Using the 

silhouette score and the Davies-Bouldin index, we evaluate the intra- and interclass 

results of K-means and GMM, while SVM and LSTM are used to analyze their 

performance. The results indicate that the LSTM model achieves high accuracy in both 

vertical and horizontal dimensions, with precision, recall, and F1-scores all above 98% 

for both standing and walking movements. However, the SVM model faces challenges 

in horizontal movement detection, consistent with the unsupervised learning results 

where the inter-class and intra-class distances for the horizontal dimension are not 

significant, making differentiation difficult. These findings delineate the boundaries and 

capabilities of a lower-specification radar for HAR, providing insights into its practical 

applications and limitations. 
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1. INTRODUCTION

In recent years, radar technology has significantly advanced, 

contributing to the monitoring and analysis of object 

movements in various contexts [1-6]. While most research in 

Real-Time Human Activity Recognition (HAR) has focused 

on high-specification, multi-dimensional radar systems, the 

feasibility of using lower-specification, cost-effective radars 

remain underexplored [1]. 

Identifying and separating object movements is crucial in 

applications such as Navigation, Security Monitoring, and 

Human Activity Recognition. Studies emphasize that 

preprocessing radar data is essential before using it in 

generalization methods, such as filtering or eliminating static 

object reflections [2-4]. Additionally, the direction of object 

movement relative to the radar's point of view during data 

collection significantly affects the resulting movement pattern 

and the accuracy of activity detection. Both vertical and 

horizontal movements fall under this direction, and they have 

an impact on how well machine learning algorithms detect 

human movements. 

Walking and standing movements have distinct 

characteristics. Walking involves continuous transitions 

between adjacent positions, while standing refers to an object 

remaining in a fixed position. Differentiating these two types 

of movement is vital for applications like intrusion detection 

and monitoring human movement in security scenarios. 

This study aims to investigate whether a basic 24 GHz one-

dimensional (1D) radar can effectively differentiate between 

walking and standing movements, particularly when analyzed 

in both vertical and horizontal dimensions. In real-time HAR, 

much research focuses on multi-dimensional radar systems or 

radars with frequencies exceeding 60 GHz [5, 6]. Radar 

systems vary significantly: 1D radars capture range, 2D radars 

capture range and azimuth, and 3D radars capture range, 

azimuth, and altitude. Thus, 1D radar is considered an inferior 

variant compared to 2D and 3D radars because it only captures 

range data [1]. 

We give a comparative analysis of 1D radar's capacity to 

distinguish between walking and standing movements using 

several techniques in order to overcome this difficulty. We 

extract range information to capture the Doppler effect and 

apply K-means, Gaussian Mixture Model (GMM), Support 

Vector Machine (SVM), and Long Short-Term Memory 

(LSTM). K-means and GMM represent unsupervised learning 

approaches, while SVM and LSTM represent supervised 

learning approaches. We evaluate K-means and GMM using 

silhouette scores and the Davies-Bouldin index to assess intra-

class and inter-class separation. SVM and LSTM are evaluated 

based on precision, recall, F1-score, and accuracy. 

Our research aims to outline the capabilities and limitations 

of such a radar system in HAR, offering valuable insights into 

its potential applications. This analysis will help determine the 

effectiveness, accuracy limits, and performance boundaries of 

a 24 GHz 1D radar in recognizing human activities. 
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2. RESEARCH METHODS 

 

Figure 1 illustrates the methodology used in this research, 

detailing the process from data collection to the analysis of 

movement from different radar perspectives. The raw in-phase 

and quadrature (IQ) radar data acquired undergoes several 

preprocessing stages before being fed into the machine 

learning framework. Initially, the IQ data is scaled using a 

Digital-to-Analog Converter (DAC). Following this, DC 

removal is performed to eliminate any direct current (DC) 

components present in the data. Subsequently, clutter removal 

filters out low-frequency data and static object reflections, 

reducing noise in the signal. The next step involves applying 

the Fast Fourier Transform (FFT) to extract distance 

information, followed by the Short-Time Fourier Transform 

(STFT) to capture the Doppler effect and analyze movement. 

After preprocessing, the data is processed through the 

machine learning stage, which employs both unsupervised and 

supervised learning techniques. Unsupervised learning 

identifies patterns and structures in the data without prior 

labels. Supervised learning evaluates the model’s performance 

in distinguishing between vertical and horizontal movements. 

This comprehensive methodology ensures accurate and 

reliable detection of movement, leveraging the capabilities of 

a 24 GHz one-dimensional radar system. 

 

 
 

Figure 1. Proposed method 

 

2.1 Radar 

 

In this study, we used the uRad 24 GHz Radar operating in 

FMCW (Frequency-Modulated Continuous Wave) mode [7]. 

This radar measures the frequency shift of microwaves 

reflected by moving objects, allowing for accurate distance 

measurements. As a one-dimensional radar, it captures range 

data effectively. 

We configured the radar to operate at 30 frames per second 

(FPS) for adequate data acquisition and set it to record 50 

scans (Ns) to ensure comprehensive data collection. The 

radar's bandwidth was set to 200 MHz to optimize sensitivity 

to distance changes. With these settings, the radar can detect 

human movement up to 15.692 meters [7]. 

The formula used to determine the maximum distance from 

the radar is provided in Eq. (1): 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 = 75 ×
𝑁𝑠

𝐵𝑊
 (1) 

 

2.2 Data acquisition 

 

The data collection process involved the careful placement 

of a 24 GHz FMCW radar relative to the subject. The radar 

was positioned at a height of 1 meter and placed 1.5 meters 

away from the detection zone, which was marked with black 

lines, as illustrated in Figures 2 and 3. This setup ensured that 

the subject's position and movements were within the radar's 

detection range. Only one subject participated in the research. 

The subject performed walking and standing movements in 

both vertical and horizontal dimensions for 300 seconds (about 

5 minutes) walking and 30 seconds for standing at predefined 

points. This experimental setup ensured consistent data 

acquisition for both types of movements, enabling an analysis 

of the radar's performance in different scenarios. 

 

 
 

Figure 2. Radar position and object movement vertical: (a) 

Walking movement pattern vertically; (b) Standing 

movement pattern vertically 

 

 
 

Figure 3. Radar position and object movement horizontal: (a) 

Walking movement pattern horizontally; (b) Standing 

movement pattern horizontally 

2348



 

2.3 Preprocessing 

 

2.3.1 DAC scaling 

In the preprocessing stage, the DAC scaling process is 

performed to convert the data from arbitrary units to more 

meaningful voltage units. The data provided by uRad has a 

width of 12 bits, with a range of 0-4095 [8]. Eq. (2) shows how 

the DAC process takes place. 

 

𝑉𝐴𝐷𝐶 =
𝑋𝐴𝐷𝐶

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
× 𝑉𝑟𝑒𝑓  (2) 

 

where, 𝑋 in the equation presents the value of 𝐼 + 𝑗𝑄 for each 

data. While Vref represents the GPIO voltage provided by the 

Raspberry Pi 4 model B, which is 3.3 V [9]. 

 

2.3.2 DC removal 

DC removal eliminates the continuous current component 

that may be present in the data after conversion to the analog 

domain. This step is crucial to ensure that static or constant 

signals do not interfere with the analysis. 

For this process itself is shown by Eq. (3), where Ns is a 

radar signal with a number of samples. 

 

𝑦𝑁𝑠 = 𝑋𝑁𝑠 −
1

𝑁𝑠

∑ 𝑥𝑁𝑠[𝑛]

𝑁𝑠−1

𝑛=0

 (3) 

 

The mean value of the signal is subtracted from each data 

point, ensuring the data is zero-centered and free from static 

interference [10, 11]. 

 

2.3.3 Clutter removal 

After we conduct the DC removal process, the next step will 

be the clutter removal process. The main purpose of this step 

is to remove unwanted interference or noise from radar data 

that can obscure relevant information related to object 

movement. 

Clutter, or interference, can come from signals reflected by 

irrelevant objects, such as walls, ground, or other objects that 

are not the main focus of the research. The typical clutter 

removal process involves using a high-pass filter or 

subtracting a reference signal that represents the clutter. One 

common approach is to subtract the mean (or average) of the 

signal over time, assuming that clutter is relatively constant 

and the mean captures the clutter component. Eq. (4) shows 

how the clutter removal process is done. 

 

𝑦𝑁𝑠 = 𝑋𝑁𝑠 −
1

𝑁𝑠
[ ∑ 𝑥𝑁𝑠[𝑛]

𝑁𝑠−1

𝑛=0

]

𝑇

 (4) 

 

2.3.4 FFT 

In order to convert time-domain signals into the frequency 

domain and help identify the frequency components present in 

the data, the Fast Fourier Transform (FFT) approach is 

frequently employed in signal analysis. Following the 

completion of all data cleaning procedures, FFT is applied. 

In the case of FMCW radar, this process converts radar data 

that was originally in the voltage and time dimensions into the 

distance and time dimensions. Figure 4 shows the results of 

the spectrogram of the activities of a person walking vertical 

and horizontal, x is representing the time and y is representing 

the range. If you notice the Figure 4(a), you can see that person 

is walking at a fast pace toward the radar and away from the 

radar. While Figure 4(b) shows the signal of the radar a range 

the same, it happens because radar data only capture the range, 

so when you are walking horizontally the differences in range 

are not very visible, so the signal looks similar. The equation 

for the FFT process itself is shown by Eq. (5), where k in Eq. 

(5) indicates the frequency index (k=0, 1, 2, …, K-1) and Ns 

the number of samples [12, 13]. 

 

𝑋[𝑘] = ∑ 𝑥𝑁𝑠

𝑁𝑠−1

𝑛=0

[𝑛]𝑒
−𝑗2𝜋

𝑛
𝑁𝑠

[𝑘]
 (5) 

 

 

 
 

Figure 4. Range-time spectrogram of FFT results, (a) 

Vertical; (b) Horizontal 

 

2.3.5 STFT 

Next, after FFT, we will proceed to the STFT process to 

obtain doppler information. STFT is almost similar to FFT, 

except that the FFT in the STFT process is performed using 

Windowing. There are many types of windowing that can be 

used, such as Rectangular, Hamming, Hanning, and Blackman. 

Eq. (5) shows the equation for the STFT process. To obtain 

micro-doppler data, STFT is performed at the same distance 

with different times [14, 15]. 

 

𝑋[𝑘, 𝑚] = ∑ 𝑥[𝑛]𝑤[𝑛 + 𝑚𝐻]𝑒
−𝑗2𝜋

𝑛
𝑁𝑠

[𝑘]
𝑁−1

𝑛=0

 (6) 

 

Radar data that was originally 2-dimensional, namely 
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range-time data, is now 3-dimensional, namely range-doppler-

time, as shown in Figures 5 and 6, frame at the image is 

representing bin time, while x is range and y is frequency. 

Before entering the classification process, the data is formed 

into a Windowed dataset, where 1 Windowed dataset consists 

of 60 samples. 

 

 
 

Figure 5. STFT result transition vertical movement 
 

 
 

Figure 6. STFT result transition horizontal movement 

 

2.4 Machine learning 

 

2.4.1 Unsupervised learning 

Unsupervised learning plays a crucial role in calculating the 

distance between inter and intra-class data points. Two popular 

unsupervised learning algorithms used for this purpose are K-

means and Gaussian Mixture Model (GMM). For this, two 

well-liked unsupervised learning methods are employed: 
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Gaussian Mixture Model (GMM) and K-means. The 

Euclidean distance metric is used by the K-means clustering 

method to categorize data points according to their proximity 

[16]. However, by adding a probabilistic model that 

presupposes data points are produced from a mixture of 

Gaussian distributions, GMM expands on the idea of K-means 

[17]. This allows GMM to capture more complex data patterns 

compared to K-means. 

Metrics like the Davies-Bouldin index and silhouette score 

are frequently used to assess the quality of clustering findings. 

With values ranging from -1 to 1, the silhouette score indicates 

how similar an object is to its cluster in relation to other 

clusters. Better-defined clusters are indicated by a higher 

silhouette score. The Davies-Bouldin index, on the other hand, 

measures the average similarity between each cluster and its 

most comparable cluster; lower values denote better clustering 

outcomes [18]. 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 (𝑎(𝑖), 𝑏(𝑖))
 (7) 

 

The silhouette score for a given data point can be found 

using Eq. (7). a(i) is the average distance from i to all other 

data points in the same cluster. This represents the intra-class 

similarity. an than b(i) is the smallest average distance from i 

to all data points in any other cluster, calculated for each 

cluster. This represents the inter-class dissimilarity. To 

measure the silhouette score for the entire dataset, you can use 

Eq. (8). 

 

𝑆 =
1

𝑛
∑ 𝑠(𝑖)

𝑛

𝑖=1
 (8) 

 

The Davies-Bouldin index can be calculate through the Eq. 

(9): 

 

𝐷𝐵𝐼 =
1

𝐾
∑ max

𝑖,𝑗≠𝑖

𝑆𝑖 + 𝑆𝑗

𝑑𝑖,𝑗

𝐾

𝑖=1

 (9) 

 

where, 𝑆𝑖 =
1

|𝐶𝑖|
∑ ‖𝑥𝑗 − 𝑣𝑖‖𝑥𝑗∈𝐶𝑖

 is the measure of dispersion 

within cluster i, K is the number of clusters, xj is an n-

dimensional feature vector assigned to cluster i, vi is the 

centroid of cluster i, Ci represents cluster i,  ‖ • ‖  is the 

Euclidean distance, di,j=‖vi-vj‖ is the Euclidean distance i and j 

[19, 20]. 

In the context of machine learning tasks like classification, 

the variability within and between classes significantly 

impacts model performance. High interclass variability and 

low intraclass variability are generally preferred for 

classification tasks as they facilitate better class separation. 

However, in certain scenarios, high intraclass variability may 

be necessary for capturing subtle differences within a class, 

especially when dealing with complex datasets [21]. 

 

2.4.2 Supervised learning 

A key part of machine learning is supervised machine 

learning, in which algorithms are trained on labeled data in 

order to generate predictions or judgments. One popular 

algorithm used in supervised learning is the Support Vector 

Machine (SVM). SVM is an effective classifier that searches 

a high-dimensional feature space for the ideal hyperplane to 

divide various classes [22]. The core idea behind SVM is to 

address linear inseparability through the kernel formula and 

then determine the optimal classification surface using convex 

quadratic programming [23]. SVMs are useful tools for 

resolving machine learning issues since they have their roots 

in statistical learning theory and optimization techniques [24]. 

On the other hand, LSTM, a special type of Recurrent 

Neural Network (RNN), is known for its ability to solve 

complex tasks with long-time dependencies and predict 

chaotic dynamical systems with stability [25, 26]. LSTM 

networks are made up of memory cells with a lengthy retention 

time, which enables them to retain and forget information as 

needed. The input gate, forget gate, output gate, and memory 

cell are essential parts of an LSTM unit that cooperate to 

control the information flow across the network [27]. 

As we know, supervised learning like SVM and LSTM is 

used for classification algorithms, but in this research, these 

two algorithms will be mainly used to see the performance of 

models whose data patterns differ vertically and horizontally. 

 

 

3. RESULT AND ANALYSIS 

 

Figures 5 and 6 display the spectrograms in 20 segments, 

ranging from 0 to 380 time bins. The red box in the figures 

represents the presence of a person. It is evident that vertical 

movements are more easily discernible than horizontal ones. 

To further analyze this, we applied the previously discussed 

algorithms, starting with unsupervised learning followed by 

supervised learning. 

Before applying the unsupervised algorithms, we conducted 

Principal Component Analysis (PCA) to address the higher 

dimensionality of radar data. PCA reduces the data dimensions, 

making it more suitable for unsupervised learning. For vertical 

movement data, PCA reduced the original size from (1196, 

355740) to (1196, 911). Similarly, for horizontal movement 

data, the dimensions were reduced from (1196, 355740) to 

(1196, 974). 

Based on Table 1, it can be concluded that the radar is more 

effective in identifying vertical movements than horizontal 

movements. Both the K-means and Gaussian Mixture Model 

(GMM) methods provide consistent results in both dimensions. 

The silhouette scores and Davies-Bouldin indices indicate that 

vertical movements are easier to differentiate, showing better 

intra-class and inter-class separation compared to horizontal 

movements. The analysis suggests some overlap or difficulty 

in clearly separating walking and standing movements, likely 

due to the limitations of a 1D radar that only captures range. 

Table 2 presents the performance metrics for various 

supervised machine learning models. Among them, the LSTM 

model excelled with the highest precision, recall, and accuracy 

in both horizontal and vertical dimensions. This indicates its 

superior capability in maintaining long-term dependencies and 

accurately predicting movement patterns. Conversely, the 

SVM model performed poorly in horizontal movements, 

which is consistent with the unsupervised learning results. 

This is because SVM uses a hyperplane to separate classes, 

which is less effective when inter- and intraclass distances are 

small. Li et al. [28] reported a 92% accuracy with adaptive 

thresholding methods, but our LSTM model surpassed this 

with a 99% accuracy. Specifically, the SVM model performed 

better in the vertical dimension than in the horizontal 

dimension, achieving 62% precision, 70% recall, and 66% F1-

score for standing, and 64% precision, 56% recall, and 65% 

F1-score for walking. 
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Table 1. Evaluation of data distribution with K-means clustering and GMM 

 
 Vertical Movement Horizontal Movement 

K-Means Silhouette Score 0.32 0.15 

K-Means Davies-Bouldin Index 1.72 2.38 

GMM Silhouete Score 0.32 0.15 

GMM Davies-Bouldin Index 1.72 2.38 

 

Table 2. Evaluation of supervised learning (SVM and LSTM) 

 
SVM (Support Vector Machine) Model 

 
Vertical Horizontal 

Precision Recall F1-Score Precision Recall F1-Score 

Standing 0.98 0.99 0.98 0.62 0.70 0.66 

Walking 0.99 0.97 0.98 0.64 0.56 0.65 

Accuracy  0.98  0.63 

LSTM (Long-Short Term Memory) Model 

 
Vertical Horizontal 

Precision Recall F1-Score Precision Recall F1-Score 

Standing 0.99 1.00 1.00 0.99 0.98 0.99 

Walking 1.00 0.99 1.00 0.98 0.99 0.99 

Accuracy  1.00  0.99 

 

 
 

Figure 7. Heatmap for vertical movement: (a) SVM; (b) 

LSTM 

 

 
 

Figure 8. Heatmap for horizontal movement: (a) SVM; (b) 

LSTM 
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To confirm the findings in Table 2, we developed heatmaps 

illustrated in Figures 7 and 8. The vertical dimension heatmap 

in Figure 7 aligns with Table 2, showing that both SVM and 

LSTM perform well. In contrast, the horizontal dimension 

heatmap in Figure 8 indicates that the SVM algorithm 

produces poorer results than the others, as reflected in the high 

number of false positives and false negatives. This difficulty 

arises because the interclass and intraclass data points are too 

closely positioned, hindering SVM's ability to differentiate 

between them. In comparison, the Long Short-Term Memory 

(LSTM) model benefits from its advanced architecture, which 

includes memory cells to retain historical information, thereby 

achieving significantly greater accuracy. 

 

 

4. CONCLUSIONS 

 

This study investigated the use of a 24 GHz one-

dimensional (1D) radar for Human Activity Recognition 

(HAR) by differentiating between walking and standing 

movements in both vertical and horizontal dimensions. 

Outperforming the Support Vector Machine (SVM) model, the 

Long Short-Term Memory (LSTM) model scored the greatest 

accuracy for both vertical and horizontal motion detection 

(100% and 99%). However, according to the results from 

unsupervised learning reinforced by the results from the SVM 

radar system, the 1D radar showed limitations in effectively 

separating walking and standing movements in the horizontal 

dimension. This suggests the need for higher-dimensional 

radar systems or advanced data processing techniques. Despite 

these limitations, the high accuracy of the LSTM model 

indicates potential applications for cost-effective HAR 

systems using 24 GHz 1D radar. Future research should focus 

on real-world deployment and optimizing performance on 

hardware with limited computational power, such as 

microcomputers like the Raspberry Pi. Overall, the study 

highlights both the potential and limitations of low-

specification radars for HAR. 
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