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Ventilation, cooling, heating, and air conditioning (HVAC) systems represent a 

substantial portion, approximately 40%, of energy consumption in buildings. Among 

the key components of HVAC/R systems, the compressor, fans, and electrical 

resistances are major consumers of electricity. In this context, the compressor stands 

out due to its significant dynamic behaviour, serving as the pivotal element in heat pump 

operations. However, many manufacturers solely provide empirical data regarding 

compressor performance, lacking comprehensive models for assessing performance 

across various operational conditions. This paper addresses the methodology for 

evaluating mathematical models utilizing experimental compressor data. Through this 

approach, we aim to bridge the gap between empirical observations and predictive 

modelling, enabling a more nuanced understanding and optimization of HVAC/R 

system performance. The proposed model uses interpolation and it takes as input the 

evaporation and condensation temperatures. It shows an R – square and adjusted R – 

square value of 0.99. By using the experimental data and an open – source library for 

interpolation this paper paves the way for a flexible and practical compressor modelling. 
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1. INTRODUCTION

Heat pumps are one the major energy consumers in 

buildings [1]. In a self-sustaining air treatment unit, energy 

consumption mainly revolves around ventilators, electrical 

heaters, and the heat pump, with the latter accounting for over 

65% of electricity usage, specifically through its compressor 

motor. 

Traditionally, manufacturers design heat pumps using 

software for iterative calculations to reach an equilibrium 

point or rely on empirical evaluations of operational points. 

However, this often necessitates building and testing a 

prototype in a climatic chamber during the design phase to 

verify real-world performance against theoretical predictions, 

incurring both time and financial costs. 

The limited availability of mathematical models for 

evaluating compressor performance under varying operating 

conditions presents a significant challenge in optimizing 

HVAC systems. Moreover, when considering the intricacies 

of 2-dimensional approximation polynomial methods, the 

complexity deepens. Compressors, crucial components in 

these systems, exhibit dynamic behaviour that demands 

precise mathematical representation to ensure accurate 

performance assessment across diverse operational scenarios. 

Addressing this challenge requires the development and 

refinement of mathematical models tailored specifically for 

compressors operating within HVAC systems. These models 

must effectively capture the nuances of compressor behaviour 

under different conditions, considering factors such as varying 

loads, ambient temperatures, and refrigerant properties. 

Furthermore, in the context of 2-dimensional interpolation 

polynomial methods, the models need to account for spatial 

variations in compressor performance, adding another layer of 

complexity to the analysis. 

Underwood [2] presents an analytical approach to model 

compressors as an integral component of a heat pump. This 

model is based on physical parameters and performance 

parameters that not always are available, but what is more 

important is that these parameters are not easy to measure. 

Thus, the analytical models find application only when the 

requirements are strict. 

Similarly, in concept, Yao et al. [3] have followed the same 

approach as Underwood [2]. The compressor performance is 

calculated without considering its dynamics, based on mass 

flow and discharge temperature. 

Efforts to enhance compressor performance evaluation 

through mathematical modelling must also explore 

advancements in 2-dimensional interpolation polynomial 

techniques. These techniques offer a powerful framework for 

representing complex systems with spatial dependencies, 

providing a more accurate portrayal of compressor behaviour 

across different operating conditions. As shown in the 

documentation [4] the manufacturer has provided a 

performance table and polynomial model calculation on the 

points which are not presented in respective tables. 

Vugrin et al. [5] have worked on confidence region 

estimation for nonlinear regression. The linear approximation 

method showed the best performance for confidence region 
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estimation. Similar is the case of the compressor static 

performance modelling. 

Aprea and Renno [6] have presented an experimental study 

for evaluation of the dynamic model of a variable speed 

compressor. The results of this study are very satisfactory 

because it is able to describe the COP (Coefficient of 

performance) with an error less than 0.5%. However, in order 

to implement this model theoretical data that not always is 

available is needed. 

Zhao et al. [7] have proposed a novel method for the 

evaluation of the compressor performance. This method is 

based on neural networks which would make the calculation 

more complex. The neural network that gave the best 

performance had one hidden layer with three neurons. The 

standard deviation of the model was less than 1% and the 

biggest error less than 3%. 

Aprea et al. [8, 9] have worked on the optimized control of 

a variable speed compressor. Their approach is to find the local 

optimum of the compressor’s performance. This is an 

experimental study that uses the third order polynomial model, 

but does not include the identification of the polynomial 

coefficients. 

Zhao et al. [10] have developed a model for the evaluation 

of steady – state chiller performance by using polynomial 

neural network compressor model. The presented model when 

compared to the test data has shown an accuracy of around 

95%. At these conditions we can state that this model would 

describe at a satisfactory level the compressor performance in 

steady – state. 

In the work proposed by some researchers [11-13], a model 

that can evaluates the working conditions of the compressor 

based on the design parameters. The parameters that model 

calculates are volume displacement, input power and 

refrigerant mass flow. The mean error of parametric evaluation 

is around 3%. The accuracy of the model is above the accepted 

threshold for the HVAC/r systems, but the disadvantage that 

this model shows is the complexity. The required data to build 

the model is not always available and it can vary with time. 

Ndiaye and Bernier [14] have proposed a model that 

considers the dynamic and steady state of a compressor during 

an on – off operation. The model is based on the state 

dynamics and take into consideration the constructive 

parameters of the machine. For parameters such as suction 

capacity, discharge capacity and refrigerant mass flow the 

dynamic equations are written meanwhile for the input power 

the third order polynomial model is used. The identification of 

the third order polynomial is not treated in this paper, while 

the rest of the equations depends on the design parameters that 

are expected to be given by the manufacturer. 

Two-dimensional Lagrange interpolation is a mathematical 

technique used to approximate a function of two variables 

within a given region using a polynomial. Just like its one-

dimensional counterpart, two-dimensional Lagrange 

interpolation aims to find a polynomial that passes through a 

set of known data points in a plane. This method is particularly 

useful in various fields such as computer graphics, image 

processing, geographic information systems, and numerical 

analysis. 

In this method, the polynomial is constructed by combining 

basis polynomials, each of which is associated with a specific 

data point. These basis polynomials are chosen such that they 

have a value of one at their respective data points and zero at 

all other data points. By summing these basis polynomials 

with appropriate weights, the interpolated polynomial is 

generated, which can then be used to estimate the function 

values at any point within the given region. 

Two-dimensional Lagrange interpolation offers flexibility 

in handling irregularly spaced data points and provides a 

continuous approximation of the underlying function. 

However, as the number of data points increases, the 

computational complexity of constructing the interpolating 

polynomial also grows. Therefore, careful consideration of the 

data distribution and the choice of interpolation method is 

crucial to achieve accurate results efficiently. 

In such cases, experimental data becomes invaluable for 

creating precise calculation models for compressors across 

various operational points. This experimental data typically 

includes tables detailing refrigeration power, electric power 

consumption, gas mass flow, and electric current 

corresponding to different combinations of evaporation and 

condensation temperatures. By leveraging this data, along with 

knowledge of the gas type used, it becomes feasible to 

establish relationships between evaporation/condensation 

pressures and key performance parameters. 

The development of advanced mathematical models for 

compressors requires a multifaceted approach that integrates 

both theoretical and empirical methodologies. While 

traditional methods provide a foundation, the complexity of 

modern HVAC systems necessitates more sophisticated 

techniques to enhance accuracy and reliability. One of the 

critical advancements in this area is the use of multivariable 

polynomial approximations. Unlike simple linear models, 

these techniques allow for the representation of complex 

relationships between multiple operating variables. For 

instance, a polynomial model can simultaneously consider 

factors such as compressor speed, refrigerant type, ambient 

temperature, and load conditions. This holistic approach 

enables a more comprehensive understanding of compressor 

behaviour and improves the precision of performance 

predictions. 

Recent advancements in machine learning have opened new 

avenues for compressor modelling. By training algorithms on 

large datasets of compressor performance under various 

conditions, it is possible to develop predictive models that can 

adapt to new scenarios with high accuracy. These data-driven 

models can identify patterns and relationships that might be 

difficult to capture using traditional analytical methods. 

Moreover, machine learning models can continuously 

improve as more data becomes available, making them highly 

adaptable to evolving system requirements. 

To ensure the practical applicability of these advanced 

models, it is essential to integrate experimental data. This data 

provides a real-world benchmark that can validate and refine 

theoretical predictions. For instance, performance tables that 

include refrigeration power, electric power consumption, gas 

mass flow, and electric current across different evaporation 

and condensation temperatures serve as a crucial resource. By 

aligning mathematical models with this empirical data, it is 

possible to achieve a high degree of accuracy in performance 

assessments. 

Combining different modelling techniques can also enhance 

the robustness of compressor performance evaluations. Hybrid 

models that integrate polynomial approximations, machine 

learning, and empirical data offer a balanced approach. These 

models leverage the strengths of each method, providing both 

the precision of mathematical models and the adaptability of 

machine learning algorithms. Such an approach ensures that 

the models are both theoretically sound and practically 
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relevant. 

The continuous evolution of HVAC systems and 

compressor technologies presents ongoing research 

opportunities. Future work could explore the development of 

real-time adaptive models that adjust compressor operation 

dynamically based on current system conditions. Additionally, 

further investigation into the effects of new refrigerants and 

environmental regulations on compressor performance is 

essential. As HVAC systems become more integrated with 

smart building technologies, the role of advanced modelling in 

optimizing energy consumption and system efficiency will 

only grow in importance. 

In conclusion, addressing the challenge of optimizing 

compressor performance in HVAC systems requires a 

comprehensive approach that combines advanced 

mathematical modelling, empirical data integration, and 

innovative techniques such as machine learning. By 

developing robust and adaptable models, it is possible to 

achieve significant improvements in system efficiency and 

reliability, ultimately contributing to more sustainable and 

cost-effective air treatment solutions. 

 

 

2. METHODOLOGY 

 

We suggest consulting references [15-18] for a 

comprehensive understanding of multivariate interpolation. 

Here, we briefly outline two-dimensional Lagrange 

polynomial interpolation. 

Throughout the article, for vectors 𝑥, 𝑦 ∈ 𝑅2, we denote by 

(x, y) the standard Euclidean inner product, and by || ⋅ || the 

corresponding norm. We denote with: 

 

||𝑥||
𝑝

= (∑ |𝑥𝑖|𝑝2
𝑖=1 )

1

𝑝, 1 ≤ 𝑝 < ∞  (1) 

 

the lp-norm, 1≤p<∞ and ||𝑥||
∞

= |𝑥𝑖|. 

Let 𝑛 ∈ 𝑁  and G2,n be the tensorial equidistant points, 

indexed by a multi – index set 𝐴2.𝑛 = {𝛼 ∈ 𝑁2: ||𝛼||
∞

≤ 𝑛}. 

For each 𝛼 ∈ 𝐴2  the tensorial multivariate Lagrange 

polynomials are: 

 

𝐿𝛼(𝑥) = ∏ 𝑙𝛼𝑗,𝑖(𝑥)2
𝑖=1   (2) 

 

𝑙𝑗,𝑖(𝑥) = ∏
𝑥𝑖−𝑝𝑘,𝑖

𝑝𝑗,𝑖−𝑝𝑘,𝑖

𝑛
𝑘=0,𝑘≠𝑗   (3) 

 

The Lagrange polynomials are a basis of the polynomial 

space 𝛱2,𝑛 = 𝑠𝑝𝑎𝑛{𝑥𝛼 = 𝑥1
𝛼1𝑥2

𝛼2} induced by A2,n. Since Lα 

satisfies Lα(pβ)=δα,β for all 𝛼, 𝛽 ∈ 𝐴2,𝑛, 𝑝𝛼 ∈ 𝐺2,𝑛  we deduce 

that given a function f: Ω→R the interpolant 𝑄𝐺2,𝑛
𝑓 ∈ 𝛱2,𝑛 of 

f in G2,n is given by the formula: 

 

𝑄𝐺2,𝑛
𝑓 = ∑ 𝑓(𝑝𝛼)𝐿𝛼𝛼∈𝐴2,𝑛

  (4) 

 

We are going to evaluate the model quality based on the 

following indexes: 

·SSE – Sum of squared errors 

·R-squared 

·Adjusted R-squared 

·RMSE – Root Mean Square Error 

Throughout this article, vectors (𝑥, 𝑦) ∈ 𝑅2 are considered, 

with (x, y) denoting the standard Euclidian inner product 

and ‖ ⋅ ‖ representing the corresponding norm. We define the 

lp-norm for 1≤p<∝ as:  

 

‖𝑥‖𝑝 = (∑ |𝑥𝑖|𝑝)
1

p
 2

𝑖=1   

𝑙∝-norm as: ‖𝑥‖∞ = 𝑚𝑎𝑥𝑖|𝑥𝑖|.  
(5) 

 

To evaluate the quality of our interpolation model, we 

utilize several statistical metrics:  

1. Sum of Squared Errors (SSE): 

 

𝑆𝑆𝐸 = ∑ (𝑦1 − 𝑦̂𝑖)
2𝑛

𝑖=1   (6) 

 

where, yi are the observed values and 𝑦̂𝑖  are the predicted 

values. SSE measures the total deviation of the predicted 

values from the actual values. 

2. R-squared (R2): 

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
  (7) 

 

where, SST is the total sum of squares: 

 

𝑆𝑆𝑇 = ∑ (𝑦1 − 𝑦̅𝑖)
2𝑛

𝑖=1   (8) 

 

with 𝑦̅ being the mean of the observed values. R2 indicates the 

proportion of the invariance in the dependent variable that is 

predictable from the independent variables. 

3. Adjusted R-squared: 

 

Adjusted 𝑅2 = 1 − (
1−𝑅2

𝑛−𝑝−1
) (9) 

 

where, n is the number of observations and p is the number of 

predictors. This metric adjusts R2 for the number of the 

predictors in the model, providing a more accurate measure of 

model quality when multiple predictors are involved. 

4. Root Mean Square Error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝐸

𝑛
  (10) 

 

which represents the square root of the average of the squared 

differences between predicted and observed values. RMSE is 

a standard way to measure the error of a model in predicting 

quotative data. 

Our methodology follows a systematic approach, beginning 

with data collection and pre-processing. We gather a 

comprehensive set of experimental data points, including 

refrigeration power, electric power consumption, gas mass 

flow, and electric current for various combinations of 

evaporation and condensation temperatures. This data set 

forms the basis for our interpolation model. 

Next, we implement the two-dimensional Lagrange 

polynomial interpolation using the aforementioned 

mathematical formulation. The interpolation process involves 

conducting the Lagrange polynomials for the given data points 

and using these polynomials to estimate the function values at 

other points within the definition region. 

When we evaluate the accuracy of our interpolated model 

using the described statistical metrics, by comparing the 

predicted values against the actual data, we can assess the 

model’s performance and make necessary adjustments to 

improve its accuracy. 

Finally, we validate our model through cross-validation 
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techniques, ensuring that it generalizes well to unseen data. 

This validation step is crucial to confirm that our interpolation 

model is reliable and robust for practical application in HVAC 

system optimization. So, our methodology leverages two-

dimensional Lagrange polynomial interpolation to develop a 

precise mathematical model for compressor performance 

evaluation. By integrating advanced statistical metrics, we 

ensure a comprehensive assessment of model quality, paving 

the way for enhanced optimization of HVAC systems. 
 

 

3. EXPERIMENTAL SETUP 

 

To realize the identification of the computational form of 

the compressor in this case we will use a compressor whose 

computational form we know, which will serve us as a 

comparative standard of the final form. The compressor that 

we will take into consideration is "GMCC KSG280V1VMU" 

with the following data [4]: 
 

Table 1. GMCC KSG280V1VMU corresponding data 
 

Parameter Value Unit 

Capacity 7105 W 

Input power 2501 W 

Flow rate 106.6 Kg/h 

Current 11.58 A 

Displacement 28 cm3/rev 

Electrical supply 1 – 50 – 230 - 

Refrigerant R32 - 

Technology Rotary - 

Height 360 mm 

Sound level 73 dB 

Diameter 140 mm 

Oil charge 850 ml 

Discharge pressure 3.28 MPa 

Suction pressure 0.89 MPa 

Evaporation temperature 10 ℃ 

Condensation temperature 46 ℃ 

Suction line 16.2 mm 

Discharge line 9.8 mm 

Superheating 8 ℃ 

Subcooling 5 ℃ 

Maximum discharge temperature 115 ℃ 
 

The data shown in Table 1 cannot be used to calculate the 

performance of the compressor at different working points 

knowing the pressure or temperature in each of the exchangers. 

For this reason, the manufacturer has provided a graphic 

representation of the parameters of interest depending on the 

temperature of evaporation and condensation. Below we will 

see the curves related to the performance of the compressor. 
 

 
 

Figure 1. Refrigerant power curve 

In Figure 1, we can see the relative curves of thermal 

capacity in relation to evaporating temperature. Each curve has 

been generated for a specific condensing temperature, in order 

to generate a 2D plot. 

 

 
 

Figure 2. Electrical power curve 

 

Figure 2 shows the curves of electrical power input in 

relation to evaporating temperature. Even in this case, the 

same result that we noted for the cooling power is true. The 

relation of input power is similar in form with the evaporation 

and condensation temperature. 

 

 
 

Figure 3. Refrigerant mass flow curve 

 

In Figure 3, we can see the relation of flow rate in units of 

Kg/h with the evaporating temperature. As in the other cases 

the condensing temperature is showed using different colors 

for constant temperatures and we see that relation of inputs 

shows the same relation in principle with the output. 

 

 
 

Figure 4. Absorbed current curve 

 

Figure 4 shows the relation of electrical current with the 

evaporating temperature for the same set of condensing 

temperatures. On the other hand, the manufacturer has also 
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given the tabular data of the graphs presented above shown on 

the Table 2. 

 

Table 2. Experimental data of cooling power 
 

Tev ℃ Tco ℃ Cooling Capacity W 

-10 60 3371 

-10 55 3585 

-10 50 3855 

-10 45 4110 

-10 40 4378 

-10 35 4642 

-10 30 4911 

-5 60 4091 

-5 55 4367 

-5 50 4725 

-5 45 5036 

-5 40 5360 

-5 35 5683 

-5 30 5992 

0 60 4954 

0 55 5311 

0 50 5753 

0 45 6130 

0 40 6527 

0 35 6897 

0 30 7257 

5 60 5975 

5 55 6419 

5 50 6967 

5 45 7441 

5 40 7890 

5 35 8307 

5 30 8714 

10 60 7195 

10 55 7744 

10 50 8375 

10 45 8904 

10 40 9430 

10 35 9906 

10 30 10387 

15 60 8666 

15 55 9290 

15 50 9972 

15 45 10578 

15 40 11183 

15 35 11753 

15 30 12343 
 

Table 3. Polynomial coefficients of manufacturer datasheet 
 

Coefficient Value 

P1 8574.61292 

P2 311.120343 

P3 -11.2296901 

P4 4.38595312 

P5 -0.554774978 

P6 -1.35373316 

P7 0.024523568 

P8 -0.0158036242 

P9 -0.0245053902 

P10 0.00885813341 
 

In this case, the manufacturer of this compressor has also 

provided a third – order polynomial calculation model. This 

model will serve us as the second verification criterion on the 

method that we will implement in this case, while the first 

evaluation criterion will be the direct comparison between the 

real value measured and the one estimated by the model. 

The model presented by the manufacturer is as follows: 
 

𝑧 = 𝑝1 + 𝑝2 ⋅ 𝑥 + 𝑝3 ⋅ 𝑦 + 𝑝4 ⋅ 𝑥2 + 𝑝5 ⋅ 𝑥 ⋅ 𝑦 

 +𝑝6 ⋅ 𝑦2 + 𝑝7 ⋅ 𝑥3 + 𝑝8 ⋅ 𝑥2 ⋅ 𝑦 

                    +𝑝9 ⋅ 𝑥 ⋅ 𝑦2 + 𝑝10 ⋅ 𝑦3 

(11) 

 

In this form, the z parameter symbolizes the calculated 

parameter, x symbolizes the evaporation temperature, while 

the y parameter represents the condensation temperature. The 

proportional coefficients of the polynomial for the 

refrigeration capacity given by the manufacturer are presented 

on the Table 3. 

 

 

4. RESULTS AND DISCUSSION 

 

Based on the experimental data of the Table 2, we are 

presenting the graphical representation of the samples. 

From the distribution of the samples in Figure 5, we can 

notice that their descriptive function is not linear, but has 

elements of curvature. In this case there is not a present 

challenge about the model identification because it is already 

provided. However, in practice the manufacturers not always 

provide the model and there are cases in which only the tabular 

data are given. On the other hand, we have to consider the case 

of variable speed compressor when the tabular data of only 

certain frequencies are given. In this situation, we can evaluate 

the tabular data of the frequencies of interest by interpolating 

between frequencies. At this point the problem of compressor 

model identification raises. Staying in the form given by the 

manufacturer in the Eq. (5), which is also the most used form 

of compressor calculation, we will write a program in the 

Python programming language to approximate the polynomial 

coefficients of the compressor model. In this case we will use 

the function curve_fit of the optimization library of the SciPy 

module [19]. 

 

 
 

Figure 5. Distribution of samples of experimental data 
 

This is a function that fits the parameters of an unknown 

function through the non-linear least squares method. The 

function given to the curve_fit function input is: 
 

def comp_model(X, a, b, c, d, e, f, g, h, i, l): 

    x1, x2 = X 

    return a + b*x1 + c*x2 + d*x1**2 + e*x1*x2 + f*x2**2 + 

g*x1**3 + h*x2*x1**2 + i*x1*x2**2 + l*x2**3 

 

In the above function, x1 and x2 stand respectively for the 

evaporation and condensation temperature, while the 

parameters a, b, c, d, e, f, g, h, i and l represent the proportional 
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coefficients of the polynomial model. After the above function 

is defined, using the following function we can get the result 

related to the polynomial coefficients. By executing the above 

code, the result we get regarding the polynomial coefficients 

is presented at the Table 4. 

 

Table 4. Polynomial coefficients generated from SciPy 

module 

 
Coefficient Value 

P1 8568.53 

P2 311.078 

P3 -10.832 

P4 4.391 

P5 -0.5534 

P6 -1.363 

P7 0.02455 

P8 -0.0159 

P9 -0.02459 

P10 0.00892 

 

In Figure 6, we are presenting the chart built with the 

coefficients shown on the Table 4 and also the samples used 

for the interpolation. 
 

 
 

Figure 6. Distribution of samples and model surface with 

Python 
 

 
 

Figure 7. Distribution of samples and model surface with 

MATLAB 

From Figure 6, it is clear that the approximation with this 

method has given satisfactory results, but on the other hand, 

the library used does not give us statistical indicators regarding 

the quality of the approximation. In the following, we will try 

to use the Curve Fit application in MATLAB, with a form of 

polynomial approximation with two variables of the third 

order. 

Figure 7 shows the approximated surface generated from 

MATLAB. We notice that 2 plot shown respectively in Figure 

6 and Figure 7 show almost identical results. From MATLAB 

we get the model data as follows: 

 

f (x, y) = p00 + p10*x + p01*y + p20*x2 + p11*x*y + 

p02*y2 + p30*x3 + p21*x2*y + p12*x*y2 + p03*y3 
 

Coefficients (with 95% confidence bounds) 

 

Table 5. Polynomial coefficients generated from curve fit 

module 

 
Coefficient Value 

P00 8569 (7814, 9323) 

P10 311.1 (294.5, 327.7) 

P01 -10.83 (-63.65, 41.99) 

P20 4.391 (3.921, 4.86) 

P11 -0.5534 (-1.309, 0.2021) 

P02 -1.363 (-2.564, -0.16190 

P30 0.02455 (0.009542, 0.03956) 

P21 -0.0159 (-0.02578, -0.006011) 

P12 -0.02452 (-0.03286, -0.01618) 

P03 0.008926 (4.679e-05, 0.01781) 

 

where, the data regarding the “goodness of fit” are: 

·SSE=1.231e+04 

·R – square=0.9999 

·Adjusted R – square=0.9999 

·RMSE=19.62 

In this case we notice that the coefficients found by using 

the open-source library in Python presented in Table 4, are 

almost identical to the coefficients obtained using the 

MATLAB program shown in Table 5. R – square parameter 

shows practically that it the ideal value which is 1 and the same 

stands also for the Adjusted R – square parameter. The last 

quality index, RMSE, indicates that the models described at an 

acceptable level and model performance. The value 19.62 is 

insignificant considering the values of dependent variable. The 

polynomial model of the third order as a whole gives 

satisfactory performance when used for the calculation and 

simulation of air handling machines, referring to the 

applications carried out through the method presented by Daci 

and Bundo [20]. 

 

 

5. CONCLUSIONS 

 

The problem of evaluating the computational model of 

compressors, in its form, is generally a solved problem in the 

HVAC/R industry. Although through the method described in 

this paper, we manage to build a model that describes the 

performance of the compressor with high accuracy, this model 

does not consider the dynamics of the compressor. Underwood 

[2] has shown that the dynamics of the heat exchangers is 

much slower compared to the dynamics of the compressor, so 

the latter can be neglected. However, in order to implement 

advanced control techniques with a focus on optimization, it 
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would be necessary to know the dynamics of the compressor. 

To perform the model identification of the compressor or of 

the heat pump in the dynamic aspect, the collected data would 

have to be in the form of time series, therefore the data 

available in this case cannot be used. 

The main problem with the calculation of this component is 

related to the case when the manufacturer does not provide the 

coefficients of the polynomial model, but only experimental 

data, as often happens in this industry or when the compressor 

is equipped with an inverter and the manufacturer provides the 

model only at certain frequencies. In this case, considering the 

linear model between two consecutive frequencies, synthetic 

data can be generated approximately at the new frequencies.  

Another very important element would be related to the 

instantaneous testing of air handling machines and their 

control in real time. Based on the data of the manufacturer of 

the compressor component, we would not have a guarantee 

that the theoretical data would coincide with the practical ones. 

Meanwhile, using a supervision and control system, the data 

collected in real time can be used to evaluate the compressor 

model and then apply control based on the model built on the 

actual data. 

Using this data and the Python code shown above, a third-

order polynomial model can be obtained with the same 

accuracy as the MATLAB program. The quality indicators of 

this model, such as R-square, Adjusted R-square and RMSE, 

are almost at the ideal approximation values. The added value 

that this method brings is related to two factors. The first factor 

is related to the cost, where since Python is an open-source 

programming language, the technological costs for the 

implementation of this method are zero. On the other hand, by 

generating this model through an open-source programming 

language, the possibility of further automation of the process 

increases by integrating it with other simulation or data 

management programs. 
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NOMENCLATURE 

 

W Watt 

Kg/h Kilogram per hour 

A Amper 

cm3/rev Centimeter cub per revolution 

Mm Millimeter 

dB deciBel 

ml Milliliter 

MPa Mega Pascal 

℃ Celsius degree 

 

Subscripts 

 

ev evaporating 

co condensing 
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