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In this article, the concept of maximality degree of a finite group G, where G is cyclic 

group 𝑍𝑝𝑛 or 𝑍𝑝𝑚𝑞𝑛  is introduced and studied in details. The probability of a random

subgroup of G to be maximal is measured by this quantity. For certain special kinds of 

finite groups, explicit formulas are obtained. We will give a value of one when the 

probability of 〈𝑥, 𝑦〉 ≤𝑚𝑎𝑥 𝐺, and a value of zero when it does not maximal sub group.

This will be useful in our research to calculate the degree of probability. Several limits 

of degrees of maximality are also calculated. We studied three cases, the first is when 

𝑝 is a prime number in 𝑍𝑝, the second is when 𝑝 is a prime number raised to a certain

degree in 𝑍𝑝𝑛, and the third case is when 𝑝 and 𝑞 are the product of two prime numbers,

each of these prime numbers is raised to a certain degree in 𝑍𝑝𝑛𝑞𝑚 . We find an algorithm

to compute the probability of maximality degree Pmax(G). We will use the CAP program 

to compute the number of maximal subgroups of group G. In this program, we will 

calculate the max sub groups when 𝑝, 𝑞 is a large number that is difficult to calculate 

manually. 
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1. INTRODUCTION

In 2021, many researchers presented some of the studies 

about computing the cyclicity degree of some of finite groups, 

If n is greater than or equal to 3, then D2n is defined by 𝐷2𝑛 =
{𝑎, 𝑏|𝑎𝑛 = 𝑏2 = 𝑒, 𝑏𝑎𝑏 = 𝑎−1}  Suppose that the number of

integer n is define by 2𝑟  ∏ 𝒑𝒊
𝜶𝒊𝒔

𝒊=𝟏  and odd prime number. Let 

x be element in G, the cyclicizer of x is denoted by Cyc(x) thus, 

the cyclicizer of all elements of dihedral group D2n is 

computed by the following: 

𝑪𝒚𝒄(𝑥) = {

{𝑦: ∀ 𝑦 ∈ 𝐷2𝑛}    𝑖𝑓 𝑥 = 𝑒

{𝑎𝑗: 1 ≤ 𝑗 ≤ 𝑛}    𝑖𝑓 𝑥 = 𝑎𝑗

{𝑒, 𝑎𝑖𝑏}  𝑖𝑓 𝑥 = 𝑎𝑖𝑏

We get for any group G, 𝑑𝑒𝑔𝛤𝐺(𝑥) = |𝐶𝑦𝑐𝐺(𝑥)| − 1 ,

where 𝑥 ∈ 𝐺. Let G be a finite group, the cyclicity degree of 

the group G is define by: 

𝑃𝐶𝑦𝑐(𝐺) =
|{(𝑥,𝑦)∈𝐺×𝐺|⟨𝑥,𝑦⟩≤𝐶𝑦 𝐺,∀𝑥,𝑦∈𝐺}|

|𝐺|2

The value PCyc(G) is 0<PCyc≤1, we recall that for a finite 

group G we have PCyc(G)=1 if and only if G is an abelian group 

[1]. It is clear when G is abelian group, then PCyc(G)=1. The 

cyclicity degree of elements in group G is define by: 

𝜂(𝑥, 𝑦) = {
1 𝑖𝑓 〈𝑥, 𝑦〉 ≤𝐶𝑦  𝐺 ∃𝑦 ∈ 𝐺

0 otherwise
} 

and entry in cyclicity degree of elements table is given in 

reference [2], and its defined by η(x, y): 

η ⋯ y ⋯ 

⋮ 

x 

⋮ 

⋯ 

⋮ 

η(x, y) 

Theorem 1. 

Taking n be an odd positive integer number, the cyclicity 

degree elements table of D2n, illustrated by below [3]: 

η ⋯ aj ⋯ ⋯ ajb ⋯ 

⋮ 

𝜂(𝑎𝑖 , 𝑎𝑗)

𝜂(𝑎𝑖𝑏, 𝑎𝑗)

𝜂(𝑎𝑖 , 𝑎𝑗𝑏)

𝜂(𝑎𝑖𝑏, 𝑎𝑗𝑏)

ai 

⋮ 

aib 

⋮ 

The entries are defined by: 

1. 𝜂(𝑎𝑖 , 𝑎𝑗) = 1 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

2. 𝜂(𝑎𝑖 , 𝑎𝑗𝑏)  = {
1 if 𝑖 = 𝑛
0 otherwise

 for all 1 ≤ 𝑖. 

3. 𝜂(𝑎𝑖𝑏, 𝑎𝑗) = 𝜂(𝑎𝑖 , 𝑎𝑗𝑏).
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𝜂(𝑎𝑖𝑏, 𝑎𝑗𝑏) = {
1 if 𝑖 = 𝑗
0 otherwise

 for all 1 ≤ 𝑖, 𝑗 

 

where, n is a positive integer number, the cyclicity degree of 

D2n is fixed by: 

 

𝑃𝐶𝑦𝑐(𝐷2𝑛) =
𝑛 + 3

4𝑛
 

 

One of the older topics in finite group theory that is still 

regularly investigated is counting the number of subgroups of 

finite groups. Which was studied by Calhoun and Cavior [4, 

5]. 

A method to ascertain a finite abelian p-group's total 

number of subgroups was provided by Schmidt [6]. Consider 

the finite group G, a maximal subgroup of G is a subgroup of 

G which is not a proper subgroup of any other proper subgroup 

of G, and the set of all maximal subgroups of G is given by 

Max(G). In this work, G refers for the cyclic group of order n, 

referring to Zn. The maximality degree of G is represented by 

Pmax(G) and represents a probability that two elements chosen 

at random x and y that are adjacent in the maximal graph in G. 

This is how probability is defined: 

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑥,𝑦)∈𝐺×𝐺:〈𝑥,𝑦〉≤𝑚𝑎𝑥𝐺}|

|𝐺|2   

 

Here, the number of maximality degree elements of group 

𝒁𝑝𝑛, 𝒁𝒑𝒎𝒒𝒏 is studied and computed. 

In 1979, Rusin [7] clarified the probability stated above is 

obviously not equal to one for any G. It was established that 

for finite non-abelian groups, the adjacent of two elements 

commuting is less than or equal to 5/8. Using conjugacy 

classes, this probability can be calculated. The commutativity 

degree has been the subject of numerous studies and has been 

widely generalized. 

Note that by calculating the conjugacy classes under some 

group action on a set lead to obtaining the above probability. 

For later use, in the following we recall some important 

concepts concerning graph theory. 

Consider the finite group G. The group of |G|'s prime 

divisors are denoted by the symbol (G). If there isn't a suitable 

subgroup of G that correctly contains a given subgroup H, then 

that subgroup H is said to be a maximum subgroup. If a group 

G is non-cyclic yet every appropriate subgroup of G is cyclic, 

then G is said to be minimally non-cyclic. Suppose that the 

collection of all maximal subgroups of the group G is denoted 

as Max(G). 

Also, the Frattini subgroup of a group G defines the 

intersection of all maximal subgroups of G and is denoted by 

Φ(G). In this paper we consider for cyclic group of order pα 

where p is an odd prime number and α≥1. 

It is commonly known that |G| is only divisible by one prime 

and that G is cyclic if a finite group G has just one maximum 

subgroup. In light of this, one would wonder whether the 

aforementioned conclusion could be expanded if G has exactly 

two or three maximal subgroups. 

If G has precisely three maximal subgroups, neither G must 

be cyclic nor must |G| be divisible by three prime numbers. 

 

1.1 Basics of number theory [8] 

 

The Euler function, or totient function φ is the number of 

non-negative integers less than n that are relatively prime to n 

[8]. Every integer n has a unique prime factor decomposition: 

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 ⋯ 𝑝𝑡
𝛼𝑡  

 

Furthermore, p1<p2<...<pt this decomposition is called the 

canonical prime factor decomposition of n, where pi is prime 

number and αi≥0 for all i. 

Thus, the Euler function φ define by:  

 

𝜑(𝑛) = 𝜑(𝑝𝑖
𝛼𝑖) = Π(𝑝𝑖

𝛼𝑖 − 𝑝𝑖
𝛼𝑖−1

) 

 

Let n be a positive integer and let τ(n) and σ(n) be functions 

defined by: 

• τ(n): the number of divisors of n;  

• σ(n): the sum of divisors of n. 

 

 

2. LITERATURE REVIEW 

 

In 1973, Gustafson [9] studied the following question, 

“What percentage of the time do two group elements 

commute?” There has been an increase in interest in the 

application of probability in finite groups over the past 30 

years, specifically in the last decade. Erfanian et al. [10] in 

2013 introduced some of the probability in finite groups. In 

2019, Lazorec [11] presented “Relative cyclic subgroup 

commutativity degrees of finite groups”. In this paper, we will 

study and compute the number maximality degree elements of 

group 𝒁𝑝𝑛 , 𝒁𝒑𝒎𝒒𝒏, and we will find an algorithm to compute 

the probability of maximality degree Pmax(G). 

 

 

3. MAIN RESULTS 

 

In this section we will introduce and compute the 

probability of the maximal subgroups of the finite group. 

 

3.1 Definition 

 

Let G be a finite group and x is an element of G, the 

maximalizer of a subset the group G is define as: 

 

𝑚𝑎𝑥𝑧(𝑥, 𝐺) = {𝑦 ∈ 𝐺: 〈𝑥, 𝑦〉 ≤𝑚𝑎𝑥 𝐺} 

 

where, 〈x, y〉≤MaxG. 

 

3.2 Definition 

 

Let G be a finite group and 𝑥 ∈ 𝐺, the maximality degree of 

element x in G is defined by: 

 

𝑚𝑎𝑥𝑑(𝑥, 𝐺) = |{𝑦 ∈ 𝐺: 〈𝑥, 𝑦〉 ≤𝑚𝑎𝑥 𝐺}| = |𝑚𝑎𝑥𝑧(𝑥, 𝐺)| 
 

where, 〈x, y〉≤MaxG [12]. 

 

3.3 Theorem  

 

Let G be a finite group, the maximality degree of group is 

given by: 

 

𝑚𝑎𝑥𝑑(𝐺) = ∑∀𝑔∈𝐺 𝑚𝑎𝑥𝑑(𝑔, 𝐺).  

 

Proof.  

Let G be a finite group of order n, that we can write by 

G={g1, g2, ⋯, gn}. 
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The set of maximalizer is maxz(gi, G) can be computed by 

the following: 

 

𝑚𝑎𝑥𝑧(𝑔1, 𝐺) = {𝑔𝑖 ∈ 𝐺: 〈𝑔1, 𝑔𝑖〉 ≤𝑚𝑎𝑥 𝐺, ∃𝑔𝑖 ∈ 𝐺} 

𝑚𝑎𝑥𝑧(𝑔2, 𝐺) = {𝑔𝑖 ∈ 𝐺: 〈𝑔2, 𝑔𝑖〉 ≤𝑚𝑎𝑥 𝐺, ∃𝑔𝑖 ∈ 𝐺} 

⋮ 
𝑚𝑎𝑥𝑧(𝑔𝑛 , 𝐺) = {𝑔𝑖 ∈ 𝐺: 〈𝑔𝑛, 𝑔𝑖〉 ≤𝑚𝑎𝑥 𝐺, ∃𝑔𝑖 ∈ 𝐺} 

𝑚𝑎𝑥𝑑(𝐺) = ∑𝑛
𝑖=1 |𝑚𝑎𝑥(𝑔𝑖 , 𝐺)|  

 

3.4 Theorem 

 

Let G be a finite group, the maximality degree of the group 

G is given by: 

 

𝑃𝑀𝑎𝑥(𝐺) =
∑∀𝑥∈𝐺 |𝑀𝑎𝑥𝐺(𝑥)|

|𝐺|2 =
|𝑀𝑎𝑥(𝐺)|

|𝐺|2   

 

Proof. 

Let G be a finite group of order n, say G={x1, x2, ⋯, xn}. 

The set of maximalizer element x is MaxG(xi) is computed 

by the following: 

 

𝑀𝑎𝑥𝐺(𝑥1) = {(𝑥1, 𝑦) ∈ 𝐺 × 𝐺|〈𝑥1, 𝑦〉 ≤𝑀𝑎𝑥 𝐺, 𝑦 ∈ 𝐺} 

𝑀𝑎𝑥𝐺(𝑥2) = {(𝑥2, 𝑦) ∈ 𝐺 × 𝐺|〈𝑥2, 𝑦〉 ≤𝑀𝑎𝑥 𝐺, 𝑦 ∈ 𝐺} 

⋮ 
𝑀𝑎𝑥𝐺(𝑥𝑛) = {(𝑥𝑛 , 𝑦) ∈ 𝐺 × 𝐺: 〈𝑥𝑛 , 𝑦〉 ≤𝑀𝑎𝑥 𝐺, 𝑦 ∈ 𝐺} 

𝑀𝑎𝑥(𝐺) = 𝑁𝑜𝑟𝐺(𝑥1) ∪ 𝑁𝑜𝑟𝐺(𝑥2) ∪ ⋯ ∪ 𝑁𝑜𝑟𝐺(𝑥𝑛) 

|𝑀𝑎𝑥(𝐺)| = |𝑀𝑎𝑥𝐺(𝑥1)| + |𝑀𝑎𝑥𝐺(𝑥2)| + ⋯ |𝑀𝑎𝑥𝐺(𝑥𝑛)| 
= ∑𝑛

𝑖=1 |𝑀𝑎𝑥𝐺(𝑥𝑖)|.  
 

Thus, 𝑃𝑀𝑎𝑥(𝐺) =
∑∀𝑥∈𝐺 |𝑀𝑎𝑥𝐺(𝑥)|

|𝐺|2 =
|𝑀𝑎𝑥(𝐺)|

|𝐺|2 . 

 

3.5 Definition [13] 

 

Let G be a finite group, the portability maximality 

subgroups of a group G is compute by:  

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑔𝑖 , 𝑔𝑗) ∈ 𝐺 × 𝐺, 〈𝑔𝑖 , 𝑔𝑗〉 ≤𝑚𝑎𝑥 𝐺}|

|𝐺|2
 

 

3.6 Remark 

 

The following are held: 

• The parameter Pmax(G) is 0<Pmax(G)<1. 

• Usually, the maximalizer max(g, G) of elements is not 

necessary is a subgroup of G [13].  

We can take this example G=D20, the set of all elements 

with a2 such that maximal subgroup of group 𝑀𝑎𝑥(𝑎2, 𝐷20) =
{𝑎𝑖𝑏1⩽𝑖⩽10, 𝑎, 𝑎3, 𝑎5, 𝑎7, 𝑎9} is not a subgroup in D20. 

Another example, we can see when 𝐺 ≅ 𝐴4, 

It is clear that the maximalizer 𝑚𝑎𝑥((1,2)(3,4), 𝐴4) =
{(1,2)(3,4), (1,4)(2,3)} is not subgroup of A4. 

[Computed by GAP] [14].  

 

 

4. MAXIMALITY DEGREE TABLE 

 

4.1 Definition 

 

The maximality degree element table is a two-dimensional 

table whose rows and columns are correspond to elements of 

the group. The entries consist of η(gi, gj) is defined by: 

𝜂(𝑔𝑖 , 𝑔𝑗) = {
1 〈𝑔𝑖, 𝑔𝑗〉 ≤𝑀𝑎𝑥 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

 

In references [15, 16], a max degree has been calculated for 

the group 𝐷2𝑛 . We can describe maximal degree for cyclic 

group ηMax(Cn) is given by the following table, it is well 

known the cyclic group is define by: 

 

𝐶𝑛 = ⟨𝑎,  𝑎𝑛 = 𝑒⟩ 

 

 aj 

ai η⟨ai,aj⟩ 

 

4.2 Corollary  

 

The following holds: 

• 𝑚𝑎𝑥(𝑔𝑖 , 𝐺) = ∑∀𝑗 𝜂(𝑔𝑖 , 𝑔𝑗);  

• 𝑃𝑚𝑎𝑥(𝐺) =
∑∀𝑖,𝑗 𝜂(𝑔𝑖,𝑔𝑗)

|𝐺|2 . 

 

4.3 Lemma 

 

Assume G=〈x〉 is a cyclic group of order n≥1, then a 

subgroup H of G is (H≤MaxG) iff H=〈xp〉 for some prime p|n.  

 

Proof. (⇒) 

Let H be a maximal subgroup of G. We can write H=〈xs〉 

with s|n.  

Suppose, to reach a contradiction, that s is not prime.  

Then we can write s=qm with 1<q<s.  

Since xs=xqm=(xq)m, it follows that 𝐻 ⊆ 〈𝑥𝑞〉.  
By order considerations, we get strict inclusions ⟨xs⟩⟨xq⟩〈G〉 

and this contradicts the maximality of H. 

Hence, s must be prime.  

(⇐) 

Suppose H=〈xp〉≤〈xs〉 at p|n. Lagrange's Theorem provides 

us with  
𝑛

𝑝
|

𝑛

(𝑛,𝑠)
⇒ (𝑛, 𝑠)|𝑝  and thus |〈𝑥𝑠〉| ∈ {

𝑛

𝑝
𝑝, 𝑛} . We 

deduce that either 〈xs〉=H or 〈xs〉=G. 

Thus, H is maximal. 

 

4.4 Theorem 

 

For any p-group the probability maximality degree is equal 

to: 

 

𝑃𝑚𝑎𝑥(𝐺) =
1

𝑝2  

 

Proof. 

It is obvious that, G is a cyclic p-group when it has one 

maximum subgroup, and then there exists only one maximum 

subgroup in the cyclic group Cp, it will be clearer by using the 

following formula: 

If n=p, then: 

 

𝑀𝑎𝑥(𝐶𝑝, 𝑎𝑖) = {
1 if 𝑖 is equel to 𝑝
0 if 𝑖 is not equel to 𝑝.

 

 

By using Definition 3.4, we get: 

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑔𝑖,𝑔𝑗)∈𝐺×𝐺,〈𝑔𝑖,𝑔𝑗〉⩽𝑚𝑎𝑥𝐺}|

|𝐺|2 =
1

𝑝2  

2575



 

From the above results, we can compute the number of 

maximality degrees table for any elements of p-group then 

Max(Cp) is given by:  

 

𝜂(𝑎𝑖 , 𝑎𝑗) = {
1 𝑖𝑓  𝑖 = 𝑗 = 𝑝
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 

We can obtain the one and exactly maximal subgroup in Cp 

its Group(()), which is referred to as in previous studies [17-

20]. 

Thus, the identity element is the only element that can 

generate a maximal subgroup in Cp since there are elements 

that generate its self-group.  

 

4.5 Theorem 

 

For any element ai in 𝐶𝑝𝛼, p is a prime number and α≥1, the 

following is held: 

 

|𝑀𝑎𝑥𝐶𝑛
(𝑎𝑖)| = {

𝑝𝛼−1  𝑖𝑓 𝑖 = 𝑝𝑟, 𝑟 ≥ 1

𝑝𝜑(𝛼−1)  𝑖𝑓 𝑖 = 𝑝𝛼𝑟, 𝑟 ≥ 1
. 

 

If i=pr, r≥1, then 𝑀𝑎𝑥𝐶𝑛
(𝑎𝑖) = {𝑎𝑗|𝐺𝑐𝑑(𝑖, 𝑗) ≠ 1} , 

|𝑀𝑎𝑥𝐶𝑛
(𝑎𝑖)| = 𝑝𝛼−1 and the number of all elements is equal 

to #𝑎𝑖 = 𝜑(𝑝𝛼−1). 

If i=pαr be integer number and α≥2, then 𝑀𝑎𝑥𝐶𝑛
(𝑎𝑖) =

{𝑎𝑗|𝐺𝑐𝑑(𝑖, 𝑗) ≠ 1 and 𝑖 ≠ 𝑗} , |𝑀𝑎𝑥𝐶𝑛
(𝑎𝑖)| = 𝜑(𝑝𝛼−1)  and 

#ai=1. 

The maximality degree elements is equal to: 

 

𝑃𝑀𝑎𝑥(𝐶𝑝) =
𝑝𝜑(𝑝) + 𝜑(𝑝)

(𝑝𝛼)2
=

𝜑(𝑝)(1 + 𝑝)

(𝑝𝛼)2
 

 

Proof. 

(1) Since the order elements ai be equal to p for each i 

without i=p, thus the subgroup 〈ai, aj〉 be isomorphic to Cp and 

Cp is a Sylow subgroup. |𝑀𝑎𝑥𝐶𝑝
(𝑎𝑖)| = |{𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑝}| for 

each i without i=p and |𝑀𝑎𝑥𝐶𝑝
(𝑎𝑖)| = |{𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑝 − 1}|, 

when i=p. 

(2) It is clear that Maxp is isomorphic to Cn.  

Thus for any subgroups of type 〈ai, aj〉, if gcd(i, j)=1, then it 

is isomorphic to Cn thus it is Maxp, by other hand, if gcd(i, j)=t.  

 

4.6 Theorem 

 

If n=pα, then 𝑃𝑚𝑎𝑥(𝐶𝑝𝛼) =
𝑝2−1

𝑝4 . 

 

Proof. 

It is clear that, the maximality degree of elements of group 

𝐶𝑝𝛼 are generated by the following: 

 

𝑀𝑎𝑥(𝐶𝑛 ,𝑎𝑝𝑖) = {𝑎𝑝𝑡 , 1 ≤ 𝑡 ≤ 𝑝𝛼−1} 

 

where, 𝑖 ∤ 𝑝 and the order set |𝑀𝑎𝑥(𝐶𝑛 ,𝑎𝑝𝑖)| = 𝑝𝛼−1.  

By other hand, for the remand elements be equal to 

𝑀𝑎𝑥
(𝐶𝑛,𝑎𝑝𝑟𝑖)

|𝑟≥2 = {𝑎3𝑡 , 1 ≤ 𝑡 ≤ 𝑝𝛼−1, &𝑝 ∤ 𝑡}  where 𝑖 ∤ 𝑝 

and the order set |𝑀𝑎𝑥
(𝐶𝑛 ,𝑎𝑝𝑟𝑖)| = 𝜑(𝑝𝛼−1) since: 

 

𝜑(
𝑝𝛼

𝑝
) = 𝜑(𝑝𝛼−1). 

 

Now: 

#〈𝑎𝑖𝑝〉 = 𝜑(𝑝𝛼−1) 

#〈𝑎𝑖𝑝2
〉 = 𝜑(𝑝𝛼−2) 

⋮ 

#〈𝑎𝑖𝑝𝛼−1
〉 = 𝜑(𝑝) 

#〈𝑎𝑝𝛼
〉 = 1 

 

Thus, 𝜑(𝑝𝛼−1)|𝑀𝑎𝑥(𝐶𝑛,𝑎𝑖𝑝)| = 𝜑(𝑝𝛼−1)𝑝𝛼−1. 

So, 𝜑(𝑝𝛼−1)|𝑀𝑎𝑥
(𝐶𝑛,𝑎𝑖𝑝𝑟

)𝑟⩾2
| = 𝜑(𝑝𝛼−1). ∑𝛼

𝑖=2 𝜑(𝑝𝛼−𝑖)=

𝜑(𝑝𝛼−1)[𝜑(𝑝𝛼−2) + 𝜑(𝑝𝛼−3) + ⋯ + 𝜑(𝑝) + 𝜑(1)] =
𝜑(𝑝𝛼−1)(𝑝𝛼−2). 

Now, we can compute by the following directly by (4.5 

Theorem): 

 

𝑃𝑚𝑎𝑥(𝐶𝑝𝛼) =
𝑝𝛼−1𝜑(𝑝𝛼−1) + 𝑝𝛼−2𝜑(𝑝𝛼−1)

(𝑝𝛼)2
 

=
(𝑝𝛼−1−𝑝𝛼−2)(𝑝𝛼−1+𝑝𝛼−2)

(𝑝𝛼)2 =
𝑝2𝛼−2−𝑝2𝛼−4

(𝑝𝛼)2 =
𝑝2−1

𝑝4 . 

 

4.7 Theorem 

 

Suppose that 𝐺 ≅ 𝐶𝑝𝑞  for p, q are prime numbers. The 

probability maximality degree is equal to: 

 

𝑃𝑚𝑎𝑥(𝐶𝑝𝑞) =
𝜑(𝑝)𝜎(𝑝) + 𝜑(𝑞)𝜎(𝑞)

|𝑝𝑞|2
 

 

Proof. 

Form (4.5. Theorem), the maximality degree of element 

max(𝑎𝑝, 𝐶𝑝𝑞) = {𝑎𝑝, 𝑎2p, ⋯ , 𝑎𝑝𝑞} = 𝑞, by similarly for each, 

max(𝑎𝑖𝑝 , 𝐶𝑝𝑞) = {𝑎𝑝 , 𝑎2p, ⋯ , 𝑎𝑝𝑞}, when 1≤i≤φ(q).  

So, for max(𝑎𝑞 , 𝐶𝑝𝑞) = {𝑎𝑞 , 𝑎2q, ⋯ , 𝑎𝑝𝑞} = 𝑝 , by 

similarly for each max(𝑎𝑖𝑞 , 𝐶𝑝𝑞) = {𝑎𝑞 , 𝑎2q, ⋯ , 𝑎𝑝𝑞} , when 

1 ≤ i ≤ φ(p), max(𝑎𝑝𝑞 , 𝐶𝑝𝑞) = {𝑎𝑝, 𝑎2p, ⋯ , 𝑎(𝑝−1)𝑞} ∪

{𝑎𝑞 , 𝑎2q, ⋯ , 𝑎𝑝(𝑞−1)} = 𝜑(𝑝) + 𝜑(𝑞), max(𝐶𝑝𝑞) = 𝑝𝜑(𝑝) +

𝑞𝜑(𝑞) + 𝜑(𝑝) + 𝜑(𝑞) = 𝜑(𝑝)𝜎(𝑝) + 𝜑(𝑞)𝜎(𝑞). 

 

4.8 Example 

 

In this example we will introduce three cases, for cycle 

group Cn: 

• If 𝑛 = 11, then C9={e, a, a2, a3, a4, a5, a6, a7, a8, a9, a10}, 

we have that |𝑚𝑎𝑥𝐶11
(𝑒)| = 1, and we have |𝑚𝑎𝑥𝐶11

(𝑎𝑖)| =

0 ∀ 1≤i<11, see Table 1. 

Thus, we have two ways to find the solution: 

Either by using general definition (Definition 3.4): 

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑔𝑖,𝑔𝑗)∈𝐺×𝐺,〈𝑔𝑖,𝑔𝑗〉≤𝑚𝑎𝑥𝐺}|

|𝐺|2   

 

𝑃𝑚𝑎𝑥(𝐶11) =
1

|𝐶11|2 =
1

121
  

 

Or, by our theorem (Theorem 4.4): 

 

𝑃𝑚𝑎𝑥(𝐶11) =
1

𝑝2 =
1

112 =
1

121
  

 

In Table 1, we will show the value is 1 for the elements that 

satisfy the maximal subgroup, otherwise the value is zero for 

the group 𝐶11. 
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Table 1. Maximality degree of C11 

 

 e a a2 a3 a4 a5 a6 a7 a8 a9 a10 

e 1 0 0 0 0 0 0 0 0 0 0 

a 0 0 0 0 0 0 0 0 0 0 0 

a2 0 0 0 0 0 0 0 0 0 0 0 

a3 0 0 0 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 0 0 0 

a5 0 0 0 0 0 0 0 0 0 0 0 

a6 0 0 0 0 0 0 0 0 0 0 0 

a7 0 0 0 0 0 0 0 0 0 0 0 

a8 0 0 0 0 0 0 0 0 0 0 0 

a9 0 0 0 0 0 0 0 0 0 0 0 

a10 0 0 0 0 0 0 0 0 0 0 0 

 

Table 2. Maximality degree of C9 

 
 e a a2 a3 a4 a5 a6 a7 a8 

e 0 0 0 1 0 0 1 0 0 

a 0 0 0 0 0 0 0 0 0 

a2 0 0 0 0 0 0 0 0 0 

a3 1 0 0 1 0 0 1 0 0 

a4 0 0 0 0 0 0 0 0 0 

a5 0 0 0 0 0 0 0 0 0 

a6 1 0 0 1 0 0 1 0 0 

a7 0 0 0 0 0 0 0 0 0 

a8 0 0 0 0 0 0 0 0 0 

 

•If n=32, then C9={e, a, a2, a3, a4, a5, a6, a7, a8}, we have 

that |𝑚𝑎𝑥𝐶9
(𝑎3)| = |{𝑒, 𝑎3, 𝑎6}| = 3 , |𝑚𝑎𝑥𝐶9

(𝑎6)| =

|{𝑒, 𝑎3, 𝑎6}| = 3 , |𝑚𝑎𝑥𝐶9
(𝑒)| = |{𝑎3, 𝑎6}| = 2,  Table 2 

shows the elements that satisfy the maximal subgroup, and the 

elements that do not achieve for the group 𝐶9. 

Then, we have two ways to find the solution: 

Either by using general definition (Definition 3.4): 

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑔𝑖,𝑔𝑗)∈𝐺×𝐺,〈𝑔𝑖,𝑔𝑗〉≤𝑚𝑎𝑥𝐺}|

|𝐺|2   

𝑃𝑚𝑎𝑥(𝐶9) =
(1∗2)+(2∗3)

|𝐶9|2 =
8

81
  

 

Or, by our theorem (Theorem 4.6): 

 

𝑃𝑚𝑎𝑥(𝐶9) =
𝑝2−1

(𝑝4)
=

32−1

(3)4 =
8

81
  

 

It is difficult to calculate the maximum degree table when 

the value of n is large, but it can be easily calculated by 

(Theory 4.6).  

For example, when n=133, 𝐶133 = 𝐶2197, then 

 

𝑃𝑚𝑎𝑥(𝐶2197) =
𝑝2−1

(𝑝4)
=

132−1

(13)4 =
169−1

28561
=

168

28561
  

 

• If n=15, then C15={e, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, 

a12, a13, a14}, we have that  

 

       |𝑚𝑎𝑥𝐶15
(𝑒)| = |{𝑎3, 𝑎5, 𝑎6, 𝑎9, 𝑎10, 𝑎12}| = 6, 

|𝑚𝑎𝑥𝐶15
(𝑎3)| = |{𝑒, 𝑎3, 𝑎6, 𝑎9, 𝑎12}| = 5, 

|𝑚𝑎𝑥𝐶15
(𝑎6)| = |{𝑒, 𝑎3, 𝑎6, 𝑎9, 𝑎12}| = 5, 

|𝑚𝑎𝑥𝐶15
(𝑎9)| = |{𝑒, 𝑎3, 𝑎6, 𝑎9, 𝑎12}| = 5, 

|𝑚𝑎𝑥𝐶15
(𝑎12)| = |{𝑒, 𝑎3, 𝑎6, 𝑎9, 𝑎12}| = 5. 

 

Thus 4*5=20. 

 

|𝑚𝑎𝑥𝐶15
(𝑎5)| = |{𝑒, 𝑎5, 𝑎10}| = 3 

|𝑚𝑎𝑥𝐶15
(𝑎10)| = |{𝑒, 𝑎5, 𝑎10}| = 3 

 

Thus 2*3=6, in Table 3, we show the elements that satisfy 

the maximal subgroup when 𝑛  equal to the product of two 

prime numbers. 

Then, we have two ways to find the solution: 

Either by using general definition (Definition 3.4): 

 

𝑃𝑚𝑎𝑥(𝐺) =
|{(𝑔𝑖,𝑔𝑗)∈𝐺×𝐺,〈𝑔𝑖,𝑔𝑗〉≤𝑚𝑎𝑥𝐺}|

|𝐺|2   

𝑃𝑚𝑎𝑥(𝐶15) =
(1∗6)+(4∗5)+(2∗3)

|𝐶15|2 =
32

225
  

 

Or, by our theorem (Theorem 4.7): 

 

𝑃𝑚𝑎𝑥(𝐶𝑝𝑞) =
𝜑(𝑝)𝜎(𝑝)+𝜑(𝑞)𝜎(𝑞)

|𝑝𝑞|2 =
4(5+1)+2(3+1)

(5∗3)2 =
32

225
  

 

We can take another example, when the value of 𝑛 is large, 

when n=91*17, C91*17=C1547, then: 

 

𝑃𝑚𝑎𝑥(C91∗17) =
𝜑(𝑝)𝜎(𝑝) + 𝜑(𝑞)𝜎(𝑞)

|𝑝𝑞|2                            

=
90(91 + 1) + 16(17 + 1)

(1547)2
 

=
8280 + 288

2393209
=

8568

2393209
 

 

Table 3. Maximality degree of C15 

 
 e a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 

e 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

a4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

a6 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

a7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a9 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

a10 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

a11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a12 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

a13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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4.9 Lemma 

 

The following is hold: 

If n is prime number, then 

• 𝑃𝑀𝑎𝑥(𝐶𝑝) =
1

9
 is a largest value, at n=3.  

• for n→∞, then PMax(Cp)→0 

In Figure 1, we can see a curve  of the maximum and 

minimum values of maximality degree of cyclic group Cn 

when 𝑛 = prime number. 
 

 
 

Figure 1. Largest and smallest value of maximality degree of 

Cp 

 

 

5. DISCUSSION AND CONCLUSIONS 

 

It is difficult to find the maximum degree by using the 

general definition when the value of n is large number. 

Therefore, in this paper, we constructed three algorithms to 

calculate the probabilities of the maximality degree of finite 

group Zn. We indeed consider three cases, the first is when the 

order group is a prime number in Zp, second it is when the 

order group is a prime number raised to a certain degree in 

𝑍𝑃𝑚 , and third case is when the order is the product of two 

prime numbers, each of these primes is raised to a certain 

degree in 𝑍𝑝𝑚𝑞𝑛 . Those algorithms will be calculated MaxG 

whatever the value of n. 

We hope to develop the research by calculating the 

maximality degree of another finite group like dihedral 

group 𝐷2𝑛, when 𝑛 is odd or even number. We will also study 

in the future the possibility of Decyclic group 𝑇4𝑛 . 
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APPENDIX 

 

GAP program was used to find all the maximal subgroups. 

User code of C9: 

gap> c:=CyclicGroup(IsPermGroup,9); 

Group([ (1,2,3,4,5,6,7,8,9) ]) 

gap> g:=GeneratorsOfGroup(c); 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7

Maximality degree 
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[ (1,2,3,4,5,6,7,8,9) ] 

gap> a:=g[1]; 

(1,2,3,4,5,6,7,8,9) 

gap> m:=MaximalSubgroups(c); 

[ Group([ (1,4,7)(2,5,8)(3,6,9) ]) ] 

gap> x:=[]; for t in [2..9] do 

[  ] 

> h:=Group([a^9,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6 ] 

gap> x:=[]; for t in [2..9] do 

[  ] 

> h:=Group([a^3,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6, 9 ] 

gap> x:=[]; for t in [2..9] do 

[  ] 

> h:=Group([a^6,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6, 9 ] 

 

User code of 𝐶15: 

gap> c:=CyclicGroup(IsPermGroup,15); 

Group([ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) ]) 

gap> g:=GeneratorsOfGroup(c); 

[ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) ] 

gap> a:=g[1]; 

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 

gap> m:=MaximalSubgroups(c); 

[ Group([ (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15) ]), 

Group([ (1,11,6)(2,12,7) 

  (3,13,8)(4,14,9)(5,15,10) ]) ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^15,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 5, 6, 9, 10, 12 ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^3,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6, 9, 12, 15 ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^6,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6, 9, 12, 15 ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^9,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 3, 6, 9, 12, 15 ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^5,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 5, 10, 15 ] 

gap> x:=[]; for t in [2..15] do 

[  ] 

> h:=Group([a^10,a^t]); if h in m then; Add(x,t); fi; od; x; 

[ 5, 10, 15 ] 

gap> h:=Group([a^12,a^t]); if h in m then; Add(x,t); fi; od; 

x; 

Group([ (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6), () ]) 

Syntax error: expression expected 

h:=Group([a^12,a^t]); if h in m then; Add(x,t); fi; od; x; 

                                      

[ 5, 10, 15, 15 ] 
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