
Multiclass Logistic Regression Classification with PCA for Imbalanced Medical Datasets 

Adli A. Nababan1* , Sutarman2 , Muhammad Zarlis3 , Erna B. Nababan4

1 Department of Informatics Engineering, Faculty of Science and Technology, Universitas Prima Indonesia, Medan 20118, 

Indonesia 
2 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, 

Indonesia 
3 Department of Information Systems Management, BINUS Graduate Program-Master of Information Systems Management, 

Bina Nusantara University, Jakarta 11480, Indonesia 
4 Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, 

Medan 20155, Indonesia 

Corresponding Author Email: adliabdillahnababan@unprimdn.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110911 ABSTRACT 

Received: 2 June 2024 

Revised: 25 August 2024 

Accepted: 5 September 2024 

Available online: 29 September 2024 

The challenge of class imbalance in multiclass medical datasets is addressed in this 

study, through the proposal of modified classifiers premised on multiclass logistic 

regression. The principal aim is to augment the accuracy of medical diagnosis 

predictions by decisively managing imbalanced datasets with innovative 

methodologies. Performance evaluations are conducted on renowned multiclass 

medical datasets including thyroid, lymphography, dermatology, and ecoli. Prior to 

model development, Principal Component Analysis (PCA) is employed as a 

preprocessing measure to bolster data quality. The bespoke classifiers are trained via 

gradient descent optimization and evaluated through various metrics such as accuracy, 

precision, recall, and f1-score. A comparative analysis with preceding studies 

underscores the superior performance of the proposed model, accentuating its 

advantageous position over other algorithms. This research underscores the potential of 

the proposed model to furnish precise medical diagnosis predictions amidst class 

imbalance, capably distinguishing between minority and majority classes. In 

conclusion, this study delineates the promising potential of multiclass logistic 

regression for precise medical diagnoses in the realm of imbalanced datasets. 
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1. INTRODUCTION

The burgeoning volume of data in the digital age poses 

challenges in the effective utilization of critical information, 

particularly in binary and multiclass datasets. Class imbalance 

has surfaced as a significant challenge [1], predominantly in 

medical data, where the minority class often encapsulates 

crucial insights, such as rare disease diagnoses. Addressing 

this imbalance is vital for harnessing the valuable knowledge 

concealed within the underrepresented minority classes. 

The amalgamation of healthcare technology and machine 

learning (ML) has instigated a revolution in disease prediction, 

patient monitoring, and clinical decision-making, thereby 

amplifying patient outcomes and healthcare quality [2]. ML 

algorithms have equipped medical practitioners with the 

ability to leverage vast patient data for informed decision-

making. Nonetheless, the persistent issue of inaccurate disease 

prediction necessitates continual research and development to 

circumvent risks to patient safety [3]. 

Class imbalance poses a formidable issue in ML research, 

with this imbalance being distinctly noticeable in medical data, 

where healthy patients considerably outnumber their sick 

counterparts [4]. Such imbalance can induce bias towards the 

majority class in conventional ML algorithms, adversely 

affecting their performance. Consequently, addressing class 

imbalance has been identified as one of the top ten challenges 

in ML research [5]. 

In ML classification tasks, the misclassification of minority 

classes is a prevalent issue, attributed to the disproportionate 

emphasis on majority classes [6, 7]. Various techniques have 

been explored to mitigate the issues posed by imbalanced data, 

with the classification of multiclass imbalanced data 

introducing additional complexities [8, 9]. However, the 

exploration of novel techniques that effectively classify 

minority classes while delivering optimal results across all 

classes remains a necessity [10]. 

Logistic regression emerges as an effective approach for 

addressing data imbalance, facilitating the modeling of 

relationships between the dependent variable and multiple 

classes [11]. In contrast to traditional logistic regression, 

multiclass logistic regression can predict probabilities across 

diverse classes [12-14], with the objective being to estimate 

parameters that minimize prediction errors and furnish 

accurate predictions for each class [15, 16]. 
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This research is geared towards tackling the challenges 

presented by imbalanced multiclass medical data by 

harnessing logistic regression. The emphasis is placed on 

devising techniques and methodologies that adeptly manage 

the imbalanced distribution of classes in medical datasets, 

integrating Principal Component Analysis (PCA) as a 

preprocessing step to capture data variability, and utilizing 

gradient descent optimization for model parameter 

optimization during training. The study evaluates the 

performance of a logistic regression algorithm specifically 

engineered to handle imbalanced data in multiclass medical 

datasets, drawing comparisons with previous studies to gauge 

advancements in addressing this issue. 

 

 

2. METHODS 

 

2.1 Datasets 

 

This study utilizes four imbalanced medical datasets 

obtained from the UCI Machine Learning Repository. The 

selected datasets were chosen for their common use in 

multiclass imbalanced data classification research [9]. The 

level of class imbalance in the datasets is evaluated using the 

imbalance ratio (IR) and the imbalance degree (ID). The IR 

compares the number of instances in the majority class to that 

in the minority class, while the ID measures the relative 

imbalance between majority and minority classes based on 

their occurrence percentages. Higher IR and ID values indicate 

a more pronounced imbalance within the datasets. In 

classification tasks, higher ID values can present challenges 

due to bias towards the majority class and difficulties in 

detecting minority classes, particularly in medical datasets 

with a larger number of minority classes [17]. 

In this study, four imbalanced medical datasets were 

utilized, which were obtained from the UCI Machine Learning 

Repository. The selected datasets include thyroid, 

lymphography, and ecoli. These specific datasets were chosen 

due to their common usage in classification research involving 

multiclass imbalanced data. A detailed description of these 

datasets can be found in Table 1 and the data distribution for 

each class can be seen in Table 2. 

 

Table 1. Description of the medical dataset 

 

Datasets 
Number of 

Instances 

Number of 

Features 

Number of 

Classes 

Thyroid 215 5 3 

Lympograpy 148 18 4 

Dermatology 358 34 6 

Ecoli 336 7 8 

 

Table 2. Data distribution for each class 

 

Datasets Class Distribution IR ID 

Thyroid 150/35/30 5.0 1.55 

Lympograpy 2/81/61/4 40.5 1.76 

Dermatology 111/60/71/48/48/20 5.55 2.33 

Ecoli 143/77/52/35/20/5/2/2 71.5 2.75 

 

2.2 Data preprocessing 

 

Data Preprocessing involves analyzing and improving 

datasets to create new datasets that are appropriate for further 

procedures. It includes various steps like modifying or 

cleaning data, reducing data, and transforming data [18]. The 

dataset will be split into two portions: 70% for training and 

30% for testing. Z-score normalization will be used to 

standardize the data during the process. Both the training and 

test data will undergo data scaling, which aims to standardize 

the input features in the dataset. This ensures that features with 

different scales but the same variance can be accurately 

compared [19]. 

 

2.3 Principal Component Analysis (PCA) 

 

In the field of machine learning, data dimension reduction 

plays a crucial role in processing high-dimensional data 

efficiently. Principal Component Analysis (PCA) is a widely-

used technique that aims to reduce the number of features or 

variables in a dataset while preserving the essential 

information contained within the data. 

To improve the performance of classification models and 

enhance the accuracy of medical diagnosis predictions, this 

study proposes a PCA framework to select a subset of relevant 

and uncorrelated features from the multiclass medical datasets 

used in the research [20]. To quantify the spread of data within 

the medical datasets, we calculate the variance using Eq. (1): 

 

𝑉𝑎𝑟(𝑥) = 𝜎𝑛 =
1

𝑛
∑(𝑍𝑖𝑗 − 𝜇𝑗)

2
𝑛

𝑖=1

 (1) 

 

where, Var(x)=the variance of variable x; 𝑍𝑖𝑗=the value of the 

i-th data point of variable x; or the j-th feature; μj=the mean 

value of the j-th feature. 

After that, the covariance is calculated to find the 

relationship between classes, where a value of zero indicates 

that there is no relationship between the two dimensions [21]. 

The covariance is calculated using Eq. (2): 

 

Cov(𝑥, 𝑦) =
1

𝑛 − 1
∑(𝑥𝑖𝑗 − 𝜇𝑥𝑗)(𝑦𝑖𝑗 − 𝜇𝑦𝑗)

𝑛

𝑖=1

 (2) 

 

where, Cov(x, y)=the covariance between variables x and y; 

xij=the value of the i-th data point of variable μxj=the mean 

value of variable x; yij=the value of the i-th data point of 

variable y; μyj=the mean value of variable y. 

Finally, the Eigenvalues and Eigenvectors for the 

covariance matrices are calculated [22]. The Eigenvalues are 

then transformed using Eq. (3): 

 

𝐷𝑒𝑡 (𝐴 − 𝜆𝐼) = 0 (3) 

 

where, Det=the determinant of the matrix; A=the value square 

matrix; λI=the scalar, and the identity matrix. 

In this study, PCA was applied to both training and testing 

attributes from medical data sets that are expected to yield 

good results when applied to correlated attributes. 

 
2.4 Build multiclass logistic regression 

 
To build a classification model, the initial step involves 

establishing the class boundary that will differentiate instances 

belonging to different classes [23]. The number of boundaries 

required is determined by the number of classes to be 

distinguished. In binary classification, a single decision 

boundary is adequate. However, in multiclass classification 
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scenarios with more than two classes, the number of decision 

boundaries needed is equal to k-1, where k represents the total 

number of class instances being separated. In the machine 

learning approach, the logistic regression classification model 

is employed for binary classes and utilizes the sigmoid 

function, defined as Eq. (4) [24]: 

 

ℎ𝜃(𝑥) =
1

1 + 𝑒−𝜃𝑇 𝑥  (4) 

 

where, hθ(x)=the predicted probability that the input data; x 

belongs to the positive class (class 1); θ=the parameter vector 

of the logistic regression model; θT=denotes the transpose of θ; 

x=the feature vector of the input data; e=Euler's number. 

In the case of multiclass classification, the logistic 

regression model utilizes the Softmax function. The Softmax 

function calculates the probabilities of the input data x 

belonging to each class. It takes the linear combination of the 

input features and the corresponding model parameters θj for 

each class and transforms these values into probabilities 

between 0 and 1. The probabilities are then normalized by the 

sum of probabilities over all classes, ensuring that the 

predicted probabilities for all classes sum up to 1. The class 

with the highest probability is chosen as the predicted class for 

the input data x in multiclass classification. Softmax defined 

as Eq. (5): 
 

𝑃(𝑦 = 𝑗|𝑥) =
𝑒(𝜃  𝑥)𝑗

𝑇

∑ 𝑒(𝜃   𝑥)𝑘
𝑇𝐾

𝑘=1

 (5) 

 

where, P(y=j|x)=the predicted probability that the input data; x 

belongs to class j out of K classes; θj=the parameter vector 

corresponding to class; j in the Softmax function; x=the feature 

vector of the input data; e=Euler's number; ∑  𝐾
𝑘=1 =the sum 

over all classes from 1 to K. 

By incorporating the Softmax function with the ordinal 

encoder, the logistic regression model for multiclass cases can 

effectively predict the probability of an input belonging to 

each class based on its features. 

The likelihood function for multiclass logistic regression 

with ordinal encoder vectors can be derived by extending the 

binary logistic regression likelihood to the multiclass scenario. 

Suppose we have a dataset with N samples and K classes. Each 

sample i is represented by a feature vector xi and its associated 

class label yi. To facilitate computation, the class labels are 

encoded using an ordinal encoder, which assigns unique 

numerical labels to each class. This results in a vector of 

ordinal encoded labels yi for each sample. In multiclass logistic 

regression, the likelihood function can be defined as follows 

Eq. (6): 

 

𝐿(𝜃) = ∏ 𝑃

𝑁

𝑖=1

(𝑦𝑖|𝑥𝑖; 𝜃) (6) 

 

where, θ represents the model's weight parameters. The 

probability P(yi|xi; θ) can be calculated using the Softmax 

function as Eq. (5). To maximize the likelihood function, we 

can take the logarithm of L(θ) and convert the product into a 

sum as follows Eq. (7): 

 

log 𝐿(𝜃) = ∑ log 𝑃

𝑁

𝑖=1

(𝑦𝑖|𝑥𝑖; 𝜃) (7) 

where, log L(θ) represents the logarithm of the likelihood 

function, which is the natural logarithm of the probability of 

the observed data given the model parameters θ. N is the total 

number of data samples in the dataset. 

By taking the logarithm of the likelihood function, we 

convert the product of probabilities into a sum of logarithms. 

This is a common practice in statistics and machine learning 

as it simplifies computations and avoids numerical underflow 

that can occur when dealing with small probabilities. 

Maximizing the log-likelihood function is equivalent to 

maximizing the likelihood function itself since the logarithm 

is a monotonic function. The goal of maximizing the log-

likelihood is to find the optimal values of the model 

parameters θ that best explain the observed data and result in 

the highest probability of the true classes given the input data. 

 

2.5 Find optimal values for model parameters 

 

Gradient descent is an essential optimization algorithm in 

machine learning, used to minimize the loss function 

iteratively by adjusting model parameters. In our work, it plays 

a vital role in training the multiclass logistic regression model 

to achieve better classification on imbalanced medical datasets. 

By applying gradient descent, we seek to find the optimal 

weights and bias parameters. In the following subsection, we 

explore how gradient descent is used in the training process 

and its significance in enhancing model accuracy.  

The next step after deriving the likelihood function for 

multiclass logistic regression with ordinal encoder vectors is 

to optimize the model parameters using gradient descent. It 

iteratively updates the weight parameters to maximize the 

likelihood function, moving towards the optimal solution. The 

general steps for performing gradient descent in the context of 

multiclass logistic regression with ordinal encoder vectors are 

explained below. 

Step 1: Initialize the weight parameters θ with small random 

values. 

Step 2: Compute the predicted probabilities for each sample 

using the Softmax function as follows Eq. (5). 

Step 3: Compute the loss function, which quantifies the 

difference between the predicted probabilities and the true 

ordinal encoded labels. In multiclass logistic regression, as 

follows Eq. (8): 

 

Loss = − ∑ ∑ 𝑦𝑖𝑗

𝐾

𝑗=1

𝑁

𝑖=1
log 𝑃 (𝑦 = 𝑗|𝑥𝑖 ; 𝜃) (8) 

 

where, yij is an indicator variable that is equal to 1 if the ordinal 

encoded label for sample i is j, and 0 otherwise. 

Step 4: Computing the gradient of the loss function 

concerning the weight parameters indicates the direction and 

magnitude of the steepest ascent in the likelihood space. It 

represents how the loss function changes as the weight 

parameters are adjusted, providing crucial information for 

optimizing the model through gradient-based optimization 

algorithms. By following the gradient, the algorithm can 

iteratively update the weight parameters in the direction that 

maximizes the likelihood and reduces the loss. 

Step 5: Update the weight parameters using the gradient 

descent update, as follows Eq. (9): 

 

𝜃 = 𝜃 − α∇𝜃Loss (9) 

 

where, α is the learning rate, controlling the step size in each 
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iteration of the optimization process. 

Step 6: Continue iterating steps 2 to 5 until either 

convergence is achieved or a predefined number of iterations 

is reached. 

By iteratively updating the weight parameters using the 

gradient descent algorithm, we can gradually improve the 

model's performance and find the optimal parameter values 

that maximize the likelihood function for the given dataset and 

ordinal encoded labels. 

 

2.6 Multiclass model evaluation 

 

To evaluate the performance of a classification model, it is 

essential to use specific measures. These measures can be 

obtained by utilizing a confusion matrix [25]. By analyzing the 

elements of the confusion matrix, one can assess the 

performance of the classification model. In this study, various 

metrics, including accuracy, precision, recall, f1-score, and 

ROC AUC [26]. The matrix used to evaluate classification 

results in multiclass classification problems can be seen in 

Figure 1. 

 

 
 

Figure 1. Confusion matrix for multiclass classification 

 

Accuracy is a widely used metric in multiclass classification 

and is calculated directly from the confusion matrix. A higher 

accuracy score indicates better performance of the 

classification model. It is calculated based on the number of 

correctly predicted classifications. The accuracy value can be 

estimated using the following Eq. (10): 

 

Acc=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

 

When dealing with medical datasets, relying solely on 

overall accuracy as a measure of classification performance 

may not be reliable, particularly for positive (minority) classes. 

Therefore, in this study, precision metrics are utilized, which 

are commonly employed in data mining and statistical testing. 

In the following Eq. (11), precision is calculated by dividing 

the number of positive samples that are correctly classified by 

the total number of predicted positive instances. This approach 

provides a more robust evaluation of classification 

performance in medical datasets, considering the specific 

challenges posed by minority classes: 

 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 

 

The True Positive Rate also referred to as recall in 

information retrieval, represents the proportion of relevant 

objects correctly identified among the objects that were 

retrieved. It quantifies the ability of a classification model to 

accurately identify and retrieve relevant instances from a given 

dataset. The recall calculation can be seen in the formula in Eq. 

(12): 

 

𝑅𝑒𝑐 = 𝑇𝑃𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 

Essentially, the f1-score can be understood as the harmonic 

mean of recall and precision. It provides a balanced measure 

that considers both the ability to retrieve relevant instances 

(recall) and the accuracy of the retrieved instances (precision). 

By incorporating both recall and precision into a single metric, 

the f1-score offers a comprehensive evaluation of the 

classification model's performance as follows Eq. (13): 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 + 𝑟𝑒𝑐𝑎𝑙𝑙−1
 

            = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

(13) 

 

Another effective metric for evaluating the performance of 

a multiclass logistic model in a scenario with imbalanced class 

distribution is the ROC AUC Score. This metric provides a 

reliable assessment of the model's performance in multiclass 

classification tasks [11]. An illustration of the ROC and AUC 

curves can be seen in Figure 2. 

 

 
 

Figure 2. ROC curve and AUC illustration 

 

These metrics provide insight into various aspects of a 

model's performance, enabling a comprehensive assessment of 

its ability to handle imbalanced medical data. 

 

2.7 Training process 

 

This study involves several research steps or stages, 

including (1) collecting data, (2) preprocessing, (3) applying 

PCA, (4) splitting the dataset, (5) training model (6) Utilizing 

gradient descent and (7) Evaluating the model's performance. 

These methodological steps will be applied to address the 

problem of imbalanced multiclass medical data. 

1. Input the multiclass medical dataset for processing: 

At the beginning of the training process, the dataset 

containing multiclass medical data is collected and prepared 
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for further analysis. This dataset will be used to train and 

evaluate the multiclass logistic regression model. 

2. Preprocess the dataset: 

In this step, the dataset is preprocessed to handle any 

missing values and outliers. Missing values can be imputed or 

removed, depending on the nature and significance of the 

missing data. Outliers, which are extreme values that deviate 

significantly from the rest of the data, may be identified and 

either removed or treated appropriately to avoid their negative 

impact on the model. 

3. Apply Principal Component Analysis (PCA): 

PCA is utilized to reduce the dimensionality of the dataset. 

It transforms the original features into a new set of 

uncorrelated features called principal components. By 

selecting the top principal components that capture most of the 

variance in the data, we can effectively reduce the number of 

features, making the dataset more manageable and preventing 

overfitting. 

4. Split the dataset: 

The dataset is divided into two subsets: A training set and a 

testing set. The training set, which comprises 70% of the data, 

is used to train the multiclass logistic regression model. The 

testing set, representing 30% of the data, is used to evaluate 

the model's performance and assess its ability to generalize to 

new, unseen data. 

5. Train the multiclass logistic regression model: 

The multiclass logistic regression model is trained using the 

training set. The model learns to make predictions for each 

class in the dataset based on the input features. It aims to find 

the optimal weights and bias parameters that minimize 

prediction errors and improve the accuracy of class predictions. 

6. Utilize gradient descent for optimization:  

Gradient descent is an optimization algorithm used to adjust 

the model's parameters (weights and bias) during training. It 

iteratively updates these parameters in the direction that 

minimizes the loss function, which measures the difference 

between the predicted and actual class labels. By using 

gradient descent, the model can fine-tune its parameters to 

achieve better classification performance. 

7. Evaluate the model's performance: 

Finally, the trained model is evaluated on both the training 

and testing datasets to assess its performance. Various metrics 

such as accuracy, precision, recall, f1-score, and ROC AUC 

are computed to measure the model's ability to classify 

instances correctly across all classes. This evaluation step 

helps determine the model's effectiveness in handling the 

imbalanced multiclass medical data and provides insights into 

its overall classification capabilities. 
 

 

3. RESULTS AND DISCUSSION 
 

In this section, we conducted experiments to test the 

multiclass logistic regression model on a personal computer. 

The computer used was equipped with an Intel Core i5 

processor, 4 GB RAM, and running on the Windows 10 

operating system. The implementation of the model was 

carried out using the Python programming language within the 

Jupyter Notebook® application. We present the results and 

discuss the findings of our research on the application of the 

developed classification model. The methodology involved 

conducting simulations on four multiclass imbalance datasets: 

thyroid, lymphography, dermatology, and ecoli. 

The training process begins by collecting a dataset 

containing multiclass medical data, which will be used to train 

and evaluate the multiclass logistic regression model. Next, 

the dataset undergoes preprocessing to handle any missing 

values and outliers. Missing values are either imputed or 

removed, while outliers are identified and appropriately dealt 

with to avoid negative impacts on the model. 
 

3.1 Dataset dimension reduction results 
 

Principal Component Analysis (PCA) was used to reduce 

the dimensionality of the data while ensuring that at least 

98.00% of the total variability in the original data is captured. 

For each dataset, a specific number of principal components 

was retained to achieve this level of variability explanation: 5 

for the thyroid dataset, 18 for the lymphography dataset, 26 for 

the dermatology dataset, and 7 for the e-coli dataset. This 

dimensionality reduction process aids in preserving essential 

information while making the dataset more manageable and 

conducive to analysis. 
 

3.2 Dataset scaling results for training and test data 
 

After preprocessing and dimensionality reduction, the 

dataset is split into two subsets: a training set and a testing set. 

The training set, consisting of 70% of the data, is used to train 

the multiclass logistic regression model, while the testing set, 

representing 30% of the data, is used to evaluate the model's 

performance on unseen data. 

The next step involves training the multiclass logistic 

regression model using the training set. The model learns to 

make predictions for each class in the dataset based on the 

input features. It aims to find the optimal weights and bias 

parameters that minimize prediction errors and improve the 

accuracy of class predictions. 
 

3.3 Adjust the model parameters 
 

To fine-tune the model's parameters during training, 

gradient descent optimization is utilized. 

The provided results (Figures 3-6) are from training a 

Multiclass Logistic Regression model with PCA (Principal 

Component Analysis) on four different datasets: thyroid, 

lymphography, dermatology, and ecoli. Each dataset has its 

own set of features and corresponding target labels, and the 

goal is to classify the data into multiple classes using the 

logistic regression model. 

For the thyroid dataset, the model's performance improves 

significantly over the training epochs. Both the train and test 

losses decrease steadily, indicating that the model is learning 

and generalizing well. Similarly, the train and test accuracies 

increase over time, reaching close to 100%, which suggests 

that the model successfully learned to classify the thyroid data 

accurately. 

In the lymphography dataset, the logistic regression model 

with PCA also shows improvements in train and test losses, 

which decrease as the model trains. The train and test 

accuracies show a positive trend, but the final accuracies are 

comparatively lower than in the thyroid dataset, reaching 

around 90%. Although the model performs reasonably well, it 

might benefit from further optimization or a more complex 

model for better accuracy. 

For the dermatology dataset, the logistic regression model 

with PCA demonstrates excellent performance. The train and 

test losses decrease significantly over the epochs, while the 

train and test accuracies increase steadily and reach 

approximately 98%. This indicates that the model effectively 
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learned to classify the dermatology data with high accuracy. 

Lastly, in the ecoli dataset, the logistic regression model 

with PCA performs reasonably well. The train and test losses 

decrease gradually, and the train and test accuracies improve 

throughout training, reaching around 85%. Although the 

model shows promising results, it may have some difficulty 

capturing complex patterns in the data, which could be 

addressed with more sophisticated models. 
 

 
 

Figure 3. Performance results for the training and test 

datasets on the accuracy curve (per epoch) for the thyroid 

data 
 

 
 

Figure 4. Performance results for the training and test 

datasets on the accuracy curve (per epoch) for the 

lymphography data 
 

 
 

Figure 5. Performance results for the training and test 

datasets on the accuracy curve (per epoch) for the 

dermatology data 

 
 

Figure 6. Performance results for the training and test 

datasets on the accuracy curve (per epoch) for the ecoli data 

 

3.4 Evaluating the model performance 

 

Finally, the trained model is evaluated on both the training 

and testing datasets to assess its performance. Various metrics, 

such as accuracy, precision, recall, f1-score, and ROC AUC, 

are computed to measure the model's ability to classify 

instances correctly across all classes. This evaluation step 

provides insights into the model's effectiveness in handling the 

imbalanced multiclass medical data and its overall 

classification capabilities. 

 

3.4.1 Confusion matrix and individual class performance 

The following is a visualization of the performance model 

confusion matrix in classifying thyroid data as shown in Figure 

7 and Table 3 presents the individual class performance of the 

multiclass logistic regression model on the thyroid dataset: 

 

 
 

Figure 7. Confusion matrix for thyroid dataset 

 

Table 3. The model performance results for each class 

individually on the thyroid dataset 

 
Class Acc Rec Prec F1-S AUC 

Normal 0.985 1.000 0.978 0.989 1.000 

Hyperthyroid 1.000 1.000 1.000 1.000 1.000 

Hypothyroid 0.985 0.889 1.000 0.941 1.000 
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The following is a visualization of the performance model 

confusion matrix in classifying data lymphography as shown 

in Figure 8 and Table 4 presents the individual class 

performance of the multiclass logistic regression model on the 

lymphography dataset: 

 

 
 

Figure 8. Confusion matrix for lymphography dataset 
 

Table 4. The model performance results for each class 

individually on the lymphography dataset 

 
Class Acc Rec Prec F1-S AUC 

Normal 1.000 1.000 1.000 1.000 1.000 

Metastases 0.844 0.840 0.875 0.857 0.922 

Malign lymph 0.844 0.833 0.789 0.811 0.936 

Fibrosis 1.000 1.000 1.000 1.000 1.000 

 

 
 

Figure 9. Confusion matrix for dermatology dataset 

 

Table 5. The model performance results for each class 

individually on the dermatology dataset 

 
Class Acc Rec Prec F1-S AUC 

Psoriasis 1.000 1.000 1.000 1.000 1.000 

Seboreic  0.991 0.994 1.000 0.971 0.998 

Lichen  1.000 1.000 1.000 1.000 1.000 

Pityriasis  0.991 1.000 0.938 0.968 0.999 

Cronic  1.000 1.000 1.000 1.000 1.000 

Pirubra  1.000 1.000 1.000 1.000 1.000 

The above is a visualization of the performance model 

confusion matrix in classifying dermatology data as shown in 

Figure 9 and Table 5 presents the individual class performance 

of the multiclass logistic regression model on the 

lymphography dataset. 

The following is a visualization of the performance model 

confusion matrix in classifying dermatology data as shown in 

Figure 10 and Table 6 presents the individual class 

performance of the multiclass logistic regression model on the 

ecoli dataset: 

 

 
 

Figure 10. Confusion matrix for ecoli dataset 
 

Table 6. The model performance results for each class 

individually on the ecoli dataset 

 
Class Acc Rec Prec F1-S AUC 

cp  0.980  1.000 0.956  0.977 1.000 

im  0.921  0.826  0.826  0.826 0.974  

imL  0.990  0.000  0.000  0.000 0.920  

imS  0.990  0.000  0.000  0.000 0.800  

imU  0.931  0.600  0.667  0.632 0.970  

om  1.000 1.000 1.000 1.000 1.000 

omL 0.990 1.000 0.500 0.667 1.000 

pp  1.000 1.000 1.000 1.000 1.000 

 

3.4.2 The performance results of the multiclass logistic 

regression model without PCA 

Overall, the results indicate that the Logistic Regression 

model performs well on these medical datasets, achieving high 

accuracy and demonstrating strong discriminative power. The 

model shows good performance in correctly classifying 

instances across various datasets without utilizing 

dimensionality reduction through PCA. Table 7 presents the 

performance results of the multiclass logistic regression model 

without PCA on all medical datasets. 

 

Table 7. The performance results of the multiclass logistic 

regression model without PCA against all medical datasets 

 
Datasets Acc Prec Rec F1-S AUC 

Thyroid 98.46% 98.58% 98.46% 98.42% 99.92% 

Lymphography 86.66% 86.76% 86.66% 86.53% 91.90% 

Dermatology 97.22% 97.36% 97.22% 97.21% 99.93% 

Ecoli 99.09% 88.63% 99.09% 89.27% 98.76% 
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3.4.3 The performance results of the multiclass logistic 

regression model with PCA 

Looking at the results, we can observe that the model 

achieved high performance on most datasets. The thyroid 

dataset shows excellent accuracy, precision, recall, f1-score, 

and AUC, indicating the model's ability to classify instances 

accurately and effectively. Table 8 presents the performance 

results of the multiclass logistic regression model with PCA 

against all medical datasets. 
 

Table 8. The performance results of the multiclass logistic 

regression model with PCA against all medical datasets 
 

Datasets Acc  Prec Rec F1-S AUC 

Thyroid 98.46% 98.58% 98.46% 98.42% 100% 

Lymphography 84.44% 84.63% 84.44% 84.49% 92.75% 

Dermatology 99.07% 99.13% 99.07% 99.07% 99.94% 

Ecoli 99.09% 88.37% 99.09% 89.11% 98.84% 
 

The lymphography dataset has slightly lower performance 

compared to the others, especially in terms of accuracy and f1-

score. This may be due to the dataset's higher degree of class 

imbalance, making it more challenging for the model to 

correctly classify minority classes. On the other hand, the 

dermatology dataset demonstrates exceptional performance 

across all metrics, showcasing the model's strong ability to 

handle imbalanced multiclass data effectively. The ecoli 

dataset also exhibits high performance, with particularly high 

accuracy, recall, and AUC values. However, it shows a 

relatively lower precision and f1-score, indicating some 

challenges in avoiding false positives. 

Overall, the results indicate that the multiclass logistic 

regression model with PCA performs well on these medical 

datasets, achieving high accuracy and demonstrating strong 

discriminative power. However, further optimizations may be 

necessary to address the challenges posed by class imbalance, 

especially on datasets with more pronounced imbalances 

(Figures 11-15). 

 

 
 

Figure 11. Result of accuracy measurement 
 

 
 

Figure 12. Result of precision measurement 

 
 

Figure 13. Result of recall measurement 
 

 
 

Figure 14. Result of f1-score measurement 

 

 
 

Figure 15. Result of AUC measurement 

 

3.4.4 The results of the analysis compare the performance of 

Logistic Regression with and without PCA 

The results show that both models generally perform well 

in classifying instances for all datasets, as indicated by high 

accuracy values. The Logistic Regression model with PCA 

achieved a perfect AUC score of 100% for the thyroid dataset, 

indicating excellent discriminative power in distinguishing 

different classes. For the thyroid, dermatology, and ecoli 

datasets, the Logistic Regression model with PCA achieved 

similar or slightly better performance in terms of accuracy, 

precision, recall, and f1-score compared to the model without 

PCA.  

However, for the lymphography dataset, the Logistic 

Regression model without PCA outperformed the model with 

PCA in all performance metrics, with notably higher accuracy 

and AUC values. The results suggest that PCA can be 

beneficial for some datasets by reducing dimensionality and 

capturing most of the variance in the data, leading to improved 

performance. However, for datasets with less pronounced 

imbalances or complexities, the model without PCA can still 

achieve competitive results. Overall, both models demonstrate 

robust performance, and the choice of whether to use PCA 

depends on the specific dataset and its characteristics. 
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3.4.5 Comparison with related classification models 

Table 9 shows the results of the multiclass logistic 

regression comparison that was developed with several related 

classification model developments from previous studies 

using the same dataset. It should be emphasized that some 

studies carried out a balanced strategy on the proposed method, 

but in this study, we compared it to their method without using 

a balanced strategy. 

The performance of our logistic regression models in 

different datasets showed promising results, surpassing some 

of the best-performing models reported in related studies. In 

the Thyroid dataset, our M-LR and M-LR+PCA models 

achieved an impressive accuracy of 98.46%, outperforming 

the models by Febriantono et al. using C5.0 and C5.0+PSO. 

Similarly, our models outperformed the ANN, CatBoost, and 

XGBoost models proposed by Islam et al. Possible reasons for 

our models' superior performance lie in the effectiveness of 

logistic regression for handling imbalanced multiclass data 

and the feature enhancement provided by PCA. 

In the Lymphography dataset, our M-LR model achieved an 

accuracy of 86.66%, slightly outperforming the best model by 

Pathan et al. using Robust Classifiers. However, our M-

LR+PCA model's accuracy was slightly lower at 84.44%. The 

dataset's characteristics and class distribution may have 

influenced the results. Nonetheless, our logistic regression 

models demonstrated good performance, highlighting their 

robustness for multiclass medical datasets. 

For the Dermatology dataset, our M-LR model achieved an 

accuracy of 97.22%, performing better than the CBF and 

Random Forest models proposed by Prasetiyowati et al. [29] 

Moreover, our M-LR+PCA model achieved the highest 

accuracy of 99.07%. This demonstrates the effectiveness of 

logistic regression for classifying dermatology data, and PCA 

further improved the model's ability to capture relevant 

information, as evident from the higher accuracy achieved 

with M-LR+PCA. 

In the Ecoli dataset, both our logistic regression models (M-

LR and M-LR+PCA) achieved an outstanding accuracy of 

99.09%, significantly outperforming the k-NN model. This 

further emphasizes the suitability of logistic regression for 

handling multiclass imbalanced datasets. The incorporation of 

PCA helped in reducing dimensionality without significant 

information loss, leading to enhanced performance. 

In conclusion, our logistic regression models, especially 

when combined with PCA, demonstrated competitive and 

robust performance compared to other models in related 

studies. The effectiveness of logistic regression for handling 

imbalanced multiclass data and the dimensionality reduction 

provided by PCA contributed to the superior results. However, 

it is important to consider dataset characteristics and class 

distributions as potential factors influencing model 

performance. 

 

Table 9. Comparison between other related classification models 

 
Dataset: thyroid 

Authors Model Acc Prec Rec F1-S 

Febriantono et al. 

[9] 

C5.0 94.42% - - - 

C5.0+PSO 94.42% - - - 

C5.0+PSO 

+META 
95.81% - - - 

Islam et al. [27] 

ANN 95.87% 95.70% 95.90% 95.70% 

CatBoost 95.38% 95.50% 95.38% 95.38% 

XGBoost 95.33% 95.39% 95.33% 95.32% 

Our Works 
M-LR 98.46% 98.58% 98.46% 98.42% 

M-LR+PCA 98.46% 98.58% 98.46% 98.42% 

Dataset: lymphography 

Authors Model Acc Prec Rec F1-S 

Febriantono et al. 

[9] 

C4.5+PSO 

+META 
83.33% - - - 

C5.0+PSO 

+META 
83.33% - - - 

Pathan et al. [28] 
Robust 

Classifiers 
85.00% - - - 

Our Works 
M-LR 86.66% 86.76% 86.66% 86.53% 

M-LR+PCA 84.44% 84.63% 84.44% 84.49% 

Dataset: dermatology 

Authors Model Acc Prec Rec F1-S 

Prasetiyowati et al. 

[29] 

CBF 94.92% 94.93% 94.92% 94.92% 

Random Forest 97.01% 96.90% 96.91% 96.90% 

Our Works 
M-LR 97.22% 97.36% 97.22% 97.21% 

M-LR+PCA 99.07% 99.13% 99.07% 99.07% 

Dataset: ecoli 

Authors Model Acc Prec Rec F1-S 

Nababan et al. [30] k-NN 75.94% 48.04% 42.83% 44.45% 

Our Works 
M-LR 99.09% 88.63% 99.09% 89.27% 

M-LR+PCA 99.09% 88.37% 99.09% 89.11% 

 

 

4. CONCLUSIONS 

 

The amalgamation of logistic regression and PCA 

demonstrated robust performance, standing competitive in 

comparison to other models examined in related studies. The 

efficacy of logistic regression in handling imbalanced 

multiclass data and the role of PCA in dimensionality 

reduction served as pivotal factors propelling the models' 
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superior performance. However, the characteristics of the 

datasets and class distributions were noted to influence the 

models' outcomes. Collectively, the results accentuate the 

potential of logistic regression and PCA to perform accurate 

classification and prediction of diseases in healthcare 

applications. 

In this investigation, the devised models consistently 

surpassed some of the best-performing models documented in 

related studies across various datasets. This was evidenced by 

achieving high scores in accuracy, precision, recall, and f1-

score, reinforcing their robustness in precise classification of 

medical data. This positions them as invaluable tools for 

disease prediction and decision-making within the healthcare 

domain. 

The objectives of addressing the issue of imbalanced 

multiclass medical data and enhancing logistic regression via 

PCA were successfully fulfilled. The integration of PCA with 

logistic regression effectively managed imbalanced data while 

preserving crucial information through dimensionality 

reduction. 

Through our experiments and analysis, two salient 

observations were discerned. Firstly, logistic regression 

emerged as a formidable candidate for imbalanced multiclass 

medical datasets, delivering reliable and accurate 

classification. Secondly, PCA was instrumental in elevating 

the model's performance by selecting pertinent and 

uncorrelated features, thereby improving accuracy and 

interpretability. These findings bear considerable implications 

for the medical sector, as accurate disease prediction and 

classification can contribute to enhanced patient outcomes and 

more astute clinical decision-making. 

Certain assumptions were made during the study to 

facilitate the analysis. Firstly, the selected medical datasets 

were presupposed to mirror real-world scenarios apt for 

evaluating the logistic regression model integrated with PCA. 

Secondly, effective preprocessing steps, including the 

handling of missing values and outliers, were undertaken 

under the assumption of not significantly impacting the 

model's performance. Despite the encouraging results, certain 

limitations persist. The performance of the logistic regression 

model combined with PCA heavily relies on the selected 

number of principal components, which might necessitate 

adjustments for optimal performance with different datasets. 

Furthermore, the scalability to larger datasets and the model's 

behavior under varying practical scenarios call for additional 

exploration. 

This study paves the way for future research. The 

exploration of different feature selection techniques in 

conjunction with logistic regression could further enhance 

model performance. Investigating alternative machine 

learning algorithms, such as ensemble methods and deep 

learning models, may potentially improve classification 

accuracy and address class imbalance. Conducting 

experiments on larger and more diverse medical datasets can 

validate the generalizability of the proposed approach. The 

incorporation of advanced medical features and domain-

specific knowledge can augment disease prediction models. 

An extension of the proposed model to handle time-series 

medical data would enable the prediction and monitoring of 

medical conditions over time. 
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