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This work presents a numerical method based on the Genocchi polynomials to solve 

linear Fredholm Integro-Differential Equations (LFIDEs). The process of the method is 

to transform the (LFIDE) into a matrix equation. This is done by approximating the 

unknown function, its derivatives, and integral kernel using Genocchi polynomials. 

After using the equidistant collocation points we solve the corresponding linear system 

with unknown Genocchi coefficients. To prove the accuracy and efficiency of the 

current method we mentioned some numerical examples. Comparing the obtained 

results with the exact solutions and some existing methods, it turns out that the current 

method gives a better approximation. 
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1. INTRODUCTION

One of the most important branches of modern mathematics 

is Integro-Differential Equations (IDEs). It arises naturally in 

many areas including engineering and science, such as in 

financial mathematics and control theory [1]. It is also found 

in describing physical phenomena like wind ripple in the 

desert, the glass-forming process, fluid mechanics, and the 

theory of elasticity physics [2]. 

These equations have an essential role in formulating 

optimal control problems, fluid dynamics, electrostatics, 

boundary value problems of gravitation [3-6]. 

IDEs appear in different forms, the most founded are 

equations in which the derivative of the unknown function is 

just outside the integral symbol. 

Recently, researchers have increased interest in finding 

numerical methods to solve this type of equations, because 

finding analytical solutions is often difficult. Some of these 

methods can be mentioned like B-spline method [7], the 

Adomian decomposition method [8], CAS wavelet [9], 

modified Adomian decomposition method [10], Homotopy 

perturbation method [11], Hermite wavelet method [12], 

Modified variational iteration method [13], Haar wavelet 

bases [14], exponential spline method [15], Schauder bases 

[16], differential transformation [17], Bernoulli matrix method 

[18], Bessel collocation method [19], Legendre Galerkin 

method [20], Taylor collocation method [21], shifted 

Chebyshev polynomials [22], Euler matrix method [23].  

It is known that Genocchi polynomials can be used in series 

expansions to approximate functions, offering advantages of 

fewer terms and smaller coefficients, which lead to efficient 

and stable numerical computations. 

This research provides an approximate solution for high-

order LFIDEs using an operational matrix based on Genocchi 

polynomials. 

We consider the LFIDE of order m in its general form: 
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Under the given initial-boundary conditions: 
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for all p=0, 1, ..., m-1, where, x(t) is an unknown function; 

Rk(t), g(t) are functions defined on [a, b] and the kernel 

function k(t, z) is defined and continuous on [a, b]×[a, b]; αpk, 

βpk and μp are appropriate constants. 

Then, we express the approximate solution xN of the 

problem (1) in the form of Genocchi polynomials: 𝑥(𝑡) ≅
𝑥𝑁(𝑡) = ∑ 𝑎𝑛𝐻𝑛(𝑡)𝑁

𝑛=1 ,  (0 ≤ 𝑡 ≤ 1), an, (n=1, 2, ..., N), are

the coefficients to be determined, whereas Hn(t)  represent 

Genocchi polynomials. 

2. GENOCCHI POLYNOMIALS AND FUNCTIONS

APPROXIMATION

In this section, we present the definition of Genocchi 

polynomials along with some of their key properties, as well 

as Genocchi approximation formulas for functions of one and 

two variables. 
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Definition 

The Genocchi polynomials Hn(t) are defined by references 

[24, 25]: 
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where, 𝐻𝑛(𝑡) = ∑ (𝑘−1
𝑛 )𝐻𝑛−𝑘+1𝑡𝑘−1𝑛

𝑘=1 , 𝑛 = 1,2, . . . , 𝑁,  and 

Hn represents Genocchi numbers, which are computed by the 

Bernoulli numbers according to the following relationship: 
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n nH B= −  

 

Here are the first four Genocchi polynomials: 
 

0( ) 0H t = ; 
1( ) 1H t = ; 

2( ) 2 1H t t= − ; 2

3( ) 3 3H t t t= −  

 

At t=0, the Genocchi polynomials yield the Genocchi 

numbers: Hn=Hn(0). 

These polynomials have some important properties such as: 
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The following theorem presents the approximation formula 

for a function of one variable S stands for the set Span{H1(x), 

H2(x), ..., HN(x)}. 
 

Theorem [26] 

Let 𝑥 ∈ 𝐿2[0,1] an arbitrary function then x has a unique 

best approximation xN in the finite dimensional vector space S 

by Genocchi polynomials: 
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The Genocchi coefficients an given in Eq. (3) can be 

computed by applying the formula below: 
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Proof. See the study conducted by Hashemizadeh et al. [26]. 

For two variables, we mention the following theorem. 
 

Theorem [27] 

The approximation of a continuous function k(t, z) in terms 

of Genocchi polynomials is defined by: 
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the matrix 𝐾𝐻 = [𝑘𝑝𝑞]
𝑁×𝑁

,  where 𝑘𝑝𝑞 =
1

4(𝑝!𝑞!)
(𝐾(𝑝−1,𝑞−1)(0,0) + 𝐾(𝑝−1,𝑞−1)(0,1) +

𝐾(𝑝−1,𝑞−1)(1,0) + 𝐾(𝑝−1,𝑞−1)(1,1)). 
For all i, j=1, 2, …, N. 

Proof. See the study conducted by Loh and Phang [27].  

3. SOLUTION STEPS 

 

To find the approximate solution to Eq. (1) using Eq. (3), 

we follow these steps: 

Step 1: We write the matrix forms of the truncated 

Genocchi series as well as its derivatives: 
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and 
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where, 𝑇(𝑡) = [1, 𝑡, 𝑡2, . . . , 𝑡𝑁−1];  𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑁]𝑇,  
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From the above, we get the matrix relation for the first side 

of Eq. (1): 
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Step 2: To obtain the matrix relation of the integral part in 
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the problem (1) we use the formula (5) and (6). Thus: 
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where,  
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𝐻𝑝𝑞 =
2(−1)𝑝𝑝! 𝑞!

(𝑝 + 𝑞)!
𝐻𝑝+𝑞 . 

 

Therefore, the second side of Eq. (1) is: 
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Next, we substitute (8) and (10) into Eq. (1): 
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Step 3: We write the matrix corresponding to conditions (2), 

which we obtain by Eq. (7) as: 
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Step 4: We define the collocation equidistant points 𝑡𝑖 =
1
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𝑖, 𝑖 = 0,1, . . . , 𝑁 − 1. 

Then, we substitute these points in (11). So, we obtain: 
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The above matrix relation can be expressed as 𝛹𝐴 = 𝐺 or 

[𝛹; 𝐺] , where, 𝛹 = [𝜓𝑝𝑞] = ∑ 𝑅𝑘 𝑇⏜ 𝐷𝑘𝐹 −𝑚
𝑘=0

𝜆 𝑇⏜ 𝐹𝐾𝐻𝐻,  𝑝, 𝑞 = 0,1, . . . , 𝑁 − 1. 
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(14) 

Besides, the form of the matrix (12) for the conditions (2) 

becomes: 
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where, 𝐶𝑝 = ∑ (𝛼𝑝𝑘𝑇(𝑎) + 𝛽𝑝𝑘𝑇(𝑏))𝐷𝑘𝐹, 𝑝 = 0,1, . . . , 𝑚 − 1.𝑚−1
𝑘=0  

For m initial conditions, the augmented matrix becomes: 
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(16) 

 

Finally, if 𝑟𝑎𝑛𝑘 𝛹⏜ = 𝑟𝑎𝑛𝑘[𝛹⏜ ; 𝐺⏜] = 𝑁, we get the unique 

solution of (1) by Genocchi series solution (3). 

 

 

4. ERROR ANALYSIS 

 

The following theorem provides the error estimate for the 

function approximation used to solve problem (1). 

 

Theorem [28] 

Consider 𝑥 ∈ 𝐿2[0,1]  an arbitrary function with 

|𝑥(𝑛−1)(𝑡)| ≤ 𝜌 (ρ is finite), if xN(t) is an approximation of x(t) 

by truncated Genocchi series. 𝑥𝑁(𝑡) = ∑ 𝑎𝑛𝐻𝑛(𝑡)𝑁
𝑛=1  then the 
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Proof. The study conducted by Loh et al. [28]. 
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Using the formula (4) we have: 
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Therefore, 
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If the exact solution is unknown. The error estimation is 

given by the following theorem. 

 

Theorem [28] 

 

Let x(t) be the unknown solution and xN(t), xN+1(t) be the 

approximate solutions of x(t). The error estimation given by 

𝑒𝑁 = ‖𝑥𝑁(𝑡) − 𝑥𝑁+1(𝑡)‖2 is convergent. 

 

Proof. 
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eN is convergent because EN+1 and EN are also convergent. 

 

 

5. NUMERICAL EXAMPLES 

 

The aim of this section is to prove the efficiency and 

effectiveness of the method used in this research for solving 

the higher-order LFIDE through six different examples, using 

MATLAB program. The results obtained are shown in the 

tables and figures below. 
 

Example 1. [29] 

Consider the following equation: 
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where, k(t, z)=tz, 3 2 23
( ) 2 2 1,

6
g t t t t= − − + + 2 =  and 

R0(t)=-2t, R1(t)=1. 

The approximate solution x(t) of this equation by the 

Genocchi polynomials is: 
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 
 
  

1
1 0

2

1
0 0 ,

3

1 3
0

2 10

H

 
− 

 
 =
 
 
 −
  

1 0 0

1 1
1 ,

2 4

1 1 1

T

 
 
 =
 
 
 

 

 

Altogether, we find that: 

 

0 2 3 ; 1

3 11 13
[ ; ] 1 ;

2 6 6

1 7 5
3 ;

3 2 6

G

 
 −
 
  = −
 
 
 − −
   

 

The matrix representation of the initial condition for N=3 is 

[C0; μ0]=[1 -1 0]. 

We get the new augmented matrix related to the condition: 

 

0 2 3 ; 1

3 11 13
; 1 ;

2 6 6

1 1 0 ; 1

G

− 
 

    = −
   

 − −   
 

After solving the above linear system, we obtain the 

unknown Genocchi coefficients 𝐴 = [0 1 
1

3
]

𝑇

. 

Hence, the numerical solution for the first example is 

expressed as:  

 
3

2

3 1 1 2 2 3 3

1

( ) ( ) ( ) ( ) ( ) 1.n n

n

x t a H t a H t a H t a H t t t
=

= = + + = + −  

 

We note that the current method gave us the exact solution. 

 

Example 2. [11-13, 16] 

Consider the first linear LFIDE 

 
1

0

( ) ( ) , (0) 0

( )

t t

t

x t tx z dz te e t x

x t te


 − = + − =




=



 

2476



 

Table 1 and Figure 1 display the Exact Solution (Ex.S) and 

the Approximate Solutions (App.S) obtained by the current 

method for Example 2, with N=8 and N=10. These results are 

compared with some existing methods [11-13, 16] in Table 2. 

Figure 2 presents the Absolute Errors (Ab.E) obtained by the 

current method for Example 2 (when 4≤N≤10). These results 

show that the errors decrease when N increases. 

 

Table 1. Solutions of Example 2 

 
t Ex.S App.S (N=8) App.S (N=10) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.11051709180 

0.24428055163 

0.40495764227 

0.59672987905 

0.82436063535 

1.09327128023 

1.40962689522 

1.78043274279 

2.21364280004 

0.11051707001 

0.24428052896 

0.40495762191 

0.59672985385 

0.82436060931 

1.09327125290 

1.40962685865 

1.78043271555 

2.21364275749 

0.11051709175 

0.24428055158 

0.40495764222 

0.59672987901 

0.82436063531 

1.09327128019 

1.40962689519 

1.78043274275 

2.21364280003 

 
Table 2. Absolute errors corresponding to Example 2 for N=10 compared with existing methods 

 

t HP.M [11] S-B.M [16] MVI.M ]13 [ Her-W.M [12] 
Ab.E 

(N=10) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.231e–05 

0.925e–05 

0.208e–04 

0.370e–05 

0.578e–04 

0.833e–04 

0.113e–03 

0.148e–03 

0.187e–03 

1.017e–07 

4.827e–07 

1.017e–07 

1.619e–06 

2.308e–06 

3.093e–06 

3.978e–06 

4.995e–06 

6.135e–06 

3.000e–09 

1.000e–09 

2.800e–09 

7.300e–09 

9.100e–09 

1.000e–08 

1.060e–07 

1.700e–07 

1.590e–07 

4.938e–10 

4.192e–10 

4.552e–10 

4.658e–10 

4.905e–10 

5.205e–10 

5.494e–10 

5.971e–10 

6.216e–10 

5.714e–11 

4.858e–11 

4.662e–11 

4.186e–11 

3.821e–11 

3.530e–11 

3.302e–11 

3.830e–11 

7.990e–12 

 
 

Figure 1. Solutions and absolute errors corresponding to 

Example 2 

 
 

Figure 2. The absolute errors of Example 2 for 4≤N≤10 

 

Table 3. The absolute errors of the current method for Example 3 

 
t Ab.E (N=10) Ab.E (N=12) Ab.E (N=14) 

0.125 

0.250 

0.375 

0.500 

0.625 

0.750 

0.825 

8.350e – 05 

1.545e – 04 

2.019e – 04 

2.192e – 04 

2.053e – 04 

1.649e – 04 

1.061e – 04 

9.890e – 07 

1.831e – 06 

2.392e – 06 

2.597e – 06 

2.432e – 06 

1.954e – 06 

1.266e – 06 

2.085e – 07 

1.528e – 07 

7.390e – 08 

1.630e – 08 

1.042e – 07 

1.768e – 07 

2.232e – 07 
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Example 3. [15] 

Consider the following LFIDE: 

 
1

2

0

2 1
( ) ( ) ( ) ( ) ( ) cos( )

(0) (1) 0;  ( ) sin( )

t
x t t x t x t t z x z dz t t

x x x t t

  




 +
 + + − + = −




= = =



 
 

Figure 3 displays the Exact Solution (Ex.S) and the 

Approximate Solutions (App.S) obtained by the current 

method for Example 3, with N=10. Table 3 and Figure 4 

present the Absolute Errors (Ab.E) obtained by the current 

method for Example 3. These results show that the errors 

diminish as N increases. 

Table 4 provides a comparison of the Ab.E achieved by the 

current method (for N=14) with those obtained using the 

exponential spline method [15]. 

 

Table 4. Comparison between current method and ES.M for Example 3 
 

t Ab.E (N=14) ES.M ]15 [ 

0.125 

0.250 

0.375 

0.500 

0.625 

0.750 

0.825 

2.09e – 07 

1.53e – 07 

7.39e – 08 

1.63e – 08 

1.04e – 07 

1.77e – 07 

2.23e – 07 

1.41e – 06 

2.53e – 06 

3.31e – 06 

3.68e – 06 

3.59e – 06 

2.99e – 06 

1.81e – 06 

 

 
 

Figure 3. Solutions and absolute errors corresponding to 

Example 3

 
 

Figure 4. The absolute errors of Example 3

 

Example 4. 

Consider the following example: 

 
1

0

1
( ) ( ) 1 , (0) 0

3

( )

x t tzx z dz t x

x t t


 − = − =




=



 

Table 5 represents a comparison of the Absolute Errors 

(Ab.E) obtained by the current method with existing 

methods [9, 14, 16, 17] corresponding to Example 4. It is 

observed that the results obtained using Genocchi 

polynomials are more accurate than [9, 14, 16, 17]. Solutions 

and Absolute Errors for N=6 are shown in Figure 5. 

 

Table 5. Absolute errors of the current method and [9, 14, 16, 17] for Example 4 

 

t 
DT.M 

[17] 

CAS-W.M 

[9] 

S-B.M  

[16] 

Haar-W.M  

[14] 

Current.M 

(N=2) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.60e–03 

6.09e–03 

1.32e–02 

2.29e–02 

3.51e–02 

6.69e–02 

7.12e–02 

8.63e–02 

1.08e–01 

2.17e–04 

6.32e–04 

7.91e–04 

2.15e–02 

4.99e–02 

2.21e–02 

1.05e–04 

1.43e–03 

2.07e–02 

3.79e–06 

1.51e–05 

3.41e–05 

6.06e–05 

9.47e–05 

1.36e–05 

1.85e–05 

2.42e–04 

3.06e–04 

1.60e–06 

2.36e–06 

2.26e–06 

1.31e–06 

4.85e–07 

9.28e–07 

1.48e–06 

1.91e–06 

5.40e–05 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Figure 5. Solutions and absolute errors corresponding to 

Example 4 

 

 
 

Figure 6. Solutions and absolute errors corresponding to 

Example 5 

 

Table 6. Solutions of Example 5 

 
t Ex.S App.S (N=6) App.S (N=8) App.S (N=10) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.000000000000 

0.904837418035 

0.818730753077 

0.740818220681 

0.670320046035 

0.606530659712 

0.548811636094 

0.496585303791 

0.449328964117 

0.406569659740 

0.367879441171 

1.000000000000 

0.904836651302 

0.818729435860 

0.740816851984 

0.670318599040 

0.606528829431 

0.548809400569 

0.496583126859 

0.449327031668 

0.406565599311 

0.367864027021 

0.999999999999 

0.904837416431 

0.818730751057 

0.740818218442 

0.670320043229 

0.606530656568 

0.548811632614 

0.496585299618 

0.449328960136 

0.406569654869 

0.367879404664 

1.000000000035 

0.904837418064 

0.818730753098 

0.740818220691 

0.670320046033 

0.606530659698 

0.548811636069 

0.496585303757 

0.449328964077 

0.406569659699 

0.367879441080 

 

Table 7. Absolute errors of current method for Example 5 

 
t Ab.E (N=6) Ab.E (N=8) Ab.E (N=10) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

3.33e – 17 

7.76e – 07 

1.32e – 06 

1.37e – 06 

1.45e – 06 

1.83e – 06 

2.24e – 06 

2.18e – 06 

1.93e – 06 

4.06e – 06 

1.54e – 05 

4.97e – 14 

1.60e – 09 

2.02e – 09 

2.23e – 09 

2.80e – 09 

3.14e – 09 

3.47e – 09 

4.17e – 09 

3.98e – 09 

4.87e – 09 

3.65e – 08 

3.52e – 11 

2.84e – 11 

2.03e – 11 

9.71e – 12 

2.03e – 12 

1.39e – 11 

2.48e – 11 

3.36e – 11 

3.98e – 11 

4.13e – 11 

9.05e – 11 

Example 5. 

Consider the following LFIDE: 

 
1

0

( ) ( ) ( ) 1,    (0) 1

( )

t

t

x t x t x z dz e x

x t e

−

−


 + − = − =




=



 
 

Table 6 and Figure 6 show the Exact Solution and the 

numerical results obtained by current method for Example 5. 

The results related to the Absolute Errors are listed in Table 7, 

these results show that errors decrease when N increases. 

Example 6. 

Consider the following example: 

 

( )( )
( )

1

(4)

4

0

1 6
( ) ( ) ( ) 1 2ln 2

4 1

( ) ln( 1)

x t t z x z dz t
t

x t t


− − = + − −

+


= +



 
 

Under the conditions: 

 
(3)(0) 0, '(0) 1, ''(0) 1, (0) 2x x x x= = =− =
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Table 8. Results for Example 6 

 
t Ex.S App.S (N=10) Ab.E (N=10) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.09531017980 

0.18232155679 

0.26236426447 

0.33647223662 

0.40546510810 

0.47000362925 

0.53062825106 

0.58778666490 

0.64185388617 

0.09531017401 

0.18232146464 

0.26236388224 

0.33647124574 

0.40546307014 

0.46999998874 

0.53062238591 

0.58777984812 

0.64186210865 

5.79600758e-09 

9.21490075e-08 

3.82226043e-07 

9.90881794e-07 

2.03797158e-06 

3.64050549e-06 

5.86515076e-06 

6.81678700e-06 

8.22247401e-06 

 

Table 9. Results for Example 6 

 
t Power.S (N=10) Chebychev.S (N=10) Current.M (N=8) 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.1000e-07 

1.3650e-06 

2.2653e-05 

2.3341e-05 

2.7115e-05 

2.8371e-05 

3.2837e-05 

1.7805e-04 

1.6954e-04 

3.8052e-04 

3.6884e-04 

3.4487e-04 

3.4228e-04 

4.2488e-03 

2.4947e-03 

2.1345e-03 

1.5534e-03 

1.4867e-03 

5.9395e-08 

1.1358e-06 

5.1853e-06 

1.3760e-05 

2.8711e-05 

5.1232e-05 

6.8496e-05 

1.3236e-05 

3.2054e-04 

Table 8 and Figure 7 display the Exact Solution (Ex.S), the 

Approximate Solution (App.S) and Absolute Errors (Ab.E) 

obtained by the current method for Example 6, with N=10. 

Table 9 represents a comparison of the Absolute Errors 

(Ab.E) obtained by the current method (for N=8) with those 

from the Power and Chebychev Series [30] corresponding to 

Example 6. It is observed that the results obtained using 

Genocchi polynomials are more accurate than the study 

conducted by Gegele et al. [30]. 

 

 
 

Figure 7. Solutions and absolute errors corresponding to 

Example 6 

 

 

6. RESULTS AND DISCUSSION 

 

Obtained results in Section 5 demonstrate the accuracy, 

efficiency and speed of the current method. 

In the first example, due to the advantages of the Genocchi 

polynomials, such as smaller coefficients and lesser terms, we 

achieved an Approximate Solution for N=2. In contrast, 

Boole's polynomials [29] provided the same result but for N=3. 

The results obtained in Examples 2, 3, 4, 5 and 6, presented 

in the tables and figures above, show the efficiency of current 

method, with Absolute Error decreasing as N increases. 

Moreover, comparing the numerical results obtained by 

Genocchi polynomials with some existing methods 

demonstrate that the proposed method achieves better 

accuracy. 

 

 

7. CONCLUSIONS 

 

In this study, we have used a new collocation method based 

on Genocchi truncated series to solve high-order LFIDEs. The 

examples and results presented in section 5 have proved the 

efficiency and effectiveness of the current method, 

showcasing its superiority over existing methods [9, 11-17, 29, 

30] 

Moreover, the present method is easy to use and quick to 

apply using MATLAB tool. This is due to the advantages of 

Genocchi polynomials, which include fewer terms and smaller 

coefficients compared to other polynomials. In future research, 

we aim to expand the application of our method to other types 

of IDEs. 
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