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The suspension system design has been one of the most challenging tasks for engineers 

due to the importance of its role in reducing the road vibrations transmitted to the vehicle, 

which have a harmful effect on the human body. This research aims to use and compare 

different optimization techniques used to design the passive suspension parameters, 

including the spring stiffness (Ks), damping coefficient (Cs), and tire stiffness (Kt), to 

minimize body accelerations and subsequently enhance ride comfort for vehicles. The 

quarter car is modelled as a two-degrees-of-freedom system by using MATLAB/Simulink. 

Different optimization techniques were introduced and used, such as Taguchi, Genetic 

Algorithms (GA), and Simulated Annealing (SA), to design the passive suspension 

parameters. The results showed that the optimal design parameters for suspension systems 

were obtained using GA and SA methods, which reduced the value of the root mean square 

of vertical vibration by approximately 44% and the peak of acceleration by approximately 

60% compared to the original values. The Taguchi approach reduces the value of the root 

mean square by approximately 32% and the peak of the acceleration by approximately 28% 

compared to the original values.  
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1. INTRODUCTION

Vehicle suspension systems have the most important among 

other vehicle system. The suspension systems are significant 

for passengers due to improve the ride comfort and increase 

the safety issue. The main function of suspension systems is 

absorbing and dissipating the energy of bumps on the road, 

thus reducing vibrations and shocks transmitted to the car [1]. 

Tire stiffness, damping coefficient and spring stiffness are 

three major components of any suspension system. The 

stiffness of a spring governs the amount of compression or 

expansion that occurs when a given force is applied. This 

represents the spring's resistance to deformation. The damping 

coefficient measures how well the shock absorber is able to 

dissipate the energy generated during suspension movements. 

Tire stiffness, damping coefficient and spring stiffness are 

three major components of any suspension system. The 

stiffness of a spring governs the amount of compression or 

expansion that occurs when a given force is applied. This 

represents the spring's resistance to deformation. The damping 

coefficient measures how well the shock absorber is able to 

dissipate the energy generated during suspension movements. 

It controls how soon the suspension recovers to its 

equilibrium position following displacement. The tire stiffness 

reflects the tire's resistance to distortion under load. This 

impacts the capacity of the tire to transfer forces between the 

vehicle and the road surface. Vibrations, in particular, are a 

major concern regarding ride comfort. Vibrations are 

produced by the interaction of the vehicle and the road surface, 

which can be conveyed to the passengers. These vibrations can 

be caused by a variety of factors, such as road roughness, tire-

road contact, and vehicle dynamics. Passive suspension 

systems assist in decreasing vibration transmission to 

passengers by properly regulating and attenuating vibrations. 

This reduces the potential for discomfort; improves road 

holding, stability, and handling; and improves overall vehicle 

safety [2-6]. 

Traditional design approaches focus on meeting 

performance requirements without optimizing solutions, while 

optimization techniques offer a systematic framework for 

efficient and cost-effective performance optimization. 

Optimization methods are the process of determining the 

optimum or most effective values for maximizing or 

minimizing the goal function. Since the creation of computers, 

optimization methods have been prominent in the design of 

suspension systems because they provide the optimum 

solution in the shortest amount of time, especially when 

dealing with complex issues. Many techniques have been 

developed and used to address a variety of engineering 

challenges in the field of optimization [7, 8]. 
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Commonly employed optimization methods and algorithms 

include gray system theory [9], artificial neural networks [10], 

Particle swarm optimization [11], genetic algorithms [12, 13], 

simulated annealing algorithms [14], and the Taguchi 

methodology [15]. 

Each method offers unique features and strategies for 

exploring and optimizing the solution space. For example, the 

GA's population-based method, which includes creating 

different solutions and iteratively refining them via selection, 

crossover, and mutation, facilitates efficient investigation and 

utilization of the solution space [16]. SA is a probabilistic 

optimization technique that draws analogies from the 

annealing process in metallurgy, which employs a temperature 

parameter that controls the search behavior, allowing for a 

balance between observation and exploitation. SA is 

characterized by its ability to escape local optima by allowing 

for occasional uphill moves, which helps in exploring the 

solution space more comprehensively. This property makes 

SA suitable for addressing suspension optimization problems 

that may have multiple local optima [17, 18]. The Taguchi 

method utilizes an orthogonal table to select specific 

experimental parameters. A small number of experimental 

combinations were used to evaluate how these parameters 

affect the products. The aim is to identify the most favourable 

combination of parameters that yields stable test results and 

minimal fluctuations, regardless of controllable and 

uncontrollable factors. This method assures that the goods' 

functioning and performance remain unaffected by any 

deviations, increasing their stability and resilience to external 

influence [19, 20]. 

As a result, many researchers are examining suspension 

systems to determine the optimal suspension settings among 

competing needs. Studies [21, 22] used a genetic algorithm to 

determine the appropriate automobile suspension settings to 

reduce car suspension deflection and driver body acceleration, 

resulting in maximum driver comfort. A neighborhood genetic 

algorithm was used to evaluate the kinematic features of a 

MacPherson strut suspension system in a pickup truck and 

select the best configuration [23]. 

Studies [24, 25] applied a multi-objective genetic algorithm 

optimization approach to improve ride comfort and road 

retention in suspension vehicle systems, including driver seats. 

In another application approach, the simulated annealing 

technique (SA) was applied to optimize parameters for passive 

suspension systems to enhance vehicle characteristics by 

improving ride comfort [26, 27]. Shinde et al. [28] optimized 

the half-car suspension system using a variety of optimization 

approaches, including hybrid genetic annealing, simulated 

annealing, and genetic algorithms, intending to provide ride 

comfort by minimizing passive suspension system 

accelerations. 

Furthermore, another optimization implementation was 

used through the Taguchi method. The Taguchi technique was 

used to study the factors influencing the vibration of the 

suspension system in a quarter car model. The smallest vertical 

displacement of the seat driver and the shortest settling time 

were determined by the Taguchi technique [29]. It has also 

been used to determine the best settings that improve ride 

comfort and reduce vibration, while being able to determine 

how the damping characteristics and stiffness of the front and 

rear suspension affect the vibration behavior of the suspension 

[30-32]. Suspension performance and ride comfort have been 

optimized using various optimization techniques including 

genetic algorithms (GAs), simulated annealing (SA) and the 

Taguchi method. However, whether these techniques are 

applicable or effective in improving passive suspension 

systems has not been systematically evaluated. This research 

ensures the need to fill this knowledge gap and provides useful 

insights into the use of optimization approaches for passive 

suspension systems. 

The main objective of this study to provide useful 

information on the use of optimization techniques such as 

genetic algorithm, simulated annealing and Taguchi method 

for two degrees of freedom method for passive suspension 

systems. It attempts to identify optimal suspension parameters 

that can address issues such as insufficient damping 

capabilities, erroneous values of suspension stiffness, and 

limited adaptability in response to changing road inputs. 

Overall, this research tries to be part of the progress towards 

improved design and optimization methods for suspension, 

ultimately leading to enhanced comfort and performance in 

passive suspension system. 

 

 

2. SYSTEM MODEL 
 

The quarter-car model possesses the distinct advantage of 

being exceptionally clear and straightforward. Consequently, 

this simplified model is widely employed in the analysis of 

vehicle suspension systems due to its uncomplicated nature. 

This simplified representation includes essential parts such as 

the tire, spring, damper, and masses. The model exclusively 

considers the vertical oscillations of the car body, yet it can 

still capture the principal characteristics of the comprehensive 

full-scale model. This ability to provide useful insights while 

maintaining a streamlined approach makes the quarter-car 

model particularly valuable during the preliminary stages of 

suspension design [33-35]. 

Figure 1 shows all the elements of the system model 

employed in this study, including the vehicle weight (sprung 

mass, Ms), tire and axle weight (unsprung mass, Mus), spring 

suspension stiffness (ks), chock absorption coefficient (Cs), 

and tire stiffness (Kt). zo, zs, and zus are the input road effect on 

the tire, the vehicle body mass, and the axle mass, respectively.  

𝑧̈𝑠 and 𝑧̈𝑢𝑠  represent the acceleration of each mass in the 

vertical direction. 𝑧̇𝑠  and 𝑧̇𝑢𝑠  represent the velocity of each 

mass in the vertical direction [36, 37].  

In the equilibrium state of the system, the equation of 

motion (EOM) for every mass is derived. The equation is 

developed using the free body diagram for sprung and 

unsprung masses, as shown in Figure 2. To simplify the 

calculations, the system is assumed to be linear, where zo is 

greater than zus and zus is greater than zs. Kt and Ct are the 

stiffness constants of the tire, and Ks and Cs are the stiffness 

and damping constants of the shock absorber, respectively. Eq. 

(1) and Eq. (2) can be used to express the EOM for both the 

sprung and unsprung masses, according to the free body model 

in Figure 2. 

 

Msz̈s = Ks(zus − zs) + Cs(żus − żs) (1) 

 

Musz̈us = Kt(zo − zus) − Ks(zus − zs) − Cs(żus

− żs) 
(2) 

 

MATLAB/Simulink is a widely used platform for 

modelling and simulation of dynamic systems. Therefore, the 

quarter-car model was developed using MATLAB/Simulink, 

which consists of a simplified passive suspension system, as 
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shown in Figure 1. There are several key assumptions that 

allow for a simplified representation of the suspension 

dynamics, which can be useful for preliminary design and 

analysis.

 

 
 

Figure 1. Passive quarter-car model 

 

 
 

Figure 2. Free body diagram for sprung and unsprung 

masses 

 
 

Figure 3. Quarter-car model MATLAB/Simulink 
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The model exclusively focused on the vertical motions of 

the car body and wheel, disregarding other degrees of freedom 

such as pitch, roll, and lateral movement. The tire-road 

interaction was represented as a linear spring, resulting in 

negligible deformations and the absence of slip. Furthermore, 

the sprung and unsprung masses were treated as rigid bodies, 

with any structural flexibility dismissed entirely. 

Additionally, the damping was assumed to exhibit a linear, 

velocity-dependent characteristic, precluding the 

consideration of any nonlinear effects. Figure 3 shows the 

quarter-car model that was created using MATLAB Simulink 

for simulation with the use of all the control settings that were 

given. 

 

 

3. SELECTION OF CONTROL PARAMETERS AND 

THEIR LEVELS 
 

Based on a detailed literature survey, the damping 

coefficient, spring stiffness, and tire stiffness are important, 

and their design has effects on quarter car suspension 

acceleration due to their direct influence on the system's 

dynamic behavior. Therefore, it greatly affects both ride 

comfort and road handling. The ranges of the three control 

parameters in addition to the original data are selected based 

on the previous literature [2, 31, 36, 38-40]. 

Table 1 lists the upper and lower limits for the three control 

parameters utilized in this work, as well as the original data. 

Additionally, the control parameters and their levels, which 

were determined by the Taguchi method for the analysis and 

optimization of the quarter-car suspension model, are shown 

in Table 2. 

 

Table 1. Design parameter ranges 

 

Design Parameters Original 
Lower 

Bound 

Upper 

Bound 

Damping coefficient 

(C) (Ns/m) 
1000 900 4000 

Spring stiffness (Ks) 

(N/m) 
16812 12000 30000 

Tyre stiffness (Kt) 

(N/m) 
190000 120000 200000 

Sprung mass (M) = 250 kg 

Unsprung mass (m) = 50 kg 

 

Table 2. Taguchi method design parameters and their 

levels 

 
Design Parameters Level 1 Level 2 Level 3 

Damping coefficient 

(C) (Ns/m) 
900 2450 4000 

Spring stiffness (Ks) 

(N/m) 
12000 21000 30000 

Tyre stiffness (Kt) 

(N/m) 
120000 160000 200000 

 

 

4. OPTIMIZATION TECHNIQUES 

 

4.1 Taguchi technique 

 

The Taguchi method is a powerful set of statistical 

techniques developed by Genichi Taguchi to improve the 

quality of manufactured products. The present three 

optimization approaches have been used extensively in 

engineering to achieve optimal product and process 

performance by minimizing the influence of noise factors and 

amplifying the effects of signal factors. In this study, 

suspension systems were used as examples for demonstration 

purposes on how important an orthogonal Taguchi array (OA) 

is when analyzing system design parameters. In essence, the 

Taguchi parameter design technique can make the best 

adjustments with respect to performance features and 

minimize system sensitivity. The powerful Taguchi design 

methodology is based on signal-to-noise ratio (S/N) and 

orthogonal matrices, which allow simultaneous evaluation of 

multiple factors as well as minimal variations due to random 

noise beyond one's control. The principle behind the Taguchi 

method is that improving the overall product quality and 

durability is what matters most to any engineer; therefore, it 

has remained an extremely valuable tool in the engineering 

field [41-43]. 

The goal of this paper is to make the car ride smoother by 

reducing road vibrations. This session focusing on choosing 

options that has a lower S/N ratio. The mathematical equation 

for the S/N ratios for the “lower - is - better” strategy is written 

in Eq. (3).  

 

η = −10 log [
1

n
∑

1

Yi
2

n

i=0
] (3) 

 

where, η is the resultant S/N ratio and n is the total number of 

data points. In addition, the analysis of variance (ANOVA) is 

considered to evaluate the effectiveness of each factor and its 

interactions [44, 45]. 

 

4.2 Simulated annealing technique 

 

Metropolis et al. [46] and Kirkpatrick et al. [47] introduced 

the basic concept behind simulated annealing (SA). Using the 

SA serves as an optimization technique that starts the search 

procedure from a randomly chosen position. Within a 

specified range, the algorithm cycles through different points 

and evaluates the value of the objective function of each point 

with respect to the previous point. In the context of 

minimization problems, if the value of the objective function 

of the new point is less than the value of the objective function 

of the starting point, the algorithm accepts it as the current 

solution. This procedure is iterative, as the algorithm searches 

the solution space and accepts additional points that minimize 

the value of the objective function. If the change in the 

objective function (∆F) is less than or equal to 0, the new point 

is automatically accepted and becomes the starting point for 

the next step. The algorithm will then go to the next step. 

Higher objective function values (∆F > 0) may also be 

accepted, but with a probability calculated by the metropolis 

criteria, as defined by the Boltzmann factor Eq. (4). 

 

Pb(x) = e(
F(x1)−F(x2)

KT
)
 (4) 

 

where, K is Boltzmann's constant and is equal to 1.3806∗10-23, 

f(x) is the objective function value of the system in state x and 

T is the current temperature. 

The SA algorithm has the unique ability to sometimes 

accept solutions with higher objective function values, 

enabling it to escape the local optimum. As the algorithm 

progresses, the step size used to generate new solutions is 

gradually reduced, facilitating convergence towards the final 
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optimal solution. The Metropolis parameters, which are based 

on two user-defined parameters, T (temperature) and RT 

(temperature reduction factor), affect the probability of 

adopting a solution with a higher objective function value. 

This process mimics real-world annealing, where the 

probability of accepting higher values reduces as the 

temperature (T) reduces. The temperature is updated after each 

iteration using Eq. (5). 

 

𝑇𝑖 + 1 = 𝑅𝑇 ∗ 𝑇𝑖 (5) 

 

where, (i) is the current iteration. The parameter NT denotes 

the number of iterations between successive temperature 

reductions, as described in studies [48, 49]. Given that the 

performance of the Simulated Annealing (SA) algorithm is 

contingent on user-defined parameters and that the algorithm's 

performance is significantly influenced by the selection of 

parameters T, RT, and NT. 

 

4.3 Genetic algorithm technique 

 

Genetic algorithms are a specific class of evolutionary 

algorithms that are based on the principles of natural selection 

and natural genetics. This class of algorithms was originally 

developed by I. Holland and his student D. Jong in 1975. Later, 

D. Jong (2000) expanded the genetic algorithm approach to 

functional optimization problems. This expansion necessitated 

the use of optimization search techniques grounded in the 

Darwinian concept of natural selection and evaluation. 

A gene can be considered a string of bits during GA 

optimization, where the string is coded to represent the design 

parameters ( X1, X2, … … , Xk) . The initial population is the 

first step in the implementation of any GA. The length of the 

bit string, which represents the starting population of genes, is 

determined by the issue that has to be solved and is generated 

at random. Following the generation of an initial population of 

solutions, each solution (chromosome) is assigned a fitness 

value, which reflects the goodness value, whereas the fitness 

value in Eq. (6) represents the objective function (OBJ) 

assessment of the decoded chromosome. The objective 

function plays the role of the environment in ranking the 

members of the chromosome population. 

 

Fitness value = OBJ( X1 , X2, … … , Xk) (6) 

 

To determine the best decision variable, the optimization 

process involves maximizing an objective function while 

adhering to the specified constraints. In the present approach, 

the variables are represented using binary string encoding. Eq. 

(7) furnishes a mapping function that guarantees the variable 

values remain within their predefined bounds. 

From Eq. (7), the bit-in is the string length (the bit length of 

the chromosome) used to code a variable, and B2Dk (binary 

to decimal) is the decoded value of the string. where 

(Lbk, Ubk) are the lower and upper bounds of the variable Xk. 

 

Xk =  B2Dk[(Ubk  −  Lbk)/(2bit –  1)]  +  Lbk (7) 

 

The variable boundaries are handled by implementing the 

mapping function in Eq. (7). After selecting a string 

representation, a random set of solutions is created. Each 

member of the population is then allocated a fitness value, 

which represents the quality or goodness of fit of the various 

solutions. 

The evolutionary strategy of a genetic algorithm depends on 

how to generate a new solution from the previous one. The 

evolutionary strategy uses reproduction, elitism, crosser, 

mutation, and termination operations. The reproduction 

operator duplicates the best-performing solutions in the 

population and discards the worst-performing ones, all while 

keeping the population size stable. The elitism (elt) operator 

prevents the best gene from disappearing and improves the 

accuracy of optimization during reproduction operations. 

Crossover (pc) is the process of obtaining a new candidate's 

solution from the previous candidate's solution. Mutation (pm) 

is the process of manipulating individual genetic algorithms 

into candidate solutions. Termination is the mechanism for 

stopping the evolutionary process of the genetic algorithm. 

Termination occurs when the algorithm has reached a 

predetermined number of generations and an acceptable 

solution has been found [50, 51]. 

 

 

5. OPTIMIZATION TECHNIQUES 

 

5.1 Taguchi technique 

 

In the Taguchi method, select of the appropriate orthogonal 

array (OA), depends on the total degree of freedom (DOF), 

which is defined as (number of factors × (number of levels - 

1)) + 1. In the present work, three design parameters with three 

levels are selected with a total DOE equal to 6 as shown in 

Table 2. 

Based on the Taguchi method, the L27-OA was used, which 

allows for investigation of not just the impacts of the primary 

factors but also the interactions between the factors.  

The root mean square (RMS) of the sprung mass vibration 

was used to quantify the amplitude or intensity of vibrations 

experienced by the sprung mass in a suspension system. It 

provides a measure of the overall magnitude of vibrations over 

a given time period. The mathematical formulation for 

calculating the RMS of sprung mass vibration can be 

summarized as follows: 

 

RMS = √
1

N
[∑  xi

2 

N

i=1

] (8) 

 

where, 

N is the total number of data points in the time domain, and 

xi represents each data point in the time domain. 

Table 3 presents an L27 orthogonal array with responses 

(RMS of sprung mass vibration) and their respective signal-to-

noise (S/N) ratios. 

 

5.1.1 Main effect plot 

The main effects plot for the means is plotted in Figure 4 

which shows the effect of the input parameters (damping 

coefficient (C), spring stiffness (Ks), and tire stiffness (Kt)) on 

the passive suspension vibration. Figure 4 shows that the 

acceleration of the quarter car suspension increases with 

increasing spring stiffness from 12000 N/m to 30000 N/m. The 

acceleration of the quarter-car suspension decreases with an 

increase in the damping coefficient from 900 Ns/m to 2450 

Ns/m and decreases with a further increase in the damping 

coefficient from 2450 N/m to 4000 N/m. This figure also 

indicates that tire stiffness has little or no effect on quarter-car 
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acceleration. 

Figure 5 shows the calculated and plotted the mean values 

of the S/N ratios achieved using the smaller-the-better 

technique for all three design parameters and levels. 

When assessing the S/N ratio data, a higher S/N ratio 

corresponds to a lower variance of the output characteristic, 

which is preferable. The highest S/N ratio is equal to the 

minimum RMS of the sprung mass acceleration. 

Thus, the optimal input parameters that give the minimum 

RMS of the sprung mass acceleration were obtained at a 

damping coefficient of 900 N-s/m (level 1), spring stiffness of 

12000 N/m (level 1), and tire stiffness of 160000 N/m (level 

2). Additionally, the corresponding RMS sprung mass 

acceleration is 0.1625 m/s2. 

 

Table 3. L27 - OA response values and S/N ratio for quarter-

car acceleration 

 

No. 
Damping 

Co. 

Spring 

Stiffness 

Tyre 

Stiffness 
Acc. 

S/N 

Ratio 

1 900 12000 120000 0.1636 15.7243 

2 900 12000 160000 0.1625 15.7829 

3 900 12000 200000 0.1639 15.7084 

4 900 21000 120000 0.4157 7.6244 

5 900 21000 160000 0.3938 8.0945 

6 900 21000 200000 0.3818 8.3633 

7 900 30000 120000 0.8161 1.7651 

8 900 30000 160000 0.7542 2.4503 

9 900 30000 200000 0.7182 2.8751 

10 2450 12000 120000 0.1838 14.7131 

11 2450 12000 160000 0.1978 14.0755 

12 2450 12000 200000 0.2115 13.4938 

13 2450 21000 120000 0.2413 12.3489 

14 2450 21000 160000 0.2465 12.1637 

15 2450 21000 200000 0.2543 11.8931 

16 2450 30000 120000 0.3412 9.3398 

17 2450 30000 160000 0.3323 9.5694 

18 2450 30000 200000 0.3307 9.6113 

19 4000 12000 120000 0.3291 9.6534 

20 4000 12000 160000 0.3546 9.0052 

21 4000 12000 200000 0.3774 8.4640 

22 4000 21000 120000 0.3602 8.8691 

23 4000 21000 160000 0.3804 8.3952 

24 4000 21000 200000 0.3997 7.9653 

25 4000 30000 120000 0.4128 7.6852 

26 4000 30000 160000 0.4241 7.4506 

27 4000 30000 200000 0.4376 7.1785 

 

 
 

Figure 4. Main effects plot 

 

 
 

Figure 5. The S/N plot 

 

5.1.2 Analysis of variance (ANOVA) 

The Taguchi technique cannot assess and quantify the 

influence of individual factors on the overall process, but 

analysis of variance (ANOVA) may determine the percentage 

contribution of each parameter. 

Table 4 presents the ANOVA results, which included the 

effects of each parameter on the response (RMS values of the 

vertical body vibration), the residual error, and the possible 

interactions between the parameters, while Figure 6 shows a 

bar chart for the same results. 

The results in Table 4 provide an overview of the relative 

contributions of each control parameter to the suspension 

system. 

Lower p values give more evidence against the null 

hypothesis; when p values < 0.05, it reveals that the factor 

impact is substantial and the null hypothesis may be rejected. 

 

 
 

Figure 6. Pareto chart of the standardized effects 

 

Table 4. Analysis of variance for means (ANOVA) 

 

Source DOF Adj. SS Adj. MS 
F-

Ratio 
P 

Value 
Contribution

% 
C 2 0.077662 749.52 0.000 0.000 11.58 
Ks 2 0.332053 0.166027 1602.32 0.802 49.51 
Kt 2 0.000047 0.000024 0.23 0.000 0.007 

C* Ks 4 0.252390 0.063098 608.95 0.002 37.65 
C* Kt 4 0.005187 0.001297 12.51 0.021 0.77 

S = 0.01018; R-Sq = 99.9%; R-Sq(adj) = 99.6% 
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As revealed by the analysis of variance table, the factor 

exerting the most significant influence on the system's 

behavior is the spring stiffness, with a contribution of 49.51%. 

This is followed by the interaction between the damping 

coefficient and the spring stiffness, which contributes 37.6 5%, 

as well as the damping coefficient itself, which contributes 

11.58%. The lowest contribution, at 0.007%, was observed for 

tire stiffness. This table clearly indicates that tire stiffness can 

be considered negligible in comparison to the other 

parameters. 

The estimated standard deviation of the regression, denoted 

as S, indicates the average deviation error of the model, and in 

this case, the value is set to 0.01. Both the R-Sq and R-Sq (adj) 

values represent the proportion of the variance in the response 

data that is explained by the model. 

The R-Sq value of 99.9% for the suspension vibration 

model quantifies the goodness of fit of the regression model, 

as determined by ANOVA. This means that the model 

accounts for 99.9% of the variation in the response data, with 

the remaining 0.01% attributable to noise effects. The R-Sq 

reflects how well the model fits the observed data. 

The high R-Sq value of 99.9% and the adjusted R-Sq (R-Sq 

(adj)) of 99.6% obtained from the Taguchi technique runs 

indicate a high degree of reliability and dependability of the 

experimental model. These statistics suggest that the 

regression model can be effectively used to determine the 

optimal parameter values and perform sensitivity analyses on 

the various parameters. 

 

5.2 Simulated Annealing technique 

 

MATLAB R2014a software was used to program the 

simulated annealing (SA) process. The accuracy of the SA 

optimization depends on the selected parameters summarized 

in Table 5. This study used Boltzmann annealing as an 

annealing function, which involves random steps with sizes 

proportional to the square root of the temperature. The 

reannealing interval refers to the number of points that must 

be accepted before the reannealing process is triggered. An 

exponential temperature update strategy was implemented, 

wherein the temperature was decreased to 0.95.  

Table 6 summarizes the values of the design parameters and 

their corresponding vertical accelerations with different 

maximum iterations, reannealing intervals, and initial 

temperatures. The optimal outcome was achieved at 500 

iterations, a reannealing interval of 50, and an initial 

temperature of 80, as shown in Table 6. 

 

5.3 Genetic algorithm technique 

 

Three sets of GA parameters were used during the 

optimization process: pc, pm, and elt_no, as control 

parameters. Other parameters, such as bit_n, popuSize, and 

gen_no, are fixed at 40, 60, and 500, respectively. The optimal 

results are summarized in Table 7. As illustrated in Table 7, 

the first case, in which crossover, mutation, and elitism are all 

applied, has a minimum value of acceleration compared with 

other cases. 

 

Table 5. SA control parameters 

 
Parameters Values 

Start point 
0.5 for each variable 

parameter 
Initial temperature,T 20 and 80 
Annealing function Boltzmann annealing 

Temperature update function Exponential temperature 
Reannealing interval 50 and 100 

Numbers of maximum iteration, 

NT 
200 and 500 

temperature reduction factor, RT 0.95 

 

Table 6. Design results of the simulated annealing parameters method 

 
 Control Factor Design Parameters  

No. Iteration Temp. Reannealing DampingCoefficient Spring Stiffness Tyre Stiffness RMS 

1  

 

200 

 

80 100 1392.16415 12000.02845 120000.1823 0.134470435 

2 80 50 1392.163481 12000.0182 120000.228 0.1344703 

3 20 100 1392.166348 12000.02809 120000.0613 0.13447041 

4 20 50 1392.165279 12000.01136 120000.2118 0.13447026 

5 
 

 

500 

80 100 1392.163235 12000.00751 120000.1888 0.13447022 

6 80 50 1392.162702 12000.00663 120000.2451 0.134470219 

7 20 100 1392.163028 12000.01375 120000.1773 0.134470285 

8 20 50 1392.165062 12000.00853 120000.1822 0.13447023 

 

Table 7. Design results of the simulated annealing parameters method 

 

Parameter 

Design 

Case1 Case2 Case3 Case4 

pc pm elt_no pc pm elt_no pc pm elt_no pc pm elt_no 

0.8 0.05 1 0.8 0 1 0.8 0.05 0 0 0.05 1 

Damping 

Coefficient 
1387.4371 1390.5671 1380.3381 1395.6293 

Spring 

Stiffness 
12000 12000.0 12000 12000.0382 

Tyre Stiffness 120000 120811.06 126034.86 120151.781 

RMS 0.13447184 0.134553 0.135107 0.1344869 
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6. COMPARISON OF OPTIMIZATION 

TECHNIQUES 

  

The quarter-car model simulations were performed using 

the values obtained by using GA, SA, and the Taguchi 

technique to obtain the RMS of the vertical acceleration of 

the sprung mass and the highest value of the sprung mass 

acceleration, as shown in Table 8.  

Figure 7 shows a comparison of the RMS vertical 

acceleration of the sprung mass and the maximum sprung 

mass acceleration obtained. The peak of the sprung mass 

vibration is 0.9392 m/s2, 0.5211 m/s2, and 0.5232 m/s2 for the 

Taguchi, SA, and GA methods, respectively. The simulation 

results demonstrate that the simulated annealing (SA) 

method yields a lower value of maximum sprung mass 

vibration. 

 

Table 8. Comparison of the optimum design parameters 

with the original data 

 
Design 

Parameters 

Original 

Data 

Taguchi 

Method 

Simulated 

Annealing 

Genetic 

Algorithm 

Damping 

coefficient 

(Ns/m) 

1000 900 1392.162702 1387.4371 

Spring 

stiffness 

(N/m) 

16812 12000 12000.00663 12000.0 

Tyre stiffness 

(N/m) 
190000 120000 120000.2451 120000.0 

RMS vertical 

acceleration of 

sprung mass 

(m/s2) 

0.2407 0.1636 0.134470219 0.1344718 

Max. sprung 

mass 

acceleration 

(m/s2) 

1.3080 0.9392 0.5211 0.5232 

 

 
(a) 

 
(b) 

 

Figure 7. Comparison of the vertical acceleration of the 

sprung mass 

Consequently, the SA method proved instrumental in 

attaining the optimum values of suspension parameters, 

which in turn delivered good passenger comfort compared to 

the original parameters. 

Furthermore, it has been observed that the Genetic 

Algorithm and Simulated Annealing methods can reduce the 

value of the RMS by 44% in comparison to the original 

design. Also, the Taguchi method can decrease the value of 

the RMS by 32% compared to the original design; 

consequently, the results and procedures employed for the 

optimization of suspension parameters will prove beneficial 

for automotive manufacturers in selecting the most suitable 

combination of suspension parameters to achieve the desired 

levels of ride comfort and safety for traveling passengers. 

 

 

7. CONCLUSIONS 

 

The aim of this study is to investigate, analyze and develop 

the effectiveness of optimization methods to achieve 

minimum vibration in the suspension system. The results 

showed that the methods A efficiency methods used in this 

study are valid and powerful tools by adjusting the value of 

their components of the middle layer of the tissues of the 

middle layer of the bed price with Using common standards 

of about 44% and a value of 60%, the original mean value is 

reduced by about 32% and the peak acceleration is reduced 

by 28% from the actual values. The significant decrease in 

RMS value and peak acceleration obtained by optimization 

techniques indicates their effectiveness in improving 

suspension behavior. These improvements have noticeable 

effects on the overall performance and characteristics of the 

suspension system. The ANOVA approach reveals that there 

are two key suspension factors, the damping coefficient and 

spring stiffness, that contribute significantly to producing 

reduced RMSs of vertical vibration. 
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