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This article assesses various optimization algorithms used to find the sizing of standalone 

hybrid energy system (HES) providing energy to isolated residential area load. The HES 

comprises three elements: photovoltaic panels (PV), diesel generators (DG). Many 

optimization algorithms have been assessed in this research to determine the most effective 

sizing of the HES in order to reduce the PV arrays, DGs number and the overall system 

cost hence minimizing the cost of energy (COE). The algorithms convergence time and the 

resulting loss of power supply probability (LPSP) are examined in this comparison. In this 

article, MATLAB/Simulink is used for its robust capabilities in modeling, 

simulating, and analyzing dynamic systems. The optimization's constraint is 

maintaining a reliability of 100%, ensuring uninterrupted energy supply to meet the energy 

demand. The results of the optimizations demonstrate that some algorithms gave different 

results of sizing. 
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1. INTRODUCTION

The rise in demand for electric energy, coupled with 

increased energy prices and higher reliance on non-renewable 

energy sources (RESs), has contributed to global warming and 

environmental concerns, precipitating a significant global 

political and economic crisis [1]. 

Thus, RESs hold the promise of enabling sustainable 

development objectives and access to dependable, clean, and 

secure energy. However, it faces many limitations such as 

nature variability, instability, and unpredictability, which 

degrade the supply reliability [2-5]. Hence, HES offer a 

promising solution to address these challenges by enhancing 

reliability [6], efficiency [7], and economics [8], while 

meeting load demands [9]. 

As shown in Figure 1, HES is incorporating various sources 

and storage technologies such as DGs and batteries for 

improving system stability and mitigating power, frequency, 

and voltage fluctuations. 

Optimal design of HES necessitates appropriately sizing of 

its components and implementing effective energy 

management strategies [10-14], which play a pivotal role in 

continuity of power supply, prioritizing system variables, 

regulating energy flow [15]. 

These rules can enhance cost efficiency, reliability, and 

protection against natural damage. In this paper, 

MATLAB/Simulink software is utilized to evaluate the sizing 

optimization using intelligent techniques which require 

extensive computational resources thus the metaheuristic 

algorithms for optimization are being used [16]. 

These stochastic algorithms offer an efficient means of 

addressing real-world optimization problems by exploring 

diverse solution spaces. Among these metaheuristic 

algorithms, Simulated Annealing (SA) [17], Gray Wolf (GW) 

[18], Genetic Algorithm (GA) [19], Gravity Search Algorithm 

(GSA) [20], Ant Colony Optimization (ACO) [21], Harmony 

Search (HS) [22], which proved their effectiveness in 

optimization objectives. Thus, they are used to minimizing 

COE and assess how each of them suitable approach for 

optimizing this case study [23]. 

Figure 1. The model HES subjected to sizing optimization 

There are many methods to find the proper sizing for HES 

based on the load and the characteristics of the components. 
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Table 1 below gives a detailed description of these methods 

[24]. 

 

Table 1. The main sizing methods used in HESs 

 
Software Computational 

HOMER Analytical 

iHOGA Iterative 

HYBRID2 Probabilistic 

RETscreen AI 

 

RESs are hindered by intermittent nature and high costs. 

New energy systems must integrate numerous resources in a 

HES with backup storage units to ensure a reliable and 

efficient power supply to decrease these drawbacks. Much of 

the world's population lives in remote, grid-less areas. Two 

billion people lack grid-based power, and 1.2 billion, or 17% 

of the world's population, lack domestic energy. Due to fuel 

costs and geographical complexity that makes grid extension 

unfeasible, conventional energy producers are inadequate in 

many remote areas [25]. 

Conventional energy sources emit the most greenhouse 

gases. Rural areas, especially in developing nations like Iraq 

and Mauritania, have economic, social, and environmental 

issues related to electricity supply. Distributed generating 

appears to be the safest and most feasible solution to these 

longstanding difficulties. Standalone microgrids using 

distributed generations are appealing for remote areas where 

grid connectivity is unavailable or expensive due to declining 

fossil resources and transmission losses [26]. Increasing DER 

penetration is expected to increase energy transfer among 

countries. Moving from centralized to decentralized fossil fuel 

systems increases complexity without enhancing 

sustainability. 

RESs like wind turbines (WT) and PV provide clean energy 

in distributed generation systems. There is a global demand for 

generation models that enhance sustainable energy solutions, 

system performance, and resource efficiency. Fundamental 

energy sources such as geothermal, ocean, biomass, and 

biogas can be combined with other RESs [27]. Biomass and 

biogas are inappropriate for small household or industrial 

needs since they require a constant fuel source. Fuel cells 

complicates system design and demands careful study. 

Therefore, based on the limitation of each source, the 

expansion of using these resources are different. In Figure 2, 

the global consumption of energy in the current century. 

 

 
 

Figure 2. Worldwide renewable energy data [28] 

 

Advanced DGs and DC loads with current power 

electronics have enabled HES models in DC energy systems. 

Therefore, HESs can AC and DC grids and a single-stage 

bidirectional converter to reduce energy conversion. The HES 

capability is essential for independent operation, especially 

during main grid outages and powering remote places [29]. 

Batteries are necessary for controlling the unpredictable nature 

of RESs for balancing loads while preserving stability and 

reliability [29]. Short-term, ESS supports the grid by meeting 

variable power demands and assuring energy supply stability 

during demand variations. When long-term generation 

capacity is low, ESS meets load demand. Thus, medium and 

small HES use batteries for short energy shortages. Power 

shortages and changing loads are best managed by batteries 

with high discharge rates and load capacities. For abrupt load 

shifts or HES dynamics, ESS can be added. Battery energy 

density is great, but supercapacitors can boost power density 

[30]. The limited supercapacitors’ capacity limits their use. 

Therefore, batteries are the most used energy storage solution 

worldwide due to their exceptional performance. Long-term 

ESS foundation. Non-renewable resources like DGs require 

expensive upkeep and harm the environment. 

This paper describes hybrid PV and DG system sizing 

design, installation, and operation. Case study investigates a 

remote northern Iraq. The isolated regions of Northern Iraq 

encounter a combination of economic difficulties and 

distinctive climate circumstances. The area experiences a 

primarily dry environment characterized by elevated 

temperatures throughout the summer and freezing winters, 

resulting in notable fluctuations in energy consumption 

patterns. From an economic standpoint, these regions 

frequently encounter restricted availability to dependable 

power networks and heavily depend on independent energy 

systems. In terms of population distribution, there is a low 

density, and villages are far dispersed, which adds to the 

challenges of distributing electricity and connecting to the 

power grid. 

The study provides a comparative analytical view of many 

optimization algorithms to provide optimum system size 

details as following: PV panels number, Batteries number, 

DGs number that give best performance with respect to LPSP, 

COE, and Convergence time. This depends on system 

configuration and operational constraints. The design is 

validated using advanced simulations. This article investigates 

power constraints, generator prime rating capabilities, and 

battery bank prices to establish the best PV and BESS scale. 

The study optimized the grid-connected HES using 

technoeconomic analysis. Extra goal: improve smart grids 

energy efficiency. The best power flow study will determine 

RES locations and ratios to improve system performance. 

 

 

2. RELATED WORKS 
 

Hybrid PV/DG systems exhibit greater reliability in power 

generation compared to PV systems operating exclusively on 

PV, owing to the DG engine generation being independent of 

atmospheric conditions. The PV/DG combination offers 

increased adaptability, enhanced productivity, and financial 

savings without sacrificing energy output. As opposed to a DG 

system, a PV/DG HES emits less air pollution and has reduced 

operating expenses. 

At present, investigations are being conducted to optimize 

HES through the determination of optimal storage battery 

capacity, DG capacity, and PV module quantity. Literature-

based research focuses on identifying the optimal dimensions 

for hybrid PV/DG systems. Reference [31] presented a 
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sophisticated approach to enhancing hybrid PV/DG systems. 

By implementing the GA, HES generation is improved. The 

quantity and variety of batteries, the power of the DG, the 

power of the inverter, and the dispatch mechanisms are five 

variables that necessitate optimization. HES modeling is 

accomplished through the utilization of hourly PV radiation 

data and hourly load demand. The hourly generated current by 

the PV array, the intended load current, and the battery's 

charge level will be determined by this model. Two sections 

comprise the generated genetic algorithm. 

The first segment aims to determine the most efficient 

system configuration to satisfy the load demand, considering 

variables including the type and quantity of parallel batteries, 

as well as the number and type of parallel PV panels. The 

objective of the second phase is to optimize, from an 

operational strategy standpoint, each configuration generated 

by the initial section. In order to determine the optimal 

configuration, the total cost of the system is computed with an 

emphasis on reducing energy expenditures. However, this 

study does not address certain unresolved issues, including the 

optimization of inverter size, the verification of hourly PV 

radiation data accuracy, and the assessment of the system 

design's dependability. 

In order to ascertain the optimal system design, reference 

[32] optimized the control strategy of HES using GA. A vector 

representing the system's control is constructed, comprising 

five decision variables corresponding to each hour of the year. 

The physical implementation of the optimal vector in this 

optimized system and the potential impact of meteorological 

variables on its operation remain uncertain. 

The optimal construction of a PV/DG system is illustrated 

in reference [33], which commences with the development of 

a DG model and continues with the determination of the 

utmost dimensions for the PV array and batteries. This is 

accomplished by utilizing a specific weather profile to 

compute the storage days and the smallest area necessary for 

the PV array. Developed dispatch strategies for DG operating 

IN HES site. The objective of this research endeavor is to 

determine the most cost-effective set points for starting and 

halting the DG. In order to forecast the long-term system cost 

and energy efficiency, an optimization is executed for a 

customary dispatch plan. 

The study [34] utilized simulated WT/DG, and battery 

HESs to provide electricity to typical rural loads in Cameroon. 

For WT/DG HES, a 5 kW single-phase DG operating at a 70% 

load fraction is coupled with two 290W WT. A DG must be 

operational for 106 hours per year in order to supply this 

system with a 7 kWh/day burden. The proportion of RESs in 

the overall energy generated by the HES is computed as RESs 

percentage [35]. 

This percentage is incorporated into the design of WT/DG/ 

battery HES. The use of PV/DG/battery HES to power rural 

loads in remote regions of the far north province of Cameroon 

was the subject of one study. The hourly PV energy obtained 

by south-facing PV panels that are tilted at latitude is 

calculated. A 5 kW single-phase generator operating at a 70% 

load factor and a 1440 Wp PV array comprise HES. The 

configuration necessitates the operation of a DG for 136 hours 

per year to supply 7 kWh of power per day. 

A study [36] was conducted on a battery backup DG/PV that 

was deployed for the benefit of a Saudi Arabian community. 

For system optimization, hourly PV energy data and the 

HOMER software are utilized. To ascertain the most 

advantageous configuration for the PV/DG combination, an 

assortment of system setups is examined, comprising four 

generators that vary in rated power, fuel expenses, battery 

capacity, and converter dimensions. 

The ideal configuration comprises a 2000 kWp PV array 

complemented by four generators of 1250 kW, 750 kW, 2250 

kW, and 250 kW, in that order. The annual operating time of 

the generators is 3,317, 4,242, 2,820, and 3,150 hours, 

respectively. By employing a DG price of 0.2$/L for size 

considerations, the energy unit costs for exclusive DG and 

PV/DG/battery systems with 21% PV penetration are 

calculated to be 0.190$/kWh and 0.219$/kWh, respectively. In 

reference [37], the HES was considered to be more 

economically viable in comparison to the DG system. For 

remote electrification, a PV/DG system is under consideration, 

according to research concentrating on rural and remote areas. 

Moreover, it is asserted that integrating DGs with RESs like 

PV or WT can increase system reliability and decrease initial 

costs. 

 

 

3. HES MODELLING 
 

The power output of PV array depends on the temperature 

and PV radiation levels [38]. When there is a shortfall in the 

energy output from the PV system, DGs operate to compensate 

for the deficit. However, the DG operation depends on upon 

the fuels availability and cost, the rate of fuel consumption 

over time. The PV output power is calculated in Eq. (1): 

 

𝑃𝑃𝑉(𝑡) = 𝑃𝑟  ×  𝐷𝑟 × (
𝑆𝑟𝑎𝑑  ×  (1 + 𝐹(𝑇𝐶  −  𝑇𝑆𝑇𝐶)

𝑆𝑟𝑎𝑑−𝑆𝑇𝐶

) (1) 

 

where, PPV(t) is PV output power, Pr is PV rated power, Dr is 

derating factor of PV, Srad is radiation (W/m2), Srad-STC PV 

radiation in standard test condition (W/m2), TC is PV cell 

temperature, 𝐹 is the reduction factor of PPV(t) due to the 

increase 1 Celsius of the TC, TSTC is standard test temperature. 

DGs operate when the is extra demand that PV cannot fulfill, 

and Battery state of charge (SoC) is below minimum level of 

operation. DGs operation costs depend on fuel cost, the 

consumption of fuel over time (t) is calculated by Eq. (2): 

 

𝐹𝐶(𝑡) = (0.25 ×  𝑃𝑎𝑑𝑔) + (0.084 ×  𝑃𝑟𝑑𝑔) (2) 

 

where, FC(T) is fuel consumption over time, Padg average 

output power of DG, Prdg is DG rated power. The coefficients 

0.25 and 0.084 in the fuel consumption formula are determined 

using empirical data analysis, which considers the 

performance characteristics of the diesel generators utilized in 

the study. 

The coefficients indicate the rate at which fuel is consumed 

under specific load situations. These coefficients have been 

verified using data from the manufacturer and previous 

research. Total consumption of the fuel calculated by Eq. (3): 

 

𝐹𝑇
𝐶 = ∑ 𝐹𝐶(𝑡)

𝑁

𝑡=1

 (3) 

 

where, N is the HES project life span which is proposed to be 

219000 hours. 

The above calculation will lead to finding LPSP and COE. 

In Tables 2-4, parameters of units used in this HES are 

depicted. 
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Table 2. The parameters of PV penal 

 

Type Monocrystalline 

Power (W) 300 

Radiation (W/m2) 1000 

Maintenance costs ($) 10/Month 

Life (Years) 20  

Cost ($) 200/Panel 

 

Table 3. Monoblock-Tubular batteries specifications 

 
Voltage Type (V) 12 

Efficiency (%) 90 

Capacity (Wh) 2400 

Maintenance costs ($) 0 

Life (Years) 5 

Cost ($) 250 

 

Table 4. Perkins generator (DG) specificazione 

 
Apparent Power Generation (KVA) 250 

Real Apparent Power Generation (kW) 200 

Frequency (Hz) 50 

Maintenance costs ($) 400/month 

Life (Years) 4 

Cost ($) 10000/Penal 

 

 

4. METHODOLOGY 
 

In this paper, six metaheuristic algorithms are used to 

optimize the sizing of HES, then this method will be compared 

to observe the outcome of each one with respect to minimum 

required panels, minimum number of DGs, and minimum 

energy cost. 

As shown in Figure 3, the sizing method use a sequence of 

steps to calculate the best sizing that cope with Fluctuation in 

the power supplied to HES. The power fluctuation rate and the 

standard deviation are used to describe the energy delivered 

fluctuation in HES.  

Simulated Annealing (SA), Gray Wolf (GW), Genetic 

Algorithm (GA), Gravity Search Algorithm (GSA), Ant 

Colony Optimization (ACO) Harmony Search (HS) stand out 

for their effectiveness in optimization objectives. In Tables 5 

to 10, the parameters of each algorithm are stated. 

 
Table 5. Simulated annealing optimization parameters 

 
Parameter Value 

Initial temperature 

(T) 
100 

Cooling schedule 
Geometric cooling with a cooling rate 

0.95 

Acceptance criterion Metropolis criterion 

Convergence criteria Maximum number of iterations 100 

 
Table 6. Gray wolf optimization parameters 

 
Neighbourhood 

Structure 
Value 

Population size 50 

Exploration rate 0.2 

Exploitation rate 0.2 

Convergence criteria Maximum number of iterations 100 

 

 

 

Table 7. Genetic algorithm optimization parameters 

 
Convergence Criteria Value 

Population size 50 

Crossover probability 0.6 

Mutation probability 0.05 

Selection method 
Tournament selection with 

tournament size is 3 

Convergence criteria Maximum number of iterations 100 

 

Table 8. Gravity search algorithm optimization parameters 

 
Termination Criteria Value 

Number of agents 50 

Gravitational constant 0.1 

Mass calculation Proportional to fitness 

Attraction coefficient 1 

Convergence criteria Maximum number of iterations 100 

 

Table 9. Ant colony optimization parameters 

 
Parameters Value 

Number of ants 100 

Pheromone evaporation 

rate 
0.1 

Heuristic information Inverse of distance between nodes 

Convergence criteria Maximum number of iterations 100 

 

Table 10. Harmony search algorithm optimization 

parameters 

 
Convergence Criteria Value 

Harmony memory size 50 

Harmony memory 

consideration rate 
0.9 

Pitch adjustment rate 0.5 

Convergence criteria Maximum number of iterations 100 

 

 

Figure 3. Flowchart describing the operation of HES 
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5. RESULTS AND DISCUSSIONS 

 

Using the modelling and operation parameters the results 

that is required to calculate is minimum number of generation 

units such as PV panels and DGs. It is easy to operate the load 

on 2 DGs but the cost of energy will be high since the 

operational and maintenance costs are high. 

Also, depending on PV panels only would increase the 

energy cost due to its high installation costs. Thus, the 

computing complexity and efficiency of metaheuristics 

algorithms will help to find the best sizing and hence the cost 

of energy. 

The first algorithm to be assessed in HES sizing 

optimization is Simulated Annealing (SA). The results of SA 

optimized HES sizing to provide optimum system size details 

as following: 

(1) PV panels number = 199 

(2) Batteries number = 1 

(3) DGs number = 1 

(4) LPSP = 1.001% 

(5) COE = $6.03 

(6) Convergence time is 0.34 s 

Figure 4 below shows the loss probability load after each 

iteration of SA sizing optimization. 

 

 
 

Figure 4. SA optimized HES sizing results 

 

The second algorithm to be assessed in HES sizing 

optimization is Gray Wolf (GW). The results of GW optimized 

HES Sizing to provide optimum system size details as 

following: 

(1) PV panels number = 198 

(2) Batteries number = 1 

(3) DGs number = 1 

(4) LPSP = 1.006% 

(5) COE = $6.00 

(6) Convergence time is 0.34 s 

Figure 5 below shows the loss probability load after each 

iteration of GW sizing optimization. 

The third algorithm to be assessed in HES sizing 

optimization is Genetic Algorithm (GA). The results of GA 

optimized HES Sizing to provide optimum system size details 

as following: 

(1) PV panels number = 199 

(2) Batteries number = 1 

(3) DGs number = 1 

(4) LPSP = 1.001% 

(5) COE = $6.03 

(6) Convergence time is 0.27 s 

Figure 6 below shows the loss probability load after each 

iteration of GA sizing optimization. 

 

 
 

Figure 5. GW optimized HES sizing results 

 

 
 

Figure 6. GA optimized HES sizing results 

 

The fourth algorithm to be assessed in HES sizing 

optimization is Gravity Search Algorithm (GSA). The results 

of GSA optimized HES Sizing to provide optimum system size 

details as following: 

(1) PV panels number = 198 

(2) Batteries number = 1 

(3) DGs number = 1 

(4) LPSP = 1.006% 

(5) COE = $6.00 

(6) Convergence time is 0.27 s 

Figure 7 below shows the loss probability load after each 

iteration of GSA sizing optimization. 

The fifth algorithm to be assessed in HES sizing 

optimization is Ant Colony Optimization (ACO). The results 

of ACO optimized HES Sizing to provide optimum system 

size details as following: 

The optimum system size is: 

(1) PV panels number = 198 

(2) Batteries number = 1 

(3) DGs number = 1 

(4) LPSP = 1.006% 
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(5) COE = $6.00 

(6) Convergence time is 0.29 s 

Figure 8 below shows the loss probability load after each 

iteration of ACO sizing optimization. 

 

 
 

Figure 7. GSA optimized HES sizing results 

 

 
 

Figure 8. ACO optimized HES sizing results 

 

 
 

Figure 9. HS optimized HES sizing results 

 

The last algorithm to be assessed in HES sizing 

optimization is Harmony Search (HS). The results of HS 

optimized HES Sizing to provide optimum system size details 

as following: 

The optimum system size is: 

(1) Batteries number = 1 

(2) DGs number = 1 

(3) LPSP = 1.001% 

(4) COE = $6.03 

(5) Convergence time is 0.28 s 

Figure 9 above shows the loss probability load after each 

iteration of HS sizing optimization. 

The results show that there is algorithm optimization with 

superior performance with respect to LPSP such as Simulated 

Annealing and Genetic Algorithm. The optimization 

algorithms with superior performance in COE are Gray Wolf, 

Gravity Search Algorithm, Ant Colony Optimization, and 

Harmony Search. The optimization algorithms with less 

convergence time are Genetic Algorithm and Gravity Search 

Algorithm. The algorithm with the best overall sizing 

performance is Harmony Search which find the best LPSP 

with less COE and computing time. The subpar convergence 

of GSA and ACO algorithms is ascribed to its intrinsic 

tendency for thorough solution search, which is more 

comprehensive but slower in comparison to alternative 

algorithms. 

 

 

6. CONCLUSION 

 

This study extensively tested several optimization strategies 

for sizing standalone HES for isolated load demands. The 

research sought to reduce the number of PV and DGs while 

assuring 100% energy supply reliability and lowering COE. 

The study tested several metaheuristic algorithms such as 

Simulated Annealing, Gray Wolf, Genetic Algorithm, Gravity 

Search Algorithm, Ant Colony Optimization, and Harmony 

Search to optimize HES sizing. These algorithms produced 

different sizing results. Simulated Annealing and Genetic 

Algorithm produces a reduced LPSP, while Gray Wolf, 

Gravity Search Algorithm, Ant Colony Optimization, and 

Harmony Search produces a reduced COE. However, Genetic 

and Gravity Search Algorithms also converged faster. 

Harmony Search has the best balance, attaining optimal LPSP 

with low COE and convergence time. These findings 

emphasize the importance of choosing the right optimization 

algorithm for unique HES to improve RESs dependability, 

efficiency, and cost-effectiveness. 
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