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This study introduces two advanced artificial intelligence systems designed to model and 

predict various boiler trips, playing a pivotal role in maintaining boilers' normal and safe 

functioning. These AI systems have been meticulously developed using MATLAB, thus 

offering sophisticated tools for diagnosing boiler trip occurrences. Real-world operational 

data from a coal-fired power plant, encompassing a comprehensive range of thirty-two 

operational variables tied to seven distinct boiler trips, was harnessed for these innovative 

systems' training, validation, and analysis. The first intelligent system capitalizes on a pure 

Artificial Neural Network (ANN) approach, leveraging the insights drawn from plant 

operators' decision-making processes concerning the key variables influencing each 

specific boiler trip. On the other hand, the second system takes a hybrid approach, 

incorporating Genetic Algorithms (GAs) to emulate the decision-making role of plant 

operators in identifying the most influential variables for each trip. Moreover, different 

topology combinations were explored to pinpoint the optimal diagnostic structure. The 

outcomes of our investigation underline the impressive capabilities of the ANN system, 

successfully detecting all six considered boiler trips either before or concurrently with the 

detection by the plant's control system. Furthermore, the hybrid system exhibited a 

marginal improvement of 0.1% in Root Mean Square error compared to the pure ANN 

system. These findings collectively emphasize the potential of AI-driven methods in 

enhancing early detection and prevention of boiler trips, thereby contributing to improved 

operational safety and efficiency. 
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1. INTRODUCTION

Intelligent monitoring systems (IMSs) are efficient and 

successful tools for identifying equipment malfunctions [1]. 

Enhanced performance and precision are observed when 

adopting a fusion of multiple IMSs, like the combination of 

“Artificial Neural Network" (ANN) and “Genetic Algorithm” 

(GA), resulting in the formation of hybrid “artificial intelligent 

systems” (AIS). An area of notable significance for their 

application lies in the context of steam boilers within small to 

medium industries and “Thermal Power Plants” (TPP). The 

early detection of faults and anticipating potential undesired 

incidents significantly contribute to a more secure and 

dependable industrial operation [2]. Consequently, the 

detection and diagnosis of faults are imperative to uphold the 

safety standards of power plants. 

Muselli and Ridella [3] introduced a method that melds GA 

with simulated annealing to generate and select a set of points 

within the network connection weight space. This integration 

accelerates the reliability and convergence of the IMS. The 

resulting system, aptly named “interval genetic algorithm”, 

was tailored for applications encompassing boilers, 

superheaters, and turbines. In a similar vein, Guglielmi et al. 

[4] harnessed “multilayer feed-forward” (MFF) and radial

basis function NN to address prevailing fault detection and

diagnosis challenges within an online 320 MW power plant

system, inclusive of four feed heaters along the high-pressure

water line.

Zhou et al. [5] presented a novel fault diagnosis 

methodology that intertwines GA and “Classical Probability” 

techniques, drawing from expert knowledge and data derived 

from a comprehensive 950 MW Beijing nuclear power plant. 

Meanwhile, Shi et al. [6] employed a combination of RBF 

neural network and GA to devise an automated fault diagnosis 

system for a nuclear power plant, thereby enhancing the 

accuracy and practicality of the diagnostic process, 

particularly in cases characterized by non-typical scenarios. 

Agrawal et al. [7] introduced an online model for fault 

detection and diagnosis, employing “Fuzzy Logic” (FL) to 

evaluate residuals and a Bayesian network for troubleshooting. 

The findings underscore the positive impact of integrating FL 

with the Bayesian network in enhancing fault detection and 

diagnosis. Romeo and Gareta [8] devised an algorithm using 

NN to monitor a biomass boiler, highlighting the advantages 

of NN in this context. Rusinowski and Stanek [9] established 

an NN-based model for steam boilers, utilizing operational 
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measurement data for material and energy balances. Alnaimi 

et al. [10] constructed an IMS integrating four distinct ANN 

algorithms. This IMS was evaluated using real-time data 

sourced from a Malaysian power plant, and the results were 

juxtaposed with corresponding “Root Mean Square” (RMS) 

calculated values. Notably, the optimal NN structure was 

identified using the “Broyden-Fletcher-Goldfarb” (BFG) 

“Quasi-Newton Training Algorithm”. 

Fast and Palme [11] implemented an online system for 

monitoring and diagnosing “Combined Heat Power” (CHP) 

plant components, leveraging ANN. This system was 

smoothly incorporated into the control unit of the plant 

alongside a power generation and information management 

server. They developed a user-friendly graphical interface 

embedded in the CHP information management system. 

Nistah et al. [12] designed a boiler fault prediction model, 

striving for minimal misclassification rates and mean squared 

errors through ANN. They trained the ANN with a set of 

operational parameters and validated the model against real 

fault values from an operational plant, achieving an average 

accuracy of 92%. 

Ismail et al. [13] devised an AIS model to predict tube 

leakage in steam boilers using ANN, training, and validating 

the model with operational data from a TPP. Their results 

underscored the superiority of employing a single hidden layer 

over a two-layer configuration in the feed-forward with 

backpropagation architecture. Selvi et al. [14] compared a 

static and dynamic ANN-based model for predicting water 

levels in a boiler drum. The static model, constructed with a 

feed-forward architecture containing a single hidden layer of 

28 neurons, was juxtaposed with the dynamic model utilizing 

“NARX Architecture,” with a single hidden layer featuring 9 

neurons. Both models were validated and assessed using real 

operational data obtained from an Indian plant, revealing 

superior prediction accuracy in the case of the dynamic model. 

Panchal and Kumar [15] proposed implementing a FL 

methodology and formulated a model for a plant's reliability 

and risk analysis. The authors propose that the limitations 

often encountered when employing outdated “Failure Modes 

and Effects Analysis” (FMEA) can be surmounted using a 

decision support system grounded in FL. Smrekar et al. [16] 

constructed an ANN framework using plant-derived data to 

predict upcoming steam properties. The insights of plant 

operators influenced the original input parameters, and the 

final selection of input parameters was fine-tuned for optimal 

performance. Iliyas et al. [17] successfully crafted a predictive 

model for NOx and O2 emissions using an RBF neural network, 

validating this model against actual data from an operational 

plant. 

De et al. [18] detailed a “feed-forward with 

backpropagation” (FFBP) ANN model designed for biomass 

and coal-fired CHP plants. This model was trained using data 

from the plant to predict its performance. Moreover, in their 

comprehensive review paper, Nistah et al. [19] analysed 

current techniques in developing IMS for “Coal-fired Power 

Plants”. Their conclusion endorsed the viability of 

incorporating remote accessibility and seamless interaction 

between plant operators and the control system interface, 

highlighting the IMS's accurate trip prediction capabilities. 

Victor et al. [20] embarked on the development of an AI 

model for a “Pressurized Water Reactor” (PWR) within a 

“Nuclear Power Plant”. 

 

 

They fashioned an FL controller for the PWR pressurizer, 

the parameters of which were modelled through ANN. Data 

from a 2785 MW thermal Westinghouse 3-loop PWR 

simulator was employed to validate the pressurizer ANN 

model and the FL controllers. Simulation outcomes 

demonstrated a reasonable agreement between the developed 

ANN model's responses and the simulated power plant, 

showcasing the FL controllers' enhanced performance 

compared to conventional ones. 

Mayadevi et al. [21] had recently provided a comprehensive 

survey encompassing diverse applications of expert systems 

within power generation plants. The publication highlights the 

notable technological progression of expert systems and their 

harmonization with contemporary methodologies, including 

FL, NN, machine learning, and computerized data acquisition 

systems. The study affirms that expert systems possess 

substantial potential to alleviate the operational burden on 

plant operators and experts, effectively serving as fault 

diagnosis and maintenance experts for the plant. Furthermore, 

the integration and fusion of various intelligent systems have 

expanded the problem-solving capabilities of expert systems, 

contributing to an enriched scope of solutions. 

It can be deduced that prior research has predominantly 

employed a one-hidden layer (1HL) architecture for ANNs in 

the context of fault detection and diagnosis. Additionally, the 

training of IMSs has largely relied on simulation data. Some 

studies have incorporated the insights of plant operators as 

inputs for NNs. However, a comprehensive hybrid intelligent 

system framework combining NN and GA has not been 

previously formulated for diagnosing steam boiler trips within 

TPPs. It is noted that a standardized approach for real data 

preparation in IMSs, elucidating the nature of boiler 

operational variables, has not yet been established. 

Furthermore, the topologies of NN-based IMSs have received 

little attention. 

The primary objective of the current study is to devise two 

IMSs to diagnose steam boiler trips within a three-unit 700 

MW coal-fired thermal power plant (CFTPP). The case study 

encompassed six instances of steam boiler trips. The initial 

AIS, designated as IMS-I, employs a pure ANN configuration 

with influential variables selected based on the expertise of 

plant operators. The second AIS, referred to as IMS-II, adopts 

a hybrid structure combining ANN and GA. In IMS-II, GA 

substitutes the plant operators' decision-making process to 

identify the most influential variables for each of the six trips. 

Real operational data associated with the six steam boiler trips 

and relevant operational variables were collected to train and 

validate the two developed IMSs. The research also outlines 

the data acquisition and processing procedure instrumental in 

training and validating both pure and hybrid AIS. 

The article is organized into four distinct sections. The first 

section conducts a review to identify gaps and delineate the 

problem statement concerning boiler trip diagnosis. The 

second section delves into problem identification and presents 

specifications relevant to the power plant. Section 3 

comprehensively elaborates on the methodology and 

procedures adopted, encompassing data acquisition, 

manipulation, and the creation of the two IMSs. Section 4 

showcases and analyses the diagnostic outcomes and 

compares the performance of the developed IMSs. Finally, the 

article concludes in Section 5, summarizing the insights gained 

and accomplishments derived from the case study. 
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2. CASE STUDY FORMULATION 

 

The chosen CFTPP for the present case study is a TPP 

fuelled by bituminous coal. It encompasses three identical 

power units. Each unit can produce 700 MW of electrical 

power. The boilers have a sub-critical pressure of about 22.12 

MPa, or 221.2 bar, and operate with a pulverized coal supply. 

The normal operating pressure range for these steam boilers is 

between 10 MPa (100 bar) and 19 MPa (190 bar). Subcritical 

plants usually operate below the critical pressure of 22.12 MPa. 

These boilers feature a combustion system comprising a 

furnace with direct tangential firing facilitated by a balanced 

draught. Light fuel oil burners facilitate initial furnace ignition. 

A low NOx combustion burner system, incorporating cover 

fire airports, controls NOx emissions effectively. 

An Electrostatic Precipitator is employed at the boiler outlet 

to eliminate particulate matter from the flue gas. At the same 

time, a wet “Flue Gas Desulphurization” plant is responsible 

for scrubbing the flue gas to regulate SO2 emission levels at 

the stack. The main supporting components include three 

boiler circulating pumps, two forced draft fans, two steam air 

pre-heaters, a soot-blowing apparatus, and two “electrostatic 

precipitators”. Refer to Figure 1 for an illustration of the 

selected CFTPP schematic. 

 

 
 

Figure 1. Schematic layout of a 700 MW CFTPP 

 

2.1 Influential variables 

 

The control room monitors and records a comprehensive set 

of 1800 real measurement data, which had been subsequently 

reduced. The reduction was performed in three stages. First, 

by excluding any measurements related to furnaces and fans; 

second, through evaluation by a power plant expert; and third, 

by averaging the respective sensor readings. Various methods 

were adopted to assess the importance of each measurement 

relative to one another and to understand their relationship to 

previously recorded faults based on historical fault reports 

archived in the plant documents. Within the scope of boiler 

monitoring, a total of 32 variables are examined, measured by 

utilizing 177 sensors. In such scenarios, the approach involves 

calculating the mean value through summation and subsequent 

averaging. While this calculation does not compromise 

accuracy, it serves to simplify computations. Following the 

counsel of the plant operator, certain variables deemed 

insignificant were omitted. Consequently, the definitive count 

of variables that contributed to boiler trips and were employed 

as input for the developed IMSs stands at 32, as outlined in 

APPINDEX-A. The data, spanning three years with a time 

interval of one minute, was segregated into two parts: 70% for 

training and 30% for validation. 

 

2.2 Trips identifications 

 

This case study is conducted under a contractual 

arrangement to create an artificial system that aids operators 

in reducing the frequency of shutdown occurrences. The 

choice was made to actively monitor the plant operations over 

a designated timeframe and gather pertinent operational data 

on the boiler. This dataset encompassed values of 32 distinct 

variables, as enumerated in Table 1. Throughout the 

monitoring period, specific trips were considered, involving 

instances where the power unit underwent a shutdown. 

 

Table 1. Identification of boiler trips 

 
Trip Code Identification of Trip 

Trip-1 low-temperature superheater 

Trip-2 boiler drum level low (a) 

Trip-3 boiler drum level low (b) 

Trip-4 boiler feed pump 

Trip-5 boiler drum level high 

Trip-6 high-temperature superheater 

 

 

3. METHODOLOGY 

 

The primary objective of this case study is to assess the 

performance of the “pure ANN (IMS-I)”, “hybrid ANN-GA 

(IMS-II)”, and the corresponding IMS-I and IMS-II systems 

in diagnosing various types of steam boiler trips. The 

underlying hypothesis posits that the hybrid AIS developed 

would exhibit superior sophistication to the pure AIS for these 

diagnostic tasks. This automated approach aims to surmount 

challenges intrinsic to human intervention within the pure AIS, 
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such as entrapment in local minima or inadequate search 

exploration. 

The methodology employed In the research Is visually 

delineated in Figure 2, commencing from acquiring data 

within the TPP and extending through four distinct phases to 

culminate in the generated outcomes. The code development 

for modelling the power plant’s boiler is executed across these 

four sequential phases, as graphically depicted in Figure 2. 

 

 
 

Figure 2. Phases of methodological execution 

 

3.1 Phase 1: Data acquisition and manning 

 

Due to the significance of plant data preparation, a 

structured framework has been introduced for six prevalent 

boiler trips. These specific trips, identified by experienced 

plant engineers as the most recurrent culprits behind the 

occurrences of trips, are associated with relevant operational 

variables. The schematic representation of the modelling 

procedure is provided in Figure 3. The comprehensive 

interpretation of plant data involves the following procedural 

steps: 

Step 1: Data Identification for Preliminary Analysis – The 

operational variables of the boiler are pinpointed and collected 

for each distinct boiler trip, as listed in Table A1. 

Step 2: Data Preprocessing – During this phase, the data is 

subjected to preprocessing, encompassing the filtration of 

noisy and defective data points, followed by their 

normalization within the range of one to zero. Manual 

intervention was employed to identify and remove any data 

points deviating beyond the ± 0.8 thresholds, regarded as noise. 

It's important to note that numerous instances exhibited no 

scattering of signals beyond the ± 80% range of the sensor’s 

mean value. 

Step 3: Data Post-analysis – This phase involves 

segmenting the data into two separate sets for each trip: Data-

set-A and Data-set-B. Data set A constitutes 70% of the 

complete data set for each trip, utilized for the initial training 

of the developed ANN. On the other hand, Data Set B, 

comprising 30% of the total trip data, is reserved for validation 

purposes. It is pertinent to mention that the chosen percentage 

allocation results from iterative experimentation. Notably, 

every phase of the plant data preparation incorporates distinct 

inter-phases, contributing to the overall process. 

 

 
 

Figure 3. Data preparation scheme 

 

3.2 Phase 2: Development of IMS-I (Pure ANN) 

 

The fundamental training approach employed in this study 

is the FFBP Training Algorithm. This multidimensional 

minimization algorithm has undergone several adaptations to 

reduce errors effectively. 

 

3.2.1 IMS-I structure 

As elucidated in the preceding section, the thirty-two 

variables of steam boilers are designated as the inputs for the 

ANN. Each individual ANN model encompasses two outputs, 

where “0” signifies normal operation, and “1” denotes a 

malfunctioning state (an operational trip). Throughout the 

training and validation of the pure IMS, the outputs manifest 

as continuous values ranging between 0 and 1. Consequently, 

based on the outcomes yielded by the ANN model, a decision-

making process is employed to determine the optimal 

meaningful threshold value that distinguishes between faulty 

and normal operations. 

Numerous ANN configurations were investigated, 

encompassing 1 and 2 hidden layers, 1 to 10 neurons for each 

hidden layer, 3 distinct activation functions, and 4 training 

algorithms. To ascertain the accuracy of IMS-I, the “Root 

Mean Square Error” (RMSE) of the NN outputs (an indicator 

of steam boiler trips) is scrutinized against a novel dataset that 

hasn’t been employed in the NN model’s training. This 

procedure called the validation of the developed IMS-I, 

ensures the reliability of the model’s performance. The 

training of IMS-I was conducted utilizing the tools available 

in MATLAB. The structure of IMS-I, incorporating its input 

and output parameters, is visually depicted in Figure 4.
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Figure 4. Top: IMS-I architecture, Bottom: computational times selection process 

 

3.2.2 Training algorithms 

Within the context of multidimensional minimization 

algorithms aimed at error reduction, the backpropagation 

training algorithm has undergone several adaptations. 

 
Table 2. Convergence times for nine widely recognized Back 

Propagation accelerated training algorithms 

 
Activation 

Function 
Techniques Time Epochs Mflops 

traingdx 
Variable Learning 

Rate 
57.71 980 2.50 

trainRprop Rprop 12.95 185 0.56 

trainscg Scaled Conj. Grad. 16.06 106 0.70 

traincgf Fletcher-Powell CG 16.40 81 0.99 

traincgp Polak-Ribiere CG 19.16 89 0.75 

taincgb Powell-Beale CG 15.0.3 74 0.59 

trainoss One-Step-Secant 18.46 101 0.75 

trainbfg 
BFGS quasi-

Newton 
10.86 44 1.02 

trainlm 
Levenberg- 

Marquardt 
1.87 6 0.46 

 

 

Table 2 presents the convergence times observed for nine 

widely recognized Back Propagation accelerated training 

algorithms addressing a specific problem. 

Only four types of minimization algorithms, as indicated in 

bold in Table 2, have been considered in this study. The 

selection process was informed by the computational times 

reported by Demuth et al. [22], as detailed in the subsequent 

sub-sections. It is worth mentioning that Mayadevi et al. [21] 

endorsed Rprop due to its expedited nature compared to 

standard steepest descent optimization methods. 

 
3.3 Phase 3: Development of hybrid IMS-II (ANN+GA) 

 
Gas operates as search methods inspired by the principles 

of natural genetics. Over time, gas has gained substantial 

popularity as an optimization technique, largely due to its 

demonstrated success in identifying optimal solutions, often 

outperforming more conventional optimization algorithms. 

According to Sivanandam and Deepa [23], typical operational 

characteristics of a genetic algorithm encompass: 
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3.3.1 Structure of the IMS-II 

IMS-II represents a hybrid system that integrates GA 

selection for determining influential variables within the ANN, 

contrasting the conventional approach of relying on plant 

operator decisions. Numerous instances have demonstrated 

the robust search capabilities inherent in Gas. The process 

employed by Gas involves generating new populations 

through selection, recombination, and mutation operators. 

The GA Selection Process initiates the creation of a 

breeding pool composed of strings with above-average fitness 

from the current population. This pool forms the foundation 

for generating new population members. Specifically, the 

Tournament Selection method is adopted, wherein the 

population is repeatedly subdivided into random tournaments, 

each comprising two population members. This study includes 

the fittest individual from each tournament in the reproducing 

pool. This process continues until the size of the reproducing 

pool matches that of the population. A notable advantage of 

Tournament Selection is its independence from the range of 

fitness values, and its concurrent implementation is 

straightforward. 

In the context of binary-encoded Gas, the typical 

recombination operator is crossover. A “crossover probability” 

(Pc) is applied, usually between 0.6 and 0.9. This operator 

involves taking two strings from the reproducing pool and 

exchanging contiguous segments of their structures to generate 

two offspring. Various techniques exist for executing the 

crossover operation. A single-point crossover method is 

employed for the GA at hand, with the site along the string 

selected randomly. 

Within the framework of the binary-encoded GA, the 

mutation operator introduces randomness by occasionally 

replacing a “Bit” with another bit through a minor mutation 

probability. Each string within the population might share the 

same value in each Bit. Consequently, crossover might not 

introduce any deviation from these predefined values. The 

mutation operation safeguards, ensuring that lost values are 

reintroduced, thereby maintaining diversity within the GA 

population. 

 

3.3.2 Process of the hybrid system 

Chromosomes serve as the representation of primary ANN 

topologies and the boiler's operational variables slated for 

optimization. These chromosomes are encoded as binary 

strings referred to as “genes”. Consequently, a chromosome 

contains as many genes as the number of ANN topologies and 

boiler operational variables earmarked for optimization. 

Figure 5(a) illustrates the Binary representation characteristic 

of the hybrid IMS-II. 

The gene optimization process entails the creation of an 

initial population comprising a specified count of 

chromosomes, each assigned “1” or “0” to its genes at random. 

Within the context of selecting ANN topologies and boiler 

operational variables, a gene encompasses a single-bit string 

indicating the presence or absence of a specific plant variable. 

The design of the fitness function plays a pivotal role in the 

application of the GA, as it dictates the optimization objective 

of the GA. In this study, the initial GA population is generated 

randomly, except for one chromosome, configured to 

encompass all ANN topologies and boiler operational 

variables. Subsequently, the generated chromosomes are 

assessed using the Fitness Function. This evaluation begins 

with encoding the chromosomes into NNs, where “1” signifies 

utilizing a specific boiler operational variable, and “0” 

signifies its omission. These NNs are then subjected to training 

and validation with fresh datasets. In this context, the fitness 

of each string is gauged by the root mean square error (RMSE), 

culminating in the ultimate fitness value calculation: 

 

(RMSE)ps = √∑
(di − oi)

2

n

n

i

 (1) 

 

where, I = 1, 2, 3, …., n, ps is the number of training data set, 

and di and oi are the desired and predicated outputs of node i. 

Furthermore, an integral aspect of the evolutionary system 

involves encoding the various potential configurations of NN 

topologies and boiler operation variables into distinct 

genotypes. These NN topologies encompass factors like 

activation functions within hidden layers and output nodes. 

The training process employs multidimensional algorithms in 

conjunction with the backpropagation technique. 

 

 

 

 
 

Figure 5. (a) GA binary representation, (b) WSR 

encompasses four essential aspects of ANN design, (c) 

proposed individual, comprising a total of 46 strings 
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A genotype is a binary sequence comprising either 0s or 1s 

and uniquely corresponding to a phenotype. In this context, a 

phenotype encompasses a set of thirty-two boiler operation 

variables. The “Weak Specification Scheme” (WSR), 

innovated and implemented within this study, employs 

specific associations between designated binary strings and 

predefined network architectures, as stipulated by the user. 

WSR encompasses four essential aspects of ANN design 

illustrated in Figure 5(b). Each genotype within the GA 

distinctly represents a particular phenotype, encompassing 

both NN topologies and training parameters. Figure 5(c) 

presents and explains the proposed individual, comprising a 

total of 46 strings. 

 

 

4. RESULTS AND DISCUSSION 

 

To diagnose boiler trips, this study introduced two 

intelligent monitoring systems, IMS-1 and IMS-2. Both 

systems were developed within the MATLAB environment 

and employed the “Feed-forward” ANN approach. The 

construction of a boiler trip detection system hinges on 

recognizing aberrant operations through datasets that 

exclusively feature instances of faults. The discussion centres 

on identifying optimal NN topology configurations and each 

trip's most influential boiler operation variables. 

This section is categorized into two subsections for 

comprehensive coverage. The initial subsection entails the 

presentation and deliberation of results stemming from IMS-I. 

The subsequent subsection delves into the outcomes achieved 

by the hybrid IMS 

 

4.1 Training results of IMS-I (Pure ANN) 

 

IMS-I is trained using operational data gathered from the 

CFTPP, encompassing instances of both regular and faulty 

boiler operations. The dataset, spanning approximately 2 

continuous days leading up to each trip, constitutes the 

foundational training and validation sets. These data points are 

captured at intervals of 1 minute. 

The training process comprises two integral modes. The 

initial mode, known as preliminary training, ascertains the 

optimal combination of network architecture and training 

algorithms. This determination is accomplished by subjecting 

numerous potential network topologies, both 1-hidden layer 

(1-HL) and 2-hidden layer (2-HL) configurations, employing 

four distinct training algorithms. Comparative analysis of the 

outcomes of preliminary training guides the selection of the 

most suitable combination. The subsequent phase, referred to 

as the basic training process, is dedicated to training the 

identified superior combination of architecture and algorithms. 

This training framework evaluates diverse values of the 

“Coefficient of Momentum” (λ). Additionally, “hyperbolic P”, 

“tangent T”, “logistic L”, and linear summation activation 

functions are tested.  

Existing literature suggests that no universal amalgamation 

of ANN topologies can be universally applied to all boiler trips. 

The outcome of the preliminary training, gauged by the lowest 

RMSE, underscores the efficacy of the logistic activation 

function for the output node within both 1-HL and 2-HL 

architectures for the six boiler trips. The same inference was 

claimed by Chernykh et al. [24] in their application of the 

ANN to predict electric energy consumption.  

 

Their investigation revealed that altering the number of 

neurons within the network's hidden layer has a negligible 

impact on the prediction magnitude. Conversely, adjusting the 

number of neurons in the input layer substantially influences 

the outcomes generated by the network. Notably, particular 

attention should be directed towards the two-layer network 

configuration featuring a solitary neuron in the input layer. 

 

4.2 Analysis of IMS-I diagnosis (Pure ANN) 

 

Six distinct collections of actual data were meticulously 

curated for the purpose of validation. The initial five sets 

encompassed genuine faulty data, serving to assess the 

swiftness with which the suggested IMS-I identifies anomalies. 

In contrast, the final set exclusively comprised genuine data 

from regular boiler operations, allowing for an appraisal of the 

system's functionality under standard operational conditions. 

A comprehensive breakdown of the validation process for 

these real data sets is comprehensively presented in Table 3. 

 

Table 3. Description of the actual data for each trip 

 

Data 

Set 

Fault 

Status 

Starting 

Date/Time 

End 

Date/Time 

No. of 

Intervals 

An Interval 

That Fault 

Was 

Introduced 

1 Trip 1 
05.06.2008 

01:56:00 

05.06.2008 

06:29:00 
275 251 

2 Trip 2 
06.06.2008 

7:23:00 

06.06.2008 

12:54:00 
333 17 

3 Trip 3 
19.12.2008 

21:19:00 

20.12.2008 

01:03:00 
326 50 

4 Trip 4 
30.01.2009 

03:39:00 

30.01.2009 

08:31:00 
293 118 

5 Trip 5 
05.05.2009 

10:20:00 

05.05.2009 

16:22:00 
364 239 

6 Trip 6 
31.05.2009 

20:24:00 

31.05.2009 

23:59:0 
216 38 

 

The reaction of IMS-I to the corresponding dataset of trip 

(1) is represented in Figure 6, which identified as a “low-

temperature superheater” trip. When the steam temperature 

drops below the designated threshold, an elevation in moisture 

content within the produced steam travels to the turbine. This 

situation poses a risk of erosion in the guiding passages, 

leading to damage in headers and steam tubes, ultimately 

resulting in steam leakage. The turbine's stop valves, steam 

chests, and the structural integrity of the initial rotating stage 

within the steam turbine may be compromised. 

A rapid decline in steam temperature can transpire due to 

water carryover from the boiler to the superheater header or 

due to malfunctions in the attemperator system. An early alert 

mechanism is essential through an Advanced AIS to promptly 

notify operators, enabling swift action to mitigate water 

carryover and uphold normal operating temperatures. 

Given the absence of an early detection and diagnosis 

system, operators are compelled to halt unit operations. In the 

context of this case study, data sampling from the plant covers 

275 minutes before the shutdown event. The dataset initiation 

features a period of typical boiler operation, with the 

introduction of faulty operation commencing at the 251st 

interval. The devised IMS-1 identifies the anomaly within the 

235th interval, marking a sixteen-minute lead over the plant's 

monitoring system. With an IMS-I output value of 0.57, it is 

categorized as a subtle fault indication, lying near the defined 

threshold range. 
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Figure 6. IMS-I predicted outputs and actual plant data for 

trip (1), low-temperature superheater 

 

The boiler drum's water level is typically slightly below its 

geometric center. A low water level within the drum could lead 

to severe consequences for the boiler tubes. An automated 

protection system is in place to regulate the water level. 

However, in cases where this automated protection system 

fails to operate within a designated timeframe, it becomes 

imperative to have an alarm system within the control room. 

This alarm system alerts operators, enabling them to conduct 

the necessary inspections and take appropriate measures. In 

instances where there is no early detection and alarm system 

in place, a critically low drum water level can become 

extremely hazardous. A fault in this scenario could result in 

the overheating of water tubes, leading to localized tube 

melting and water leakage into the furnace resulting into “fish 

mouth” tube deformations within the water wall. Such failures 

have been known to cause furnace explosions under specific 

conditions, often contingent on the location of the failure. 

Water mix with coal generates a combustible gas that may lead 

to a boiler furnace explosion. 

Figure 7 illustrates the outputs from IMS-I for trip (2), 

denoted as “boiler drum level low”. The total duration of data 

sampling covers a span of 334 minutes preceding the 

shutdown event. In this instance, the shutdown transpired due 

to the plant's absence of an alarm system. Operators were 

compelled to halt unit operations to address the underlying 

cause and avert a potential explosion. The fault initiation 

occurred during the 17th interval. Notably, IMS-I successfully 

identifies the fault 10.0 intervals before the plant's monitoring 

system does, featuring an output value of 0.65. The IMS-I 

output dips below the threshold of 0.5, indicative of normal 

boiler operation, within five minutes of the fault occurrence 

and maintains this range for several ensuing intervals. 

 

 
 

Figure 7. IMS-I predicted outputs and actual plant data for 

the trip (2), boiler drum level low 

As previously indicated, the power plant comprises three 

identical units. The prediction for the trip (3), depicted in 

Figure 8, bears resemblance to trip (2), which is characterized 

as a “boiler drum level low” trip. However, this event occurred 

within Unit 3 of the CFTPP. The IMS-I output for this event 

is illustrated in Figure 8. The timeframe encompassed in the 

total data sampling interval extends to 327 minutes prior to the 

shutdown event. The fault was introduced during the 50th 

interval. Notably, IMS-I adeptly identified the fault. 

Remarkably, even as early as the 40th interval, the system 

strongly signalled the presence of a fault with an output value 

of 0.65. It is worth mentioning that continuous fault detection 

by the intelligent system after initial detection is not of 

paramount importance. The swiftness with which the system 

can detect anomalies holds significance in fault detection. 

 

 
 

Figure 8. IMS-I predicted outputs and plant data for the trip 

(3), boiler drum level low 

 

Figure 9 illustrates the IMS-1 output during the fourth set of 

real data for the “boiler feed pump” trip (4). The time span 

covered by the total data sampling interval is 293 minutes 

leading up to the shutdown event. The monitoring of the data 

commences with a regular boiler operation, while the 

occurrence of a faulty operation takes place in the 118th 

interval. IMS-I identified the fault concurrently with the plant 

monitoring system interval (118th step), yielding an output of 

0.53. Subsequently, the IMS-1 output surged into the high-

high alarm zone, reaching a value of 0.96, which can be 

considered a robust indication. It is worth noting that, amid a 

fault event, the system's output experiences an abrupt drop 

before the fault begins to subside. As mentioned earlier, this 

sudden drop is not considered a network shortcoming. Rather, 

the pivotal factor in fault detection lies in the speed at which 

detection occurs. 
 

 
 

Figure 9. IMS-I predicted outputs and plant data for the trip 

(4), boiler feed pump 
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Controlling the water level in a steam drum of a boiler is a 

complex task due to the inherent instability of the “water 

level”, which is a dynamic mix of water and steam bubbles 

that undergoes fluctuations in response to pressure changes. 

As the demand for steam increases, the pressure within the 

boiler decreases, causing the water level to rise. Additionally, 

when fresh water is supplied from the feed tank, it has a 

cooling effect on the drum water, leading to the collapse of 

steam bubbles and a sudden drop in the water level. 

Figure 10 illustrates the IMS-1 prediction and the results 

obtained from the fifth real data set of a “boiler drum level 

high” trip (5). The total data sampling interval covers 365 

minutes leading up to the shutdown event. The monitoring of 

boiler data began under normal operating conditions, and the 

fault was introduced during the 239th interval. The intelligent 

system effectively detected the faulty operation a mere 5 

minutes before the plant monitoring system did, with the IMS-

I output registering a value of 0.71. Notably, the intelligent 

system's output strongly indicated abnormal boiler operation, 

as evidenced by the higher values observed towards the end of 

the fault period. 

 

 
 

Figure 10. IMS-I predicted outputs and actual plant data for 

the trip (5), boiler drum level high 

 

Figure 11 depicts the output of IMS-I in response to the 

sixth real data set, representing a “high-temperature 

superheater” trip. The complete data sampling interval 

encompasses the 217 minutes leading up to the shutdown 

event. The graph demonstrates that while the intelligent 

system successfully detects the fault, there are instances where 

the system output momentarily returns to the range associated 

with normal operation. This phenomenon occurred twice 

during the primary phase of the particular fault and towards 

the fault period's conclusion (after interval 78). The periodic 

oscillation observed in the NN output values can be attributed 

to the inherent characteristics of sensor or actuator faults. This 

fault was replicated by introducing periodic noise to the 

readings of the boiler wall water tube sensors and actuators, 

which was modelled as a sine function. The system exhibited 

remarkable speed in detecting the fault within 15 intervals 

(approximately 23 minutes prior to the plant monitoring 

system). The output value of IMS-I was 0.78, signifying a 

robust indication of the presence of faulty boiler operation. 

 

4.3 Analysis of IMS-II diagnosis (hybrid ANN-GA) 

 

The optimal selections made by the GA search for all six 

boiler trips are presented in Figure 12. The outcomes highlight 

those networks with two hidden layers generally outperformed 

those with a single hidden layer, except for trip (3). The hybrid 

system consistently exhibited a lower error value of less than 

0.5. Additionally, a specific set of operational variables was 

identified as ANN inputs. The results indicate that, in most 

instances, the BFGS Quasi-Newton and resilient 

backpropagation training algorithms yielded superior 

performance compared to the other two training algorithms. 

 

 
 

Figure 11. IMS-I predicted outputs and actual plant data for 

the trip (6), high-temperature superheater 

 

 
 

Figure 12. RMSE VS. trips for IMS-I and IMS-II 

 

4.4. Comparison between pure and hybrid systems 

 

The Problem Space addressed in this study encompasses a 

total of 246 potential combinations. Each combination 

necessitates multiple training iterations with varying initial 

conditions. Considering this, conducting an exhaustive search 

is notably challenging, rendering the sole use of the pure NN 

technique somewhat unclear. A sophisticated optimization 

technique has been integrated with the NN approach to address 

this complexity, resulting in a hybrid intelligent system. This 

hybrid system possesses the capability to intelligently navigate 

extensive problem spaces, a feat that would be infeasible with 

an exhaustive search. Consequently, the processing power of 

this approach is significantly superior to that of an exhaustive 

search, and the resultant solutions are more likely to approach 

optimality than those generated solely by a pure NN system. 

IMS-II was introduced to optimize and automate the 

selection of optimal combinations of NN topologies and boiler 

operation variables for specific boiler trips. The outcomes of 

trip detection predictions by both IMS-1 and IMS-2 are 

detailed in Table 4. The results obtained underline that IMS-I 

effectively detected the occurrence of specific boiler operation 

trips before the faults manifested, which is deemed satisfactory. 

Conversely, the findings from IMS-II highlight its ability to 

identify optimal solutions, leading to a satisfactory level of 

accuracy in the NN training and validation processes, as 

evident from the RMSE values depicted in Figure 12 across 
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different trips. 

While the pure NN technique does address numerous spatial 

issues, these can be mitigated by constraining the choices of 

accessible NN topologies and operational variables. However, 

as the problem space expands, the likelihood of a substantial 

reduction in probability becomes evident. 

 

Table 4. The optimal solution as given by the IMS-I and IMS-II Boiler operation trips best GA selection interpretations 

 

Trip HSG. 

RMSE 

Selected Input Variables 
No. of 

Inputs 

ANN Topologies 

Fitness 
Training 

Algorithm 
Architecture 

Activation 

Function 

1 G30 0.30004 V2, V8, V11 3 LM 7HL1-4HL2 L+P+L 

2 G11 0.18381 V1, V3, V9, V12 4 Rprop 10HL1 L+P 

3 G14 0.13598 V1, V2, V3, V4, V5, V6, V9 7 BFGS 3HL1-5HL2 L+T+T 

4 G11 0.44721 
V3, V7, V10, V11, V12, V17, V22, 

V23, V26 
9 SCG 

2HL1-

10HL2 
P+L+L 

5 G2 0.27943 V8, V11 2 BFGS 4HL1-6HL2 L+T+P 

6 G4 0.31126 V2, V7, V10, V11, V12, V14 5 BFGS 5HL1-7HL2 T+L+L 

 

 

5. CONCLUSIONS 

 

This study developed and evaluated two artificial intelligent 

monitoring systems designed to detect boiler trips within a 

coal-fired thermal power plant. The first system, referred to as 

IMS-1, employs a pure ANN approach, while the second 

system, named IMS-2, hybridize GA techniques with ANN. 

These systems' efficacy was assessed using operational data 

obtained from six distinct trip events within the thermal power 

plant. 

The outcomes of the investigation underscore the capability 

of the feed forward NN methodology to systematically explore 

optimal NN topology configurations for each trip, guided by 

the NN performance indicator, RMSE. Additionally, the 

integration of GA successfully facilitated the selection of 

superior NN topologies and specific boiler operational 

variables for individual boiler trips, effectively replacing 

subjective human judgment with a structured optimization 

process. 

Comparing the two systems, IMS-II, which relies on 

optimization properties, emerges as a preferable option in 

many instances due to its automated approach, as opposed to 

IMS-I. Notably, both IMS-I and IMS-II exhibit enhanced trip 

detection performance compared to the actual plant control 

unit. However, the pure AI system, IMS-I, showcased 

marginally higher ability to detect all six boiler trips prior to 

the intervention of the plant control system. Consequently, 

IMS-I holds potential as an online, dependable monitoring 

system for TPPs. 
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NOMENCLATURE 

 
AIS Artificial Intelligent System 

ANN Artificial Neural Network 

CHP Combined Heat Power Plant 

GA Genetic Algorithm 

IMS Intelligent Monitoring System 

MW Mega Watt 

NN Neural Network 

 

 
APPENDIX 

 

Table A1. Influential boiler operation variables 
 

Code Variables No. of Sensors Unit Criteria 

V1 Total Steam flowrate 1 t/h  

V2 Feedwater flowrate 1 t/h  

V3 Drum pressure 4 Bar g = 1/4∑ 𝑉34
4
1   

V4 Superheater steam pressure 1 Bar g  

V5 Superheater steam temperature 1 ℃  

V6 Re-heater outlet temperature 4 ℃ = 1/4∑ 𝑉44
4
1   

V7 Superheater exchange metal temperature 4 ℃  

V8 Intermediate superheater exchange metal temperature, A 4 ℃ = 1/4∑ 𝑉84
4
1   

V9 Superheater inlet header metal temperature 4 ℃ = 1/4∑ 𝑉94
4
1   

V10 Final superheater outlet temperature 6 ℃ = 1/6∑ 𝑉106
6
1   

V11 Superheater steam pressure transmitter 7 bar = 1/7∑ 𝑉117
7
1   

V12 Feedwater valve station 8 t/h = 1/8∑ 𝑉128
8
1   

V13 Feedwater control valve position 4 % = 1/4∑ 𝑉134
4
1   

V14 Drum level corrected 1 mm  

V15 Drum level compensated 1 mm  

V16 Feedwater flow transmitter 1 %  

V17 Boiler circulation pump1 pressure 1 bar  

V18 Boiler circulation pump 2 pressure 2 bar = 1/2∑ 𝑉182
2
1   

V19 Low superheater left wall outlet before superheater dryer 4 ℃ = 1/4∑ 𝑉194
4
1   

V20 Low superheater right wall outlet before superheater dryer 2 ℃ = 1/2∑ 𝑉202
2
1   

V21 Low superheater left wall after superheater dryer 2 ℃ = 1/2∑ 𝑉212
2
1   

V22 Low superheater right wall exchange metal temperature 1 ℃  

V23 Intermediate superheater exchange metal temperature, B 1 ℃  

V24 Intermediate superheater outlet before superheater dryer 1 ℃  

V25 Intermediate superheater header metal outlet temperature 2 ℃ = 1/2∑ 𝑉252
2
1   

V26 High superheater outlet header metal temperature 6 ℃ = 1/6∑ 𝑉266
6
1   

V27 Steam pressure at the re-heater outlet 2 bar = 1/2∑ 𝑉272
2
1   

V28 Superheated steam outlet pressure 11 bar = 1/11∑ 𝑉2811
11
1   
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V29 Superheater water injection compensated flow 10 ton/hr = 1/10∑ 𝑉2910
10
1   

V30 Water pressure at economizer inlet 6 bar = 1/6∑ 𝑉306
6
1   

V31 The temperature at the economizer inlet 1 ℃  

V32 The temperature at the economizer outlet 1 ℃  
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