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Predicting the secondary structure of proteins continues to be a significant hurdle in the 

field of bioinformatics. This anticipation plays a crucial role as an intermediary stage in 

addressing the challenge of predicting the tertiary structure of proteins, which is 

instrumental in determining their functions. This prediction holds the potential to facilitate 

drug development and contribute to the identification of viral diseases. One can forecast the 

secondary structure of a protein by examining its primary components, including the amino 

acid sequence and various additional factors. Through the examination of established 

sequences and recognized protein types, it becomes feasible to anticipate unfamiliar 

sequences. The objective of this article is to enhance the forecast accuracy of protein 

secondary structure by adjusting the current code, aiming to reach an 80% accuracy rate. 
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1. INTRODUCTION

Proteins, which are large molecules, play crucial roles in 

organisms by engaging in vital activities such as conducting 

biochemical reactions, transporting nutrients, and detecting as 

well as relaying messages. Hence, genes serve as the storage 

of genetic information, while proteins act as the essential 

components driving life’s processes. Proteins consist of 

distinct sequences of amino acids, and their intricate three-

dimensional configuration enables them to carry out intricate 

biological tasks. The specific attributes of each protein are 

established through the arrangement and sequence of amino 

acids. The hierarchical organization of proteins was 

emphasized by Lange, a biochemist from Denmark, who 

introduced the terms “primary,” “secondary,” and “tertiary” 

structures. The fundamental makeup of proteins is also known 

as the organization of amino acids in a straight chain of 

polypeptides. When two proteins share a notable resemblance 

in their primary structure, they are considered homologous, 

indicating that their DNA sequences also exhibit similarity. 

The prevailing notion is that two proteins that are homologous 

are also connected through evolution, having originated from 

a shared ancestral gene. 

The main components of the second structure consist of beta 

strands and alpha helices. The arrangement of the second 

structure in a specific area of the polypeptide chain is 

influenced by the arrangement of the first structure. Certain 

patterns of amino acids are appropriate for creating beta or 

alpha-Helix structures, while the remaining patterns are better 

suited for the formation of loop regions. The typical 

arrangement of building elements is characterized by simple 

motifs. Motifs arise when alpha helices or beta strands that are 

nearby and closely related come together and pair within a 

chain. Typically, multiple motifs, referred to as domains, come 

together and unite, giving rise to condensed spherical 

structures [1]. 

Protein structure is established through experimental 

techniques such as X-ray crystallography and nuclear 

magnetic resonance (NMR). However, these approaches are 

expensive and cannot be applied to every protein [2]. Over the 

course of the last three decades, there has been a construction 

of more than 14,000 well-known proteins, while the sequences 

of over 600,000 recognized proteins have been successfully 

deciphered. From where does the origin of the topic that 

involves the provision of an overwhelming quantity of 

information, which can be utilized to deduce the fundamental 

principles of protein structure, emerge? The investigation of 

structure prediction has been ongoing since 1970 [3-5]. Within 

this study, the methods proposed between 2000 and 2015 have 

been scrutinized, allowing for the observation of a progressing 

trend in recent years by analyzing the advantages and 

disadvantages associated with each approach [6]. 

This research is structured as follows: Section 2 covers the 

fundamental biological concepts, while Section 3 focuses on 

presenting the overall approach of the articles regarding 

protein structure prediction. The articles will be compared 

based on their accuracy in predicting the secondary structure 

using the Protein Data Bank (PDB) dataset. Furthermore, the 

advantages and disadvantages of each algorithm will be 

discussed. In Section 4, we will delve into the rationale behind 
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choosing a neural network as the implementation method for 

this research, along with outlining the implementation steps. 

Finally, the conclusion will be provided in the last section. 

 

 

2. BACKGROUND 

 

Previous research predictions relied on an older version of 

the PDB dataset that included 496 non-homologous protein 

sequences, and their accuracy was around 54%. However, in 

their recent article, they managed to achieve an accuracy of 77% 

by employing a combination of various classification methods 

with the utilization of neural networks. Nonetheless, the 

primary drawback of this approach lies in its time-consuming 

nature, which raises concerns regarding its efficiency. 

Sarmala et al. [7] introduced an algorithm for the Feed-

Forward neural network approach. Despite the availability of 

established experimental techniques for predicting the 

polyproline protein, it was chosen as the input for this neural 

network. However, the protein was not accurately identified 

due to the similarity between the Cation and Nevertheless 

classes. Furthermore, the uncommon curvature of this protein 

contributed to its misidentification. As a result, the sliding 

window algorithm was introduced in 2001 to predict the 

secondary structure. Different articles have reported varying 

window sizes for structure prediction using this approach. 

Subsequently, this method has served as a fundamental basis 

for other proposed techniques. 

Unlike other articles, in the study by Pollastri et al. [8], 

amino acids in the conformational class are classified into 

eight classes instead of three classes: H = alpha Helix, G = 3-

Helix, I = 5-Helix, B = residue in isolated b-bridge, E = 

extended standard, T = hydrogen bonded turn, S = bend. In the 

new neural network training method, the neurons are trained 

separately for each class, and the prediction accuracy 

improved to 78% on the PSI dataset by applying new 

modifications. 

An innovative endeavor was undertaken to categorize the 

PDB-select dataset into three distinct classes, namely all-a, all-

b, and a-b proteins in [9]. Additionally, the determination of 

amino acid preference towards protein structural classes such 

as a-Helix, b-strand, and coil was part of this pioneering effort. 

Each class’s elements are predicted individually. The 

subsequent columns measure the frequencies of these amino 

acids specifically for their tendency towards a-Helix, b-strand, 

and coil. Moreover, employing the sliding window algorithm 

on this dataset resulted in more precise predictions compared 

to previous methods, showing a 4.8% enhancement over the 

CHou and Fasman method. This approach yields the most 

accurate predictions when applied to a large sequence database. 

The algorithm’s standout feature is its high speed [10-12]. 

 

 

3. IMPLEMENTATION USING NEURAL NETWORK 

 

According to the research background, it has been stated 

that the use of neural networks in MATLAB makes it possible 

to predict the secondary structure. MATLAB’s Artificial 

Neural Networks (ANN) are built by assembling basic 

processing units known as artificial neurons. Artificial neural 

networks, similar to the human brain, exhibit a proclivity for 

retaining empirical knowledge and employing it when the 

need arises. This naming rationale is also based on the 

acquisition of knowledge from the surrounding environment 

by training the synaptic connections’ strength [13-15]. These 

connections, in turn, serve as storage for the acquired 

knowledge. Encoding has employed BCD codes, where 

distinct BCD codes are assigned to every digit and symbol 

within the chemical structure. Each amino acid has its own 

unique sequence that serves as its encoding, which is 

determined by the existence of 20 different amino acids. Our 

objective is to make use of a multilayer network composed of 

feedforward Perceptron networks, also known as MLP [16]. 

To update the network’s weights, we have employed the error 

backpropagation algorithm. It is important to note that the 

network comprises only a single hidden layer. Three protein 

structures are used to train the network, and once it undergoes 

testing with encoded data, the same encoded data is utilized to 

derive the results [17-20]. 

 

3.1 Model system 

 

In this study, MATLAB is utilized to implement and operate 

neural networks for the purpose of simulating information 

processing through pattern recognition. These neural networks 

and their models are employed in prediction tasks. The neural 

network’s prediction system is composed of three layers. The 

initial layer serves as the input, receiving a sequence of amino 

acids. The second layer, known as the hidden layer, conducts 

prediction computations. Finally, the third layer acts as the 

system’s output, showcasing the displayed predicted 

secondary structure. Below is a representation of the 

adaptation class [21]. 

Protein sequence: ABABABABCCQQFFFAAAQQAQQA 

Adaptive class: HHHH EEEE HHHHHHHH 

H signifies a spiral, while E represents a loop. Based on the 

amino acid sequence A1, A2, ..., proteins usually consist of 

approximately 32% helical structures, 21% sheet structures, 

and 47% loop structures. Predicting the secondary structure 

poses a challenge due to the fact that individual amino acids 

exhibit distinct secondary structures, including helices, sheets, 

and more [22].  

 

3.2 Dataset 

 

The dataset known as Rost-Sander comprises protein 

structures that encompass a diverse array of domain types, 

compositions, and protein lengths. Attachment 1 includes a 

portion of the dataset known as RostSanderDataset.mat, where 

each protein sequence is accompanied by a structural 

assignment [23]. 

 

3.3 Neural network creation 

 

The task of anticipating the second structure can be viewed 

as a pattern recognition challenge, wherein the network is 

trained to identify the structural condition of the remaining 

segments observed within the sliding window. In Appendix 5, 

you can find the code for implementing a neural network for 

pattern recognition. This network utilizes the input and output 

matrices specified earlier and incorporates a hidden layer 

consisting of three nodes. The network is composed of three 

layers, as depicted in Figure 1 [24]. The initial layer serves as 

the input for the system, comprising a sequence of amino acids. 

The second layer acts as a hidden layer, performing prediction 

computations. Finally, the third layer represents the system’s 

output, presenting the displayed predicted secondary structure. 
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Figure1. Three-tier predictive system model, input (sequence 

of amino acids), computational for prediction, output 

(predicted secondary structure) 

 

3.4 Neural network training 

 

The training of the pattern recognition network is based on 

the default scaled dual-gradient algorithm, although 

alternative algorithms are also accessible. During every 

training iteration, the training sequence is introduced to the 

network using the aforementioned sliding window technique. 

Algorithm 1 shows the steps of building and training the neural 

network model, which is described in detail below [25-27]. 

 

Algorithm 1. Learning process of proposed neural 

network 

1.  Input: RostSander Dataset 𝑋 ∈ 𝑅𝐼1𝐼2⋯𝐼𝑁×𝐼𝑀  

2.  [XTrain, YTrain] = Train4DArrayData; 

3.  [XTest, YTest] = Test4DArrayData; 

4.  Model Construction:  

5.  layers   = [ 

    imageInputLayer  [(28 28 1 )]  

    fullyConnectedLayer (128 )  

    reluLayer 

    fullyConnectedLayer (64 )  

    reluLayer 

    fullyConnectedLayer (10 )  

    softmaxLayer 

    classificationLayer]; 

6.  Parameter Settings: 

7.  options = trainingOptions('adam ... ,' 

      'InitialLearnRate', 0.001 ... , 

      'MaxEpochs', 10 ... , 

      'MiniBatchSize', 32 ... , 

      'ValidationData', {XTest, YTest}... , 

     'Plots', 'training-progress'); 

8.   Forward Propagation: 

9.   net = trainNetwork(XTrain, YTrain, layers, options); 

10.  Model Evaluation: 

11.  YPred = classify(net, XTest); 

12.  Back propagation 

 

Constant evaluation of an element occurs at every given 

moment. The hidden units analyze the incoming signals from 

the input layer and produce an output signal, which resembles 

the firing of a neuron, by applying the logsig transfer function. 

The weights of the units are adjusted to minimize the 

difference between the obtained output and the desired output 

specified in the target matrix. For the actual code, please 

consult Attachment 7. Throughout the training process, a 

training tool window is launched, as depicted in Figure 2, and 

this particular window showcases the ongoing progress. The 

training showcases various aspects such as the algorithm used, 

performance metrics measured, the type of error taken into 

account, and more [28-30]. 

The function called “plotperform” allows you to visualize 

the errors encountered during the training process, including 

training, validation, and test errors. By running the specified 

commands, you can view a graphical representation of these 

errors in Figures 3-7. 

 

 
 

Figure 2. The training and display tool window for the 

details of the training cycle and implementation execution in 

MATLAB 

 

 
 

Figure 3. The plot function displays the training trend. It can 

be seen that in epoch 45 is the point of convergence of 

different lines 
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Figure 4. The representation of the validation process 

 

The training process is halted when any of the specified 

conditions are met. For instance, in the mentioned training 

(net.trainparam), if the validation errors surpass a 

predetermined threshold over a certain number of iterations or 

reach the maximum permissible count of 1000, as outlined in 

Attachment 9, the training process is terminated. 

In order to analyze the response of the network, we assess 

the network’s outputs and compare them to the anticipated 

results (targets). This evaluation is performed through the 

examination of the confusion matrix. By studying this matrix, 

we can gain insights into the network’s performance and 

identify any discrepancies or errors in its predictions. 

The diagonal cells represent the count of accurately 

categorized elements for every structural class. This displays 

the cells obtained from various unclassified positions, where 

some positions, such as Helix, have been mistakenly predicted 

as the coil. The cells colored in blue represent the percentage 

of accurately predicted elements (shown in green), while the 

percentage of incorrectly predicted elements is indicated by 

red-colored cells. We can analyze the ROC curve and a 

graphical representation of the true positive rate compared to 

the false positive rate. This analysis can be done using the 

provided code, and the results are illustrated in Figure 6. 

 

 
 

Figure 5. Ownership matrix and its comparison with network 

output 

 

 
 

Figure 6. Receiver Operating Characteristic (ROC) curve 
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(a) Test confusion matrix (b) All confusion matrix 

 
 

(c) Training confusion matrix (d) Validation confusion matrix 

 

Figure 7. Utilization of ownership matrix in educational subsets, validation, and testing 

 

 

4. INNOVATION 

 

The RostSander Dataset is divided into three subcategories, 

considering the preferences for A-Helix, B-sheet, and coil, in 

order to identify proteins that include E. These proteins were 

not previously predicted using the previous method. It is clear 

that the training speed remains stable. Subsequently, we 

generated a new graph of the “plotperform” function and 

noticed that the training pattern remains consistent, albeit with 

a gentler slope, as depicted in Figure 8. 

To illustrate the validation, we depict Figure 9. Furthermore, 

the potential number of errors remains unchanged under these 

circumstances, similar to the previous situation. 

Figure 10 illustrates the ownership matrix, highlighting the 

variation from Figure 10, specifically in the second row and 

second column, which corresponds to the structural class E. 

In the dataset, the item located at the intersection of the 

second column and second row, represented by zero, can be 

classified with a 10% E accuracy. Figure 11 was created to 

showcase the properties of the receptor agent and illustrate the 

relationship between the actual positive rate and the false 

positive rate. By comparing it to Figure 11, we can see that 

Classes 1, 2, and 3 exhibit noticeable proximity to one another, 

indicating their closeness as classes.

 

 

1465



 
 

Figure 8. The plot function illustrates the training trend. The 

best result is obtained in epoch 13 with 0.3048% accuracy 

 

 
 

Figure 9. Validation process visualization 

 

 
 

Figure 10. Ownership matrix and its comparison with 

network output 

 
 

Figure 11. Receiver operating characteristic (ROC) curve 

 

 

5. EXPERIMAENTAL RESULTS  

 

In this work, 70% of the samples were utilized to train the 

classification model, and 15% of the dataset's samples were 

used for each of the validation and test phases. The outcomes 

are also assessed using the F1-score, accuracy, precision, and 

recall criteria (Eqs. (1)-(4)). 

 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

Precision = 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

F1-Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
 (4) 

 

In this part, the performance of the proposed method is 

checked on the RostSander Dataset. For this purpose, the 

neural network model is built with and without regularization. 

Table 1 shows the results obtained for the two phases of 

training and testing for these two modes of reporting. The 

results of this table are reported based on four precision, recall, 

F1-score and accuracy evaluation criteria. As can be seen, the 

proposed neural network model with regularization has 

obtained better results. For example, it has achieved 98.42% 

precision, 98.01% recall, 97.55% F1-score and 98.15% 

accuracy in the training phase. Also, in the test phase, it has 

achieved 97.02% precision, 96.13% recall, 96.57% F1-score 

and 97.38% accuracy. Therefore, in the next part where the 

comparisons are made, the same model with regularization is 

used. 

The proposed approach was contrasted with previously 

published efforts in the RostSander dataset sample 

classification. Table 2 lists previous studies that make use of 

deep learning techniques. A CNN+LSTM classifier was 

utilized by Du et al. [31] to categorize seven types of proteins 

in RostSander dataset. A distinct component for categorization 

based on RostSander dataset was added by Lu et al. [32]. The 

study's findings for 10,436 proteins showed evaluation 

accuracy of 82.10%. Furthermore, Yang et al. [33] provided a 

Detrending+ResNet-18 approach for categorizing 10,093 
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cases. In the assessment section, they claimed a 88.23% 

accuracy rate in identifying seven different types of proteins. 

With more inputs, deep learning techniques like CNN have 

shown to perform better; as a result, the techniques in Table 2 

are sophisticated and have typically respectable accuracies. 

The suggested approach can compete with existing 

classifications and shows behavior similar to classifiers built 

using RostSander dataset. 

 

Table 1. The results obtained from the recognition of the 

model 

 

Models Precision Recall 
F1-

Score 
Accuracy 

Train Phase 

(Without 

Regularization) 
98.00% 97.11% 98.65% 98.13% 

Train Phase 

(With 

Regularization) 

98.42% 98.01% 97.55% 98.15% 

Test Phase 

(Without 

Regularization) 

95.53% 97.36% 94.94% 94.01% 

Test Phase (With 

Regularization) 
97.02% 96.13% 96.57% 97.38% 

 

Table 2. Comparison of proposed method with other state-of-

the-arts method on the RostSander dataset 

 

Reference Method Accuracy 

Du er al. [31] CNN+LSTM 82.10% 

Lu et al. [32] ResNet-31 89.87% 

Yang et al. [33] XGBoost 88.23% 

Zamora-Resendiz and 

Crivelli [34] 
CNN 85.24% 

Zhang et al. [35] CNN+LSTM 90.14% 

Zhang et al. [35] CNN+LSTM 88.00% 

Torisi et al. [36] MLP 90.12% 

Proposed Method Neural Network 94.22% 

 

 

6. CONCLUSION 

 

This approach presented here uses the structural states of 

nearby proteins to forecast the structural condition of a protein. 

Nevertheless, there exist additional constraints in forecasting 

the structural composition of protein components, specifically 

when considering the minimum length requirement for each 

structural element. However, it is possible to tackle these 

limitations in the future and find solutions to overcome them. 

Specifically, Helix is designated for any set of four or more 

consecutive elements, while the Sheet structure is allocated to 

any group of two or more neighbouring residues. One 

approach to integrating this kind of information is to create 

supplementary networks, where the initial network predicts 

the structural state based on the amino acid sequence, and the 

second network predicts the structural element based on the 

predicted structural state. However, no optimization has been 

conducted in this regard. 
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