
Candidate Best Optimizations Sequences for Code Size Reduction

Esraa H. Alwan1* , Ali Kadhum M. Al-Qurabat2

1 Department of Computer Science, College of Science for Women, University of Babylon, Babylon 51002, Iraq
2 Department of Cyber Security, College of Sciences, Al-Mustaqbal University, Babylon 51001, Iraq

Corresponding Author Email: esraa.hadi@uobabylon.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290434 ABSTRACT

Received: 29 May 2024

Revised: 10 June 2024

Accepted: 30 July 2024

Available online: 21 August 2024

Recently, the number of smaller and smarter embedded devices have rapidly increased. This

increment puts more pressure on the compiler developer to develop more dedicated

application programs for these devices. Modern compilers (like LLVM) offer standard

optimization levels (flags) that deal with reducing the code size named Os and Oz flags.

The question arise in this paper in is: Is it possible to find sequence that deliver smaller code

compare to standard flags? A Sign Table, it is the suggested method that is introduced in

this paper. It can suggest an optimization sequence that can reduce the code size for set of

unseen program. Initially, two thousand optimization sequences are generated randomly.

Each sequence is compiled with 50 programs, where the programs that give smaller code

size compared with the Os or Oz flags are extracted. After building the signs table, which

contains the sequences that give the average programs sizes smaller than the Os or Oz flags,

the process of quantifying similarity between the unseen program and the programs

contained within the signs table is performed. The sequences that belong to the most similar

programs are selected to compile the unseen program. The proposed methodology is

assessed through an empirical investigation, employing three benchmark suites, namely

PolyBench, Shootout, and Stanford. The experiments show that the proposed method

reduces the unseen program size by about 9% compared standsrd optimization flags.

Keywords:

code size reduction, optimization sequence,

LLVM

1. INTRODUCTION

Recent compilers contain various optimizations, which can

frequently be manually switched on or off via compiler flags

or switches. With so many optimizations available to

compilers, it's practically hard to choose which is best for a

single program. Traditionally, compiler developers have

operated under one of two assumptions: either a predefined

optimization sequence is "good enough" for all programs, or

supplying users with an extensive collection of optimization

flags is sufficient, so putting the burden to the user [1-3].

An optimization sequence is a collection of optimization

passes that can be applied on the program's Intermediate

Representation (IR). Choosing the right optimization pass and

the right order for given application is called phase-ordering

problem. The set of all optimization sequences is known as the

optimization sequence space, and it is incessantly large. To

explain the phase-ordering problem, let us establish a boolean

vector o, with components oi representing the various

compiler optimizations. Each optimization oi can be activated

(oi=1) or disabled (oi=0). The vector o depicts a phase-

ordering compiler optimization sequence in the n-dimensional

factorial space |Ophases| = n!, where n is the number of

optimizations. However, the provided limit is for a made easier

phase-ordering problem with a constant vector length and lack

of repetitions. Allowing repetition and dynamic duration

broadens the design possibilities to:

|Ophases-repetition| =∑ 𝑛𝑚
𝑖=0

i... (1)

where, n is the number of optimizations being investigated,

and m is the maximum length for the optimization sequence.

For instance, with n optimizations and m=10, |Ophases

repetition| will result in more than 11 billion various

combinations for each application [4]. Many default

optimization levels are provided by compilers, e.g., O1, O2,

O3, Oz Some of these optimization levels O2, O3 focus on

enhancing the program execution time, while the Os, Oz are

dedicate to dealing with reducing code size [5-7]. Through the

execution of the program, all the optimization flags will be

turned off by default, and the expert can turn some or all of

them on according to the program's needs. For example, the

GCC has more than 200 passes while the LLVM Clang and

opt have more than 100 passes [8-10]. The sequence of these

passes called the optimization sequence. Choosing the right

sequence can help the programmers achieve better

performance [11, 12].

Clearly, some optimizations can increase the code size, like

loop unrolling or procedure inlining, while others can decrease

it, for example, dead code removal or strength reduction [13,

14].There are two reasons that arise to answer the question of

"why is there a need to turn off some optimization passes

instead of applying all of them ". The first is, the characteristics

of some passes might not match with the characteristics of the

program. The second reason is that some of these passes have

Ingénierie des Systèmes d’Information
Vol. 29, No. 4, August, 2024, pp. 1611-1617

Journal homepage: http://iieta.org/journals/isi

1611

https://orcid.org/0000-0002-6973-266X
https://orcid.org/0000-0002-8522-290X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290434&domain=pdf

a negative impact on the quality of the resulting program [15-

18]. Thus, instead of speeding up the program or decreasing

the program size, the reverse may occur. An illustrative

example involves the employment of inlining, a technique that

substitutes a function invocation with its corresponding body.

This particular transformation has the potential to cause a

phenomenon known as code expansion, subsequently

increasing the potential for cache misutilization [19, 20]. The

execution time of the generated code is beyond the scope of

this paper. This paper is primarily focus on the code size, and

the resulting code may have a reduced size. The rest of the

paper is organized as follows: Section 2 introduces some of the

related works. Section 3 details the suggested method and

explains it is implementation. In Section 4, the experimental

results obtained from the proposed methods are presented.

Finally, Section 5 summarizes the findings of suggested

method.

2. RELATED WORKS

This section outlines prior research that highlight the

efficacy of compilers in minimizing code size. In particular,

Kim et al. [19] aimed to address the challenges posed by

resource limitations in embedded systems, precisely the

overhead attributed to program memory. The authors

established that fine-grained function inlining is an effective

approach to optimize program memory utilization. Jain et al.

[20] divided the Os optimization level into seven logical

groups and studied the effect of each group on reducing the

code size of a set of benchmark programs. Moreover, the

combination of these groups is also examined. This work

enables users to customize their own series to get the desired

program sizers. Cooper et al. [21] presented GA to find

compiler optimization sequences that can reduce the code size.

They used 10 optimization passes and they were able to

produce a fixed sequence that dramatically reduced static code

size compared with no optimization. Foleiss et al. [22] explore

how generating a small code size can be affected by choosing

a combination of compiler optimization techniques, especially

in a resource-poor environment such as a WSN. Through using

data mining techniques and a comprehensive compilation

process, they found many combinations of compiler

optimization that could reduce code size in many cases.

Therefore, the optimization technique that may be used in

tandem to reduce the code size it’s possible to determine. An

iterative approach to reducing the number of generated

instructions in assembly code is proposed by Haneda et al. [23].

Depending on the Mann-Whitney test, non-parametric

inferential statistics, the decision is made about which

compiler options should be on or off. The results show that this

technique outperforms the Os in reducing the code size in

almost all cases.

3. SUGGESTED METHOD

The present study introduces a methodology for identifying

the most optimal optimization sequence that yields the most

efficient program size. Initially, a dataset is built which contain

randomly generated optimization sequences. Subsequently, all

of the generated sequences are applied on 50 programs. The

block diagram of the proposed method is illustrated in Figure

1. Furthermore, algorithm 1 illustrate the steps of the

suggested method, which will be explain in detail later.

3.1 Construction dataset

3.1.1 Generating optimization sequences

Random optimization sequences are generated, where more

than 2 thousand optimization sequences are used to compile a

set of programs. These optimization sequences have fixed

lengths not to exceed a maximum of 60 passes. Table 1

provides the standard optimization levels of Os and Oz.

Figure 1. The block diagram of the proposed method

1612

3.1.2 Compute program size

A wide range of different programs, 50 programs, are

extracted from three benchmark suites: PolyBench, Shootout,

and Stanford. The programs' size is computed in which each

program (p) is executed with all optimization sequences that

are generated prviously. Moreover, these programs are

compiled using Os and Oz flags and their size are computed.

Table 1. Os and Oz optimization passes [24, 25]

List of Optimization Passes

-domtree

-inline

-scalairzer

-calld- value-

propagaton

-tti

-assmption-cache-

tracker

-opt-remark-emitter

-lazy-block-freq

-block-freq

-instsimplify

-loop-unswitch

-licm

-simplifycfg

-memoryssa

-loop-rotate

-callsite-splitting

-aa

-demended-bits

-loop-unroll

-lcssa-verification

-loop-acicesses

-globaldce

-loop-load-elim

-inferattrs

-div-rem-pairs

-porfile-sumary

-tbaa

-libcalls-shrinkwrp

-jump-threading

-globals-aa

-targetlibinfo

-scalar-evolution

-basiccg

-loop-simplify

-speculative-

execution

-loops

-sroa

-early-cse-

memsa

-rpo-

funtioniattrs

-prune-eh

-ipsccp

-globldce

-indvars

-forcattrs

-mem2eg

-globalopt

-tailcallelim

-pgo-memop-

opt

Reassociate

-basicaa

-lazy-block-freq

-instcombine

3.2 Extracting the selective sequences

According to the previous stage, the average of programs

size obtained by compiling these programs with seq (SI)

compared to the average programs size obtained by compiling

the identical programs with the Os and Oz flags. The sequence

with average program sizes less than the one with Os or Oz

flag adds to the singed table. This procedure carried out for

every sequence.

3.3 Construction sings table

Each program is compiled with the Os and Oz flags, and

their execution times are stored in the Sign table. Subsequently

each one of the two thousand sequences is used to compile all

the programs. The sequences that result in an average size for

all programs smaller than those created by Os or Oz are

recognized and included into the Sign table as shown in Figure

2.

The first raw of this table represents the extracted sequences

and the first column represents the programs' names. The entry

to this table is a sign to give us an indicator if the i-th sequence

reduces the program size or no. Finally, the files name of

dynamic features for these programs are also added to the Sign

Table.

3.4 Compute the similarity

For unseen programs (new programs) and the programs in

the Signs Table, their dynamic features are extracted.

Perf/Linux tool is used to extract these features (36 events).

Performance counter events are used to reflect the program

behavior. Table 2 illustrates these events. The process of

quantifying similarity between the unobserved program and

the programs contained within the signs table is undertaken.

The sequences corresponding to the most similar programs are

selected as potential candidates to optimize the unseen

program.

Algorithm 1

Input: number of sequences N, number of programs M,

unseen program

Output: Candidate best program size for unseen program

Begin

Step 1: Generate random sequence

 In this step we generate more than 2000 random

sequences

Step 2: Extract the best sequences for each program M

and put these sequences in

 the signs table

 #Intilise set of varibles

 Prog_size=0, Prog_size_Oz

 Total 1=0, Total 2 =0

 for seqi = 1 to N

 for prgj =1 to M

 Prog_size_seq= Compile the program progj with

 seqi and extract size

 Total 1=total1+ Prog_size_seq

 Prog_size_Oz= Compile the program progj with

 Oz flag and extract size

 Prog_size_Os= Compile the program progj with

 Os flag and extract size

 Total 2=total2+ Prog_size_Oz

 Total 3=total3+ Prog_size_Os

 end

 # computer the average for Total1 and Total 2

 if ((average total 1 < average total 2) or (average

 total 1 < average total 3))

 Put the seq in the sing table

 end

Step 3: Candidate sequence for unseen program

 Extract features for all programs in the sign table

 using Perf tool.

 Extract features for unseen program using Perf

 Tool.

 Compute similarity between the unseen program

 and all programs in the sign table.

 Choose the sequences that belong to most similar

 Program.

 Compile the unseen program with chosen

 sequences and select the one lower program size.

End

Multiple metrics are available for the quantification of

similarity. One commonly employed approach is the

utilization of the cosine metric, as illustrated through the

equation presented herein.

Sim(p, pi)=
∑ 𝑝𝑤∗𝑝𝑖𝑤𝑚
𝑤=1

√∑ 𝑝𝑤2𝑚
𝑤=1 ∗√∑ 𝑝𝑖𝑤2𝑚

𝑤=1

 (2)

where, the symbol 'p' denotes the unseen program, which refer

to a program yet to be observed, while 'pi' signifies a set of

supplementary programs, herein referred to as training

programs [26, 27]. The new program that is yet to be observed,

its level of similarity is determined by extracting its dynamic

1613

features and evaluating them against those of all other

programs, in the signs table.

Table 2. Perf events [1, 28]

List of the Features used in Our Approach

LLC-loads

LLC-load-misses

L1-dcache-loads

L1-dcache-load-misses

cache-misses

cache-references

dTLB-loads

LLC-stores

LLC-store-misses

dTLB-loads

dTLB-load-misses

iTLB-loads

iTLB-load-misses

dTLB-store

dTLB-store-misses

itlb_misses.walk_completed

branch-misses

instructions

L1-dcache-stores-misses

L1-dcache-stores

cpu-cycles

bus-cycles

ref-cycles

page-faults

context-switches

cpu-migrations

minor-faults

major-faults

alignment-faults

emulation-faults

cpu-clock

task-clock

mem-loads

mem-stores

branch-instructions

LLC-prefech-miss

3.5 Candidates sequences for unseen program

After computing the similarity between the unseen program

and the programs in the signs table, the most similar programs

are selected. Then, the unseen program is compiled using the

list of sequences that belong to the selected programs. Finally,

sequences that produces lower the code size are chosen.

4. EXPERIMENTAL OUTCOMES

This section discusses the findings of the proposed method.

The case study includes programs from various benchmarks

site. The proposed technique is evaluated using the LLVM

compiler's standard optimization level Os and Oz. In the

bgginning, to acquire precise outcomes, it is necessary to

compile the programs using Clang's O0 level, signifying that

no optimizations are applied, prior to executing any

optimization sequences. Subsequently, to activate additional

transformation passes, the "-scalarrepl" (scalar replacement)

is applied in conjunction with each pass.

After converting the program to LLVM Intermediate

Representation (IR), which is a machine-readable bit code (.bc)

file format, the optimization sequences (generated sequences)

are applied to it. The source code programs are converted to

the bit code file format using the Clang compiler, which is an

LLVM C language frontend. Two useful tools named opt and

llc are used to compile the programs. The optimization tool,

"opt", performs a sequence of passes to optimize the source

code program and subsequently stores the optimized code in a

bit file format. The tool llc produces the object code by

converting the bit file format. Finally, Clang is used to

generate the executable code.

Table 3 shows some of the details that evaluate the machine

used in the proposed approach.

4.1 Sings table

The main core of our work is the Sings Table. It represent

the reference to candidate the right for unseen program. Table

4 below illustrates a small example of this table. Where the

raw represents the sequence name and the column represents

the program name. The ✓ sign means these sequences improve

the program size.

Table 3. Machine details

Processor Model Intel (R) Core (TM) i5 CPU

Processor Speed 2.5 GHz

RAM 4 GB

Operating System Linux Ubuntu 16.4

Compiler Clang/LLVM

Table 4. Signs table

Program Name Seq1 Seq2 Seq3 Seq4 Seq5

Heapsort.c ✓ ✓

Matrix.c ✓ ✓ ✓

n-body.c

Sieve.c ✓ ✓

Flops_7.c ✓ ✓ ✓

Quicksort.c ✓ ✓ ✓

Perlin.c ✓ ✓ ✓

Perm.c ✓ ✓

Mvt.c ✓ ✓

Oscar.c ✓ ✓ ✓

4.2 Unseen programs results

Within the scope of these empirical investigations, a set of

eight unobserved programs is employed for the purpose of

validating the method. Subsequently, the process of

computing the similarity between the aforementioned unseen

program and the programs contained within the signs table is

performed. Then, the sequences that belong to the most similar

program are used to compile the unseen program. Table 5

illustrate the best programs sizes that we get with different

optimization sequences for eight unseen programs.

Table 5. Programs size

Programs

Name

Best Three Sequences

That Give Best

Program Size (Byte)

Program Size with

Os and Oz Flags

(Byte)

Os Oz

Sic.c
Seq1 Seq2 Seq3

11208

11208 11160 11144 11080

Mds.c
Seq1 Seq5 Seq6

12568

12568 12464 12400 12400

2mm.c
Seq7 Seq1

Same

8232

8232 8022 7584

Rc4.c
Seq2 Seq6

Same

9928

9928 8784 8752

Corcol.c
Seq10 Seq11 Seq12

10168 10000
9992 9952 9784

Des.c
Seq8 Seq9 Seq1

28328 28328
28032 27920 27824

Symm.c
Seq7 Seq11 Seq4

9496 9496
9440 9432 9392

Pc1cod.c
Seq3 Seq7 Seq5

9960 9960
9936 9912 9848

Figures 2-9 below illustrate the improvement in the program

size for 8 unseen programs compared with the program size

for the same unseen when compared with Oz flag.

As you can see from the above figures, the average rate of

the improvement in the code size is about 9% with different

optimization sequences. Furthermore, the obtained findings

1614

reveal that most of the unseen programs their sizes reduce after

applying candidate sequence. Particularly, the rc4.c program

receives the most significant reduction, which is about 11.8 %.

Table 6 illustrates the most powerful extract sequences that

have best impact on the unseen programs.

Figure 2. si.c optimized program with different sequences

Figure 3. md5.c optimized program with different sequences

Figure 4. 2mm.c optimized program size with different

sequences

Figure 5. rc4.c optimized program size with different

sequences

Figure 6. corcol.c optimized program size with different

sequences

Figure 7. des.c optimized program with different sequences

Figure 8. ssymm.c optimized code size with different

sequences

Figure 9. pc1cod.c optimization program with different

sequences

1615

Table 6. The extract sequences that have best impact on the unseen programs

Seq1

 -reassociate -scalarrepl -loweratomic -dce -strip-dead-prototypes -early-cse -loop-deletion -scalarrepl-ssa -lcssa -reassociate -jump-threading -correlated-

propagation -instsimplify -lowerswitch -globaldce -sccp -gvn -scalar-evolution -indvars -strip-dead-prototypes -lazy-value-info -ipsccp -mergefunc -

memcpyopt -gvn -basicaa -scalarrepl-ssa

Seq2
-oop-idiom -simplifycfg -loop-unswitch -memcpyopt -functionattrs -no-aa -lowerswitch -lower-expect -loop-rotate -reassociate -correlated-propagation -

simplifycfg -mergefunc -indvars –memcpyopt

Seq3

-argpromotion -dse -strip-dead-prototypes -tailcallelim -scalarrepl-ssa -constmerge -early-cse -lazy-value-info -tbaa -mergefunc -loops -domtree -loop-
idiom -loweratomic -early-cse -globaldce -globalopt -loop-deletion -ipconstprop -loops -loop-idiom -lcssa -constprop -ipconstprop -domtree -ipsccp -no-

aa -early-cse -lowerinvoke -instsimplify -early-cse -lowerswitch -globalopt -targetlibinfo -die -loop-reduce -lowerswitch -lazy-value-info

Seq4

-die -loop-idiom -strip-dead-prototypes -ipsccp -globaldce -loop-deletion -tbaa -adce -early-cse -licm -mergereturn -sccp -dce -lcssa -gvn -die -loop-
reduce -lower-expect -correlated-propagation -correlated-propagation -argpromotion -ipsccp -scalarrepl-ssa -sink -dce -always-inline -globaldce -sink -

memcpyopt -prune-eh -tailcallelim -loop-unroll -constprop -mergereturn -ipsccp -dse -simplifycfg -loop-idiom -loop-rotate -memcpyopt -constmerge -die

-correlated-propagation -early-cse -indvars -always-inline -lazy-value-info -prune-eh -loops -targetlibinfo -strip-dead-prototypes -basiccg -domtree -
constprop -constmerge -lazy-value-info -ipsccp -sink -early-cse

Seq5

-argpromotion -dse -strip-dead-prototypes -tailcallelim -scalarrepl-ssa -constmerge -instsimplify -early-cse -lazy-value-info -tbaa -mergefunc -loops -gvn

-domtree -loop-idiom -loweratomic -gvn -early-cse -globaldce -globalopt -loop-deletion -ipconstprop -loops -loop-idiom -lcssa -constprop -ipconstprop -
domtree -ipsccp -scalar-evolution -no-aa -early-cse -lowerinvoke -instsimplify -early-cse -lowerswitch -globalopt -targetlibinfo -die -loop-reduce -

lowerswitch -lazy-value-info -sccp -constmerge -functionattrs -basicaa -ipconstprop -lower-expect -lowerinvoke -targetlibinfo -argpromotion -die -

ipconstprop -dce -targetlibinfo -loop-deletion -scalar-evolution –tbaa

Seq6

-dse -scalarrepl -loop-idiom -loop-deletion -loop-instsimplify -memcpyopt -memdep -memcpyopt -deadargelim -loop-simplify -loop-instsimplify -

scalarrepl-ssa -constmerge -loop-deletion -basiccg -constprop -argpromotion -argpromotion -mergereturn -lazy-value-info -loops -memcpyopt -lower-

expect -ipsccp -dse -tailcallelim -mergereturn -loop-deletion -jump-threading -sink -jump-threading -loop-idiom -loop-deletion -no-aa -mergereturn -

argpromotion -lowerinvoke -loop-deletion -ipconstprop -constmerge -no-aa -functionattrs -globalopt -functionattrs -basicaa -die -scalarrepl-ssa -loops -

dce -no-aa -ipconstprop -mergereturn -tailcallelim -scalarrepl -adce -basicaa -mergereturn –dse

Seq7

-functionattrs -domtree -loop-rotate -lazy-value-info -instsimplify -lowerinvoke -strip-dead-prototypes -memdep -ipconstprop -adce -always-inline -sccp -
functionattrs -memdep -gvn -lazy-value-info -die -globaldce -loweratomic -gvn -loweratomic -mergefunc -die -loop-unroll -basicaa -ipconstprop -loop-

instsimplify -loops -scalar-evolution -tbaa -loops -jump-threading -prune-eh -ipsccp -globalopt -instsimplify -loop-idiom -codegenprepare -ipconstprop -

loop-simplify -tbaa -lcssa -lowerswitch -constmerge -globaldce -loop-simplify -die -loop-deletion -tbaa -codegenprepare -functionattrs -strip-dead-
prototypes -globalopt -sccp -loop-rotate -targetlibinfo -lcssa –die

Seq8

-lowerinvoke -basicaa -dce -loop-instsimplify -constmerge -simplifycfg -prune-eh -instsimplify -dce -inline -no-aa -sink -ipsccp -sink -lowerinvoke -

ipconstprop -correlated-propagation -dse -no-aa -mergefunc -tbaa -early-cse -mergereturn -ipsccp -reassociate -inline -instsimplify -loop-unswitch -die -
prune-eh -strip-dead-prototypes -adce -indvars -constmerge -jump-threading -indvars -functionattrs -jump-threading -loops -loop-idiom -reassociate -

loop-reduce -globaldce -tbaa -loop-unroll -scalarrepl -loop-simplify -jump-threading -die -globalopt -constmerge -deadargelim -reassociate -mergereturn -

lower-expect -loops -lowerswitch -loop-reduce -lowerswitch -loop-deletion

Seq9

-ipsccp -basiccg -dce -lcssa -correlated-propagation -constmerge -globaldce -dse -indvars -lower-expect -prune-eh -scalarrepl -basiccg -lowerswitch -

memcpyopt -lazy-value-info -globalopt -ipsccp -gvn -lazy-value-info -reassociate -loweratomic -adce -die -loop-instsimplify -memdep -loop-idiom -gvn -

mergereturn -sccp -functionattrs -deadargelim -loop-unroll -loop-simplify -dce -ipconstprop -loop-simplify -indvars -globalopt -adce -adce -scalarrepl-ssa
-mergereturn -lazy-value-info -licm -loop-rotate -lowerinvoke -lcssa -targetlibinfo -die -tailcallelim -loop-unswitch -domtree -ipsccp -memdep -gvn -

indvars -correlated-propagation

5. CONCLUSIONS

In this paper, a method to reduce the code size based on the

signs table is proposed. Two thousand sequences are randomly

generated. Each sequence compiled with 50 programs. Then

the average program size for 50 programs is computed, where

the sequence that gives the average program's size better than

-Oz flag is extracted and put in the signs table. A set of eight

unobserved programs are employed for validating the method.

After computing the similarity of the unseen program, the

sequences that belong to the most similar program are

candidates to optimize it. The results show that for most eight

unseen programs, the produced programs are 9% smaller than

-Oz. In our future work, we need to address other types of

features and study their effect on program size. Furthermore,

we plan to investigate the power of machine learning

techniques for code size reduction.

REFERENCES

[1] Al Baity, R.M., Alwan, E.H., Fanfakh, A. (2022). A top

popular approach for the automatic tuning of compiler

optimizations. In AIP Conference Proceedings, Al-

Samawah, Iraq, p. 050013.

https://doi.org/10.1063/5.0094022

[2] Ashouri, A.H., Bignoli, A., Palermo, G., Silvano, C.,

Kulkarni, S., Cavazos, J. (2017). Micomp: Mitigating the

compiler phase-ordering problem using optimization

sub-sequences and machine learning. ACM Transactions

on Architecture and Code Optimization (TACO), 14(3):

1-28. https://doi.org/10.1145/3124452

[3] Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J.,

Reeves, S.W., Subramanian, D., Waterman, T. (2004).

Finding effective compilation sequences. ACM

SIGPLAN Notices, 39(7): 231-239.

https://doi.org/10.1145/998300.997196

[4] Ashouri, A.H., Bignoli, A., Palermo, G., Silvano, C.

(2016). Predictive modeling methodology for compiler

phase-ordering. In Proceedings of the 7th Workshop on

Parallel Programming and Run-Time Management

Techniques for Many-Core Architectures and the 5th

Workshop on Design Tools and Architectures for

Multicore Embedded Computing Platforms, Prague

Czech Republic, pp. 7-12.

https://doi.org/10.1145/2872421.2872424

[5] Debray, S.K., Evans, W., Muth, R., De Sutter, B. (2000).

Compiler techniques for code compaction. ACM

Transactions on Programming languages and Systems

(TOPLAS), 22(2): 378-415.

https://doi.org/10.1145/349214.349233

[6] Almohammed, M.H., Alwan, E.H., Fanfakh, A.B. (2020).

Programs features clustering to find optimization

sequence using genetic algorithm. In Intelligent

Computing Paradigm and Cutting-edge Technologies:

Proceedings of the First International Conference on

Innovative Computing and Cutting-edge Technologies

(ICICCT 2019), Istanbul, Turkey, pp. 40-50.

https://doi.org/10.1007/978-3-030-38501-9_4

[7] Cooper, K.D., McIntosh, N. (1999). Enhanced code

1616

compression for embedded RISC processors. ACM

SIGPLAN Notices, 34(5): 139-149.

https://doi.org/10.1145/301631.301655

[8] Beszédes, Á., Ferenc, R., Gyimóthy, T., Dolenc, A.,

Karsisto, K. (2003). Survey of code-size reduction

methods. ACM Computing Surveys (CSUR), 35(3): 223-

267. https://doi.org/10.1145/937503.93750

[9] Pinkers, R.P., Knijnenburg, P.M., Haneda, M., Wijshoff,

H.A. (2004). Statistical selection of compiler options. In

The IEEE Computer Society's 12th Annual International

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems,

(MASCOTS 2004), Volendam, Netherlands, pp. 494-

501. https://doi.org/10.1109/MASCOT.2004.1348305

[10] de Souza Xavier, T.C., da Silva, A.F. (2018). Exploration

of compiler optimization sequences using a hybrid

approach. Computing & Informatics, 37(1): 165-185.

https://doi.org/10.4149/caL2018.1.165

[11] Ashouri, A.H., Mariani, G., Palermo, G., Silvano, C.

(2014). A bayesian network approach for compiler auto-

tuning for embedded processors. In 2014 IEEE 12th

Symposium on Embedded Systems for Real-time

Multimedia (ESTIMedia), Greater Noida, India, pp. 90-

97. https://doi.org//10.1109/ESTIMedia.2014.6962349

[12] Hoste, K., Eeckhout, L. (2008). Cole: Compiler

optimization level exploration. In Proceedings of the 6th

Annual IEEE/ACM International Symposium on Code

Generation and Optimization, Boston, MA, USA, pp.

165-174. https://doi.org/10.1145/1356058.1356080

[13] Ashouri, A.H., Palermo, G., Cavazos, J., Silvano, C.,

Ashouri, A.H., Palermo, G., Silvano, C. (2018). The

phase-ordering problem: A complete sequence

prediction approach. Automatic Tuning of Compilers

Using Machine Learning, pp. 85-113.

https://doi.org/10.1007/978-3-319-71489-9_5

[14] Wang, Z., O’Boyle, M. (2018). Machine learning in

compiler optimization. Proceedings of the IEEE, 106(11):

1879-1901.

https://doi.org/10.1109/JPROC.2018.2817118

[15] da Silva, A.F., de Souza, L.D. (2019). Understanding the

code transformation algorithms’ impact. Journal of

Computer Science., 15(11): 1678-1693.

https://doi.org/10.3844/jcssp.2019.1678.1693

[16] Alhasnawy, L.H., Alwan, E.H., Fanfakh, A.B. (2020).

Using machine learning to predict the sequences of

optimization passes. In New Trends in Information and

Communications Technology Applications: 4th

International Conference, NTICT 2020, Baghdad, Iraq,

pp. 139-156. https://doi.org/10.1007/978-3-030-55340-

1_10

[17] Almohammed, M.H., Fanfakh, A.B., Alwan, E.H. (2020).

Parallel genetic algorithm for optimizing compiler

sequences ordering. In New Trends in Information and

Communications Technology Applications: 4th

International Conference, NTICT 2020, Baghdad, Iraq,

pp. 128-138. https://doi.org/10.1007/978-3-030-55340-

1_9

[18] Lattner, C., Adve, V. (2004). LLVM: A compilation

framework for lifelong program analysis &

transformation. In International Symposium on Code

Generation and Optimization, CGO 2004, San Jose, CA,

USA, pp. 75-86.

https://doi.org/10.1109/CGO.2004.1281665

[19] Kim, B., Cho, Y., Hong, J. (2012). An efficient function

inlining scheme for resource-constrained embedded

systems. Journal of Information Science and Engineering,

28(5): 859-874.

[20] Jain, S., Bora, U., Kumar, P., Sinha, V.B., Purini, S.,

Upadrasta, R. (2019). An analysis of executable size

reduction by LLVM passes. CSI Transactions on ICT,

7(2): 105-110. https://doi.org/10.1007/s40012-019-

00248-5

[21] Cooper, K.D., Schielke, P.J., Subramanian, D. (1999).

Optimizing for reduced code space using genetic

algorithms. In Proceedings of the ACM SIGPLAN 1999

Workshop on Languages, Compilers, and Tools for

Embedded Systems, Atlanta, Georgia, USA, pp. 1-9.

https://doi.org/10.1145/314403.314414

[22] Foleiss, J.H., da Silva, A.F., Ruiz, L.B. (2011). The effect

of combining compiler optimizations on code size. In

2011 30th International Conference of the Chilean

Computer Science Society, pp. 187-194.

https://doi.org/10.1109/SCCC.2011.25

[23] Haneda, M., Knijnenburg, P.M., Wijshoff, H.A. (2006).

Code size reduction by compiler tuning. In Embedded

Computer Systems: Architectures, Modeling, and

Simulation: 6th International Workshop, SAMOS 2006,

Samos, Greece, pp. 186-195.

https://doi.org/10.1007/11796435_20

[24] Al Baity, R.M., Alwan, E.H., Fanfakh, A.B. (2021). A

content based filtering approach for the automatic tuning

of compiler optimizations. Turkish Journal of Computer

and Mathematics Education (TURCOMAT), 12(6):

3913-3922. https://doi.org/10.17762/turcomat.v12i6.785

[25] Al Baity, R.M., Alwan, E.H., Fanfakh, A. (2022). A top

popular approach for the automatic tuning of compiler

optimizations. In AIP Conference Proceedings, 2398(1):

AIP Publishing. https://doi.org/10.1063/5.0094022

[26] Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle,

M.F., Temam, O. (2007). Rapidly selecting good

compiler optimizations using performance counters. In

International Symposium on Code Generation and

Optimization (CGO'07), San Jose, CA, USA, pp. 185-

197. https://doi.org/10.1109/CGO.2007.32

[27] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2001).

Item-based collaborative filtering recommendation

algorithms. In Proceedings of the 10th International

Conference on World Wide Web, Hong Kong, pp. 285-

295. https://doi.org/10.1109/CGO.2007.32

[28] de Souza Xavier, T.C., da Silva, A.F. (2018). Exploration

of compiler optimization sequences using a hybrid

approach. Computing & Informatics, 37(1): 165-185.

http://doi.org/10.4149/cai_2018_1_165

NOMENCLATURE

LLVM Low Level Virtual Machine

Os, Oz Standard optimization sequence

IR Intermedite Code

Clang LLVM front end

1617

