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Recently, the number of smaller and smarter embedded devices have rapidly increased. This 

increment puts more pressure on the compiler developer to develop more dedicated 

application programs for these devices. Modern compilers (like LLVM) offer standard 

optimization levels (flags) that deal with reducing the code size named Os and Oz flags. 

The question arise in this paper in is: Is it possible to find sequence that deliver smaller code 

compare to standard flags? A Sign Table, it is the suggested method that is introduced in 

this paper. It can suggest an optimization sequence that can reduce the code size for set of 

unseen program. Initially, two thousand optimization sequences are generated randomly. 

Each sequence is compiled with 50 programs, where the programs that give smaller code 

size compared with the Os or Oz flags are extracted. After building the signs table, which 

contains the sequences that give the average programs sizes smaller than the Os or Oz flags, 

the process of quantifying similarity between the unseen program and the programs 

contained within the signs table is performed. The sequences that belong to the most similar 

programs are selected to compile the unseen program. The proposed methodology is 

assessed through an empirical investigation, employing three benchmark suites, namely 

PolyBench, Shootout, and Stanford. The experiments show that the proposed method 

reduces the unseen program size by about 9% compared standsrd optimization flags. 
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1. INTRODUCTION

Recent compilers contain various optimizations, which can 

frequently be manually switched on or off via compiler flags 

or switches. With so many optimizations available to 

compilers, it's practically hard to choose which is best for a 

single program. Traditionally, compiler developers have 

operated under one of two assumptions: either a predefined 

optimization sequence is "good enough" for all programs, or 

supplying users with an extensive collection of optimization 

flags is sufficient, so putting the burden to the user [1-3]. 

An optimization sequence is a collection of optimization 

passes that can be applied on the program's Intermediate 

Representation (IR). Choosing the right optimization pass and 

the right order for given application is called phase-ordering 

problem. The set of all optimization sequences is known as the 

optimization sequence space, and it is incessantly large. To 

explain the phase-ordering problem, let us establish a boolean 

vector o, with components oi representing the various 

compiler optimizations. Each optimization oi can be activated 

(oi=1) or disabled (oi=0). The vector o depicts a phase-

ordering compiler optimization sequence in the n-dimensional 

factorial space |Ophases| = n!, where n is the number of 

optimizations. However, the provided limit is for a made easier 

phase-ordering problem with a constant vector length and lack 

of repetitions. Allowing repetition and dynamic duration 

broadens the design possibilities to: 

|Ophases-repetition| =∑ 𝑛𝑚
𝑖=0

i... (1) 

where, n is the number of optimizations being investigated, 

and m is the maximum length for the optimization sequence. 

For instance, with n optimizations and m=10, |Ophases 

repetition| will result in more than 11 billion various 

combinations for each application [4]. Many default 

optimization levels are provided by compilers, e.g., O1, O2, 

O3, Oz Some of these optimization levels O2, O3 focus on 

enhancing the program execution time, while the Os, Oz are 

dedicate to dealing with reducing code size [5-7]. Through the 

execution of the program, all the optimization flags will be 

turned off by default, and the expert can turn some or all of 

them on according to the program's needs. For example, the 

GCC has more than 200 passes while the LLVM Clang and 

opt have more than 100 passes [8-10]. The sequence of these 

passes called the optimization sequence. Choosing the right 

sequence can help the programmers achieve better 

performance [11, 12]. 

Clearly, some optimizations can increase the code size, like 

loop unrolling or procedure inlining, while others can decrease 

it, for example, dead code removal or strength reduction [13, 

14].There are two reasons that arise to answer the question of 

"why is there a need to turn off some optimization passes 

instead of applying all of them ". The first is, the characteristics 

of some passes might not match with the characteristics of the 

program. The second reason is that some of these passes have 
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a negative impact on the quality of the resulting program [15-

18]. Thus, instead of speeding up the program or decreasing 

the program size, the reverse may occur. An illustrative 

example involves the employment of inlining, a technique that 

substitutes a function invocation with its corresponding body. 

This particular transformation has the potential to cause a 

phenomenon known as code expansion, subsequently 

increasing the potential for cache misutilization [19, 20]. The 

execution time of the generated code is beyond the scope of 

this paper. This paper is primarily focus on the code size, and 

the resulting code may have a reduced size. The rest of the 

paper is organized as follows: Section 2 introduces some of the 

related works. Section 3 details the suggested method and 

explains it is implementation. In Section 4, the experimental 

results obtained from the proposed methods are presented. 

Finally, Section 5 summarizes the findings of suggested 

method. 

 

 

2. RELATED WORKS 

 

This section outlines prior research that highlight the 

efficacy of compilers in minimizing code size. In particular, 

Kim et al. [19] aimed to address the challenges posed by 

resource limitations in embedded systems, precisely the 

overhead attributed to program memory. The authors 

established that fine-grained function inlining is an effective 

approach to optimize program memory utilization. Jain et al. 

[20] divided the Os optimization level into seven logical 

groups and studied the effect of each group on reducing the 

code size of a set of benchmark programs. Moreover, the 

combination of these groups is also examined. This work 

enables users to customize their own series to get the desired 

program sizers. Cooper et al. [21] presented GA to find 

compiler optimization sequences that can reduce the code size. 

They used 10 optimization passes and they were able to 

produce a fixed sequence that dramatically reduced static code 

size compared with no optimization. Foleiss et al. [22] explore 

how generating a small code size can be affected by choosing 

a combination of compiler optimization techniques, especially 

in a resource-poor environment such as a WSN. Through using 

data mining techniques and a comprehensive compilation 

process, they found many combinations of compiler 

optimization that could reduce code size in many cases. 

Therefore, the optimization technique that may be used in 

tandem to reduce the code size it’s possible to determine. An 

iterative approach to reducing the number of generated 

instructions in assembly code is proposed by Haneda et al. [23]. 

Depending on the Mann-Whitney test, non-parametric 

inferential statistics, the decision is made about which 

compiler options should be on or off. The results show that this 

technique outperforms the Os in reducing the code size in 

almost all cases. 

 

 

3. SUGGESTED METHOD 

 

The present study introduces a methodology for identifying 

the most optimal optimization sequence that yields the most 

efficient program size. Initially, a dataset is built which contain 

randomly generated optimization sequences. Subsequently, all 

of the generated sequences are applied on 50 programs. The 

block diagram of the proposed method is illustrated in Figure 

1. Furthermore, algorithm 1 illustrate the steps of the 

suggested method, which will be explain in detail later. 

 

3.1 Construction dataset 

 

3.1.1 Generating optimization sequences 

Random optimization sequences are generated, where more 

than 2 thousand optimization sequences are used to compile a 

set of programs. These optimization sequences have fixed 

lengths not to exceed a maximum of 60 passes. Table 1 

provides the standard optimization levels of Os and Oz. 

 

 
 

Figure 1. The block diagram of the proposed method 
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3.1.2 Compute program size 

A wide range of different programs, 50 programs, are 

extracted from three benchmark suites: PolyBench, Shootout, 

and Stanford. The programs' size is computed in which each 

program (p) is executed with all optimization sequences that 

are generated prviously. Moreover, these programs are 

compiled using Os and Oz flags and their size are computed. 

 

Table 1. Os and Oz optimization passes [24, 25] 

 
List of Optimization Passes 

-domtree 

-inline 

-scalairzer 

-calld- value-

propagaton 

-tti 

-assmption-cache-

tracker 

-opt-remark-emitter 

-lazy-block-freq 

-block-freq 

-instsimplify 

-loop-unswitch 

-licm 

-simplifycfg 

-memoryssa 

-loop-rotate 

-callsite-splitting 

-aa 

-demended-bits 

-loop-unroll 

-lcssa-verification 

-loop-acicesses 

-globaldce 

-loop-load-elim 

-inferattrs 

-div-rem-pairs 

-porfile-sumary 

-tbaa 

-libcalls-shrinkwrp 

-jump-threading 

-globals-aa 

-targetlibinfo 

-scalar-evolution 

-basiccg 

-loop-simplify 

-speculative-

execution 

-loops 

-sroa 

-early-cse-

memsa 

-rpo-

funtioniattrs 

-prune-eh 

-ipsccp 

-globldce 

-indvars 

-forcattrs 

-mem2eg 

-globalopt 

-tailcallelim 

-pgo-memop-

opt 

Reassociate 

-basicaa 

-lazy-block-freq 

-instcombine 

 

3.2 Extracting the selective sequences 

 

According to the previous stage, the average of programs 

size obtained by compiling these programs with seq (SI) 

compared to the average programs size obtained by compiling 

the identical programs with the Os and Oz flags. The sequence 

with average program sizes less than the one with Os or Oz 

flag adds to the singed table. This procedure carried out for 

every sequence. 

 

3.3 Construction sings table 

 

Each program is compiled with the Os and Oz flags, and 

their execution times are stored in the Sign table. Subsequently 

each one of the two thousand sequences is used to compile all 

the programs. The sequences that result in an average size for 

all programs smaller than those created by Os or Oz are 

recognized and included into the Sign table as shown in Figure 

2. 

The first raw of this table represents the extracted sequences 

and the first column represents the programs' names. The entry 

to this table is a sign to give us an indicator if the i-th sequence 

reduces the program size or no. Finally, the files name of 

dynamic features for these programs are also added to the Sign 

Table.  

 

3.4 Compute the similarity 

 

For unseen programs (new programs) and the programs in 

the Signs Table, their dynamic features are extracted. 

Perf/Linux tool is used to extract these features (36 events). 

Performance counter events are used to reflect the program 

behavior. Table 2 illustrates these events. The process of 

quantifying similarity between the unobserved program and 

the programs contained within the signs table is undertaken. 

The sequences corresponding to the most similar programs are 

selected as potential candidates to optimize the unseen 

program. 

 

Algorithm 1 

Input:  number of sequences N, number of programs M, 

unseen program 

Output: Candidate best program size for unseen program 

Begin 

Step 1: Generate random sequence  

    In this step we generate more than 2000 random 

sequences 

 

Step 2: Extract the best sequences for each program M 

and put these sequences in 

      the signs table 

  #Intilise set of varibles 

  Prog_size=0, Prog_size_Oz 

  Total 1=0, Total 2 =0 

  for seqi = 1 to N 

   for prgj =1 to M 

      Prog_size_seq= Compile the program progj with 

      seqi and extract size 

      Total 1=total1+ Prog_size_seq 

      Prog_size_Oz= Compile the program progj with 

       Oz flag and extract size 

       Prog_size_Os= Compile the program progj with 

       Os flag and extract size 

       Total 2=total2+ Prog_size_Oz 

       Total 3=total3+ Prog_size_Os 

    end 

    # computer the average for Total1 and Total 2 

    if ((average total 1 < average total 2) or (average  

      total 1 < average total 3)) 

    Put the seq in the sing table 

    end 

Step 3: Candidate sequence for unseen program 

      Extract features for all programs in the sign table  

      using Perf tool. 

      Extract features for unseen program using Perf  

      Tool. 

      Compute similarity between the unseen program 

      and all programs in the sign table. 

      Choose the sequences that belong to most similar 

      Program. 

      Compile the unseen program with chosen  

      sequences and select the one lower program size. 

End 

 

Multiple metrics are available for the quantification of 

similarity. One commonly employed approach is the 

utilization of the cosine metric, as illustrated through the 

equation presented herein. 

 

Sim(p, pi)=
∑ 𝑝𝑤∗𝑝𝑖𝑤𝑚
𝑤=1

√∑ 𝑝𝑤2𝑚
𝑤=1 ∗√∑ 𝑝𝑖𝑤2𝑚

𝑤=1

 (2) 

 

where, the symbol 'p' denotes the unseen program, which refer 

to a program yet to be observed, while 'pi' signifies a set of 

supplementary programs, herein referred to as training 

programs [26, 27]. The new program that is yet to be observed, 

its level of similarity is determined by extracting its dynamic 
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features and evaluating them against those of all other 

programs, in the signs table. 

 

Table 2. Perf events [1, 28] 

 
List of the Features used in Our Approach 

LLC-loads 

LLC-load-misses 

L1-dcache-loads 

L1-dcache-load-misses 

cache-misses 

cache-references 

dTLB-loads 

LLC-stores 

LLC-store-misses 

dTLB-loads 

dTLB-load-misses 

iTLB-loads 

iTLB-load-misses 

dTLB-store 

dTLB-store-misses 

itlb_misses.walk_completed 

branch-misses 

instructions 

L1-dcache-stores-misses 

L1-dcache-stores 

cpu-cycles 

bus-cycles 

ref-cycles 

page-faults 

context-switches 

cpu-migrations 

minor-faults 

major-faults 

alignment-faults 

emulation-faults 

cpu-clock 

task-clock 

mem-loads 

mem-stores 

branch-instructions 

LLC-prefech-miss 

 

3.5 Candidates sequences for unseen program 

 

After computing the similarity between the unseen program 

and the programs in the signs table, the most similar programs 

are selected. Then, the unseen program is compiled using the 

list of sequences that belong to the selected programs. Finally, 

sequences that produces lower the code size are chosen.  

 

 
4. EXPERIMENTAL OUTCOMES 

 
This section discusses the findings of the proposed method. 

The case study includes programs from various benchmarks 

site. The proposed technique is evaluated using the LLVM 

compiler's standard optimization level Os and Oz. In the 

bgginning, to acquire precise outcomes, it is necessary to 

compile the programs using Clang's O0 level, signifying that 

no optimizations are applied, prior to executing any 

optimization sequences. Subsequently, to activate additional 

transformation passes, the "-scalarrepl" (scalar replacement) 

is applied in conjunction with each pass. 

After converting the program to LLVM Intermediate 

Representation (IR), which is a machine-readable bit code (.bc) 

file format, the optimization sequences (generated sequences ) 

are applied to it. The source code programs are converted to 

the bit code file format using the Clang compiler, which is an 

LLVM C language frontend. Two useful tools named opt and 

llc are used to compile the programs. The optimization tool, 

"opt", performs a sequence of passes to optimize the source 

code program and subsequently stores the optimized code in a 

bit file format. The tool llc produces the object code by 

converting the bit file format. Finally, Clang is used to 

generate the executable code. 

Table 3 shows some of the details that evaluate the machine 

used in the proposed approach. 

 
4.1 Sings table  

 
The main core of our work is the Sings Table. It represent 

the reference to candidate the right for unseen program. Table 

4 below illustrates a small example of this table. Where the 

raw represents the sequence name and the column represents 

the program name. The ✓ sign means these sequences improve 

the program size.  

 

Table 3. Machine details 

 
Processor Model Intel (R) Core (TM) i5 CPU 

Processor Speed 2.5 GHz 

RAM 4 GB 

Operating System Linux Ubuntu 16.4 

Compiler Clang/LLVM 

 

Table 4. Signs table 

 
Program Name Seq1 Seq2 Seq3 Seq4 Seq5 

Heapsort.c ✓  ✓   

Matrix.c ✓ ✓  ✓  

n-body.c      

Sieve.c  ✓  ✓  

Flops_7.c ✓ ✓   ✓ 

Quicksort.c  ✓ ✓  ✓ 

Perlin.c ✓  ✓  ✓ 

Perm.c  ✓  ✓  

Mvt.c ✓    ✓ 

Oscar.c  ✓ ✓  ✓ 

 

4.2 Unseen programs results 

 

Within the scope of these empirical investigations, a set of 

eight unobserved programs is employed for the purpose of 

validating the method. Subsequently, the process of 

computing the similarity between the aforementioned unseen 

program and the programs contained within the signs table is 

performed. Then, the sequences that belong to the most similar 

program are used to compile the unseen program. Table 5 

illustrate the best programs sizes that we get with different 

optimization sequences for eight unseen programs. 

 

Table 5. Programs size 
 

Programs 

Name 

Best Three Sequences 

That Give Best 

Program Size (Byte) 

Program Size with 

Os and Oz Flags 

(Byte) 

Os Oz 

Sic.c 
Seq1 Seq2 Seq3  

11208 

 

11208 11160 11144 11080 

Mds.c 
Seq1 Seq5 Seq6  

12568 

 

12568 12464 12400 12400 

2mm.c 
Seq7 Seq1  

Same 

 

8232 

 

8232 8022 7584 

Rc4.c 
Seq2 Seq6 

Same 
 

9928 

 

9928 8784 8752 

Corcol.c 
Seq10 Seq11 Seq12 

10168 10000 
9992 9952 9784 

Des.c 
Seq8 Seq9 Seq1 

28328 28328 
28032 27920 27824 

Symm.c 
Seq7 Seq11 Seq4 

9496 9496 
9440 9432 9392 

Pc1cod.c 
Seq3 Seq7 Seq5 

9960 9960 
9936 9912 9848 

 

Figures 2-9 below illustrate the improvement in the program 

size for 8 unseen programs compared with the program size 

for the same unseen when compared with Oz flag.  

As you can see from the above figures, the average rate of 

the improvement in the code size is about 9% with different 

optimization sequences. Furthermore, the obtained findings 
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reveal that most of the unseen programs their sizes reduce after 

applying candidate sequence. Particularly, the rc4.c program 

receives the most significant reduction, which is about 11.8 %. 

Table 6 illustrates the most powerful extract sequences that 

have best impact on the unseen programs. 

 

 
 

Figure 2. si.c optimized program with different sequences 

 

 
 

Figure 3. md5.c optimized program with different sequences 

 

 
 

Figure 4. 2mm.c optimized program size with different 

sequences 

 

 
 

Figure 5. rc4.c optimized program size with different 

sequences 

 
 

Figure 6. corcol.c optimized program size with different 

sequences 

 

 
 

Figure 7. des.c optimized program with different sequences 

 

 
 

Figure 8. ssymm.c optimized code size with different 

sequences 

 

 
 

Figure 9. pc1cod.c optimization program with different 

sequences 
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Table 6. The extract sequences that have best impact on the unseen programs 

 

Seq1 

 -reassociate -scalarrepl -loweratomic -dce -strip-dead-prototypes -early-cse -loop-deletion -scalarrepl-ssa -lcssa -reassociate -jump-threading -correlated-

propagation -instsimplify -lowerswitch -globaldce -sccp -gvn -scalar-evolution -indvars -strip-dead-prototypes -lazy-value-info -ipsccp -mergefunc -

memcpyopt -gvn -basicaa -scalarrepl-ssa 

Seq2 
-oop-idiom -simplifycfg -loop-unswitch -memcpyopt -functionattrs -no-aa -lowerswitch -lower-expect -loop-rotate -reassociate -correlated-propagation -

simplifycfg -mergefunc -indvars –memcpyopt 

Seq3 

-argpromotion -dse -strip-dead-prototypes -tailcallelim -scalarrepl-ssa -constmerge -early-cse -lazy-value-info -tbaa -mergefunc -loops -domtree -loop-
idiom -loweratomic -early-cse -globaldce -globalopt -loop-deletion -ipconstprop -loops -loop-idiom -lcssa -constprop -ipconstprop -domtree -ipsccp -no-

aa -early-cse -lowerinvoke -instsimplify -early-cse -lowerswitch -globalopt -targetlibinfo -die -loop-reduce -lowerswitch -lazy-value-info 

Seq4 

-die -loop-idiom -strip-dead-prototypes -ipsccp -globaldce -loop-deletion -tbaa -adce -early-cse -licm -mergereturn -sccp -dce -lcssa -gvn -die -loop-
reduce -lower-expect -correlated-propagation -correlated-propagation -argpromotion -ipsccp -scalarrepl-ssa -sink -dce -always-inline -globaldce -sink -

memcpyopt -prune-eh -tailcallelim -loop-unroll -constprop -mergereturn -ipsccp -dse -simplifycfg -loop-idiom -loop-rotate -memcpyopt -constmerge -die 

-correlated-propagation -early-cse -indvars -always-inline -lazy-value-info -prune-eh -loops -targetlibinfo -strip-dead-prototypes -basiccg -domtree -
constprop -constmerge -lazy-value-info -ipsccp -sink -early-cse 

Seq5 

-argpromotion -dse -strip-dead-prototypes -tailcallelim -scalarrepl-ssa -constmerge -instsimplify -early-cse -lazy-value-info -tbaa -mergefunc -loops -gvn 

-domtree -loop-idiom -loweratomic -gvn -early-cse -globaldce -globalopt -loop-deletion -ipconstprop -loops -loop-idiom -lcssa -constprop -ipconstprop -
domtree -ipsccp -scalar-evolution -no-aa -early-cse -lowerinvoke -instsimplify -early-cse -lowerswitch -globalopt -targetlibinfo -die -loop-reduce -

lowerswitch -lazy-value-info -sccp -constmerge -functionattrs -basicaa -ipconstprop -lower-expect -lowerinvoke -targetlibinfo -argpromotion -die -

ipconstprop -dce -targetlibinfo -loop-deletion -scalar-evolution –tbaa 

Seq6 

-dse -scalarrepl -loop-idiom -loop-deletion -loop-instsimplify -memcpyopt -memdep -memcpyopt -deadargelim -loop-simplify -loop-instsimplify -

scalarrepl-ssa -constmerge -loop-deletion -basiccg -constprop -argpromotion -argpromotion -mergereturn -lazy-value-info -loops -memcpyopt -lower-

expect -ipsccp -dse -tailcallelim -mergereturn -loop-deletion -jump-threading -sink -jump-threading -loop-idiom -loop-deletion -no-aa -mergereturn -

argpromotion -lowerinvoke -loop-deletion -ipconstprop -constmerge -no-aa -functionattrs -globalopt -functionattrs -basicaa -die -scalarrepl-ssa -loops -

dce -no-aa -ipconstprop -mergereturn -tailcallelim -scalarrepl -adce -basicaa -mergereturn –dse 

Seq7 

-functionattrs -domtree -loop-rotate -lazy-value-info -instsimplify -lowerinvoke -strip-dead-prototypes -memdep -ipconstprop -adce -always-inline -sccp -
functionattrs -memdep -gvn -lazy-value-info -die -globaldce -loweratomic -gvn -loweratomic -mergefunc -die -loop-unroll -basicaa -ipconstprop -loop-

instsimplify -loops -scalar-evolution -tbaa -loops -jump-threading -prune-eh -ipsccp -globalopt -instsimplify -loop-idiom -codegenprepare -ipconstprop -

loop-simplify -tbaa -lcssa -lowerswitch -constmerge -globaldce -loop-simplify -die -loop-deletion -tbaa -codegenprepare -functionattrs -strip-dead-
prototypes -globalopt -sccp -loop-rotate -targetlibinfo -lcssa –die 

Seq8 

-lowerinvoke -basicaa -dce -loop-instsimplify -constmerge -simplifycfg -prune-eh -instsimplify -dce -inline -no-aa -sink -ipsccp -sink -lowerinvoke -

ipconstprop -correlated-propagation -dse -no-aa -mergefunc -tbaa -early-cse -mergereturn -ipsccp -reassociate -inline -instsimplify -loop-unswitch -die -
prune-eh -strip-dead-prototypes -adce -indvars -constmerge -jump-threading -indvars -functionattrs -jump-threading -loops -loop-idiom -reassociate -

loop-reduce -globaldce -tbaa -loop-unroll -scalarrepl -loop-simplify -jump-threading -die -globalopt -constmerge -deadargelim -reassociate -mergereturn -

lower-expect -loops -lowerswitch -loop-reduce -lowerswitch -loop-deletion 

Seq9 

-ipsccp -basiccg -dce -lcssa -correlated-propagation -constmerge -globaldce -dse -indvars -lower-expect -prune-eh -scalarrepl -basiccg -lowerswitch -

memcpyopt -lazy-value-info -globalopt -ipsccp -gvn -lazy-value-info -reassociate -loweratomic -adce -die -loop-instsimplify -memdep -loop-idiom -gvn -

mergereturn -sccp -functionattrs -deadargelim -loop-unroll -loop-simplify -dce -ipconstprop -loop-simplify -indvars -globalopt -adce -adce -scalarrepl-ssa 
-mergereturn -lazy-value-info -licm -loop-rotate -lowerinvoke -lcssa -targetlibinfo -die -tailcallelim -loop-unswitch -domtree -ipsccp -memdep -gvn -

indvars -correlated-propagation 

 

 

5. CONCLUSIONS 

 

In this paper, a method to reduce the code size based on the 

signs table is proposed. Two thousand sequences are randomly 

generated. Each sequence compiled with 50 programs. Then 

the average program size for 50 programs is computed, where 

the sequence that gives the average program's size better than 

-Oz flag is extracted and put in the signs table. A set of eight 

unobserved programs are employed for validating the method. 

After computing the similarity of the unseen program, the 

sequences that belong to the most similar program are 

candidates to optimize it. The results show that for most eight 

unseen programs, the produced programs are 9% smaller than 

-Oz. In our future work, we need to address other types of 

features and study their effect on program size. Furthermore, 

we plan to investigate the power of machine learning 

techniques for code size reduction. 
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LLVM Low Level Virtual Machine 

Os, Oz Standard optimization sequence 

IR Intermedite Code 

Clang LLVM front end 
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