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Electric vehicles (EV) employ batteries to generate their mechanical power for 
transportation, but the main challenge is to improve the battery management 
system (BMS) and increase the lifespan of the EV battery. In the existing battery 
management system, energy loss during charge balancing operation and 
prediction errors happens in remaining useful life (RUL) and state of health 
(SoH). Hence a novel Efficient Li-ion Battery Management System with Lossless 
Charge Balancer for RUL and SoH Prediction is proposed to improve the Battery 
Management System (BMS) and lifespan of the EV battery. The existing battery 
management systems have various cell-balancing approaches, but the energy 
losses in the form of heat create unavoidable instant charge imbalance. Thus, a 
novel Optimized Multi Input Multi Output-Bi Directional Long Short-Term 
Memory (MIMO-Bi-LSTM) has been proposed, in which the MIMO-Bi-LSTM 
Unit is providing better SoC estimation of each cell, and the FFOA (Fruit Fly 
Optimization Algorithm) is utilized in this state of charge (SoC) estimation of 
battery and improved accuracy. Moreover, an Adaptive Matrix Gate Switch 
Balancer is introduced in which the Adaptive Matrix Switch Algorithm is used 
to avoid charge imbalance and the DGTO (Duplex Gate Turn-Off Thyristors) 
switches reduce the energy loss during switching and improving the cell life 
cycle. Furthermore, the existing technique did not consider the variation of the 
EV motor’s efficiency that changes throughout the operation and the motor 
terminal resistance which also affects the cycle life of the battery. So, the novel 
Optimized UK-ANFI Network is introduced in which a UK (Unscented Kalman) 
Filter eliminate the non-linearity in the measured values of parameters and the 
ANFI (Adaptive Neuro-Fuzzy Inference) Network receives the linearized data 
and predicts the RUL and SoH of the battery pack. Then a GWO (Grey Wolf 
Optimizer) minimize prediction errors and provide better life cycle prediction. 
The result obtained by the proposed model have low RMSE in RUL and SoH 
prediction, high accuracy and low prediction time. 
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1. INTRODUCTION

Due to their high energy conversion efficiency and lack of
greenhouse gas emissions, electric vehicles are quickly 
gaining favour in modern transportation as a result of the 
growing emphasis on environmental protection and the 
reaction to the global energy crisis. The battery energy storage 
system (BESS) is a crucial part of electric vehicles and has 
recently drawn more attention since it plays a significant role 
in driving performance, safety, and range. Due to their high 
specific energy, small size, and low self-discharge rate, 
lithium-ion batteries (LIBs) are typically used in BESS. To 
guarantee the longevity, power, and security of LIBs, the main 

purpose of the BMS is to efficiently control and manage the 
battery. The battery cell and battery pack signal 
measurements, state estimation, battery pack consistency 
evaluation, battery pack balancing, safe charging, fault 
detection, and thermal management are examples of typical 
functions. The evolution of BMS into the following generation 
is currently in the advanced management stage. The battery 
state estimation approach has low adaptability in harsh 
conditions as a result of the growing battery population and 
higher energy density of batteries, and the safety concern with 
batteries is becoming more and more obvious. Consequently, 
the creation of the following generation of BMS with 
intelligence is about to happen [1-4]. 
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The battery management system continuously checks the 
battery's performance to guarantee the car runs without a hitch. 
Battery temperature, current, voltage, SoC, and SoH are the 
primary monitoring statuses. The SOC is defined as the 
percentage of the battery charge left and the highest possible 
capacity; these important elements interact with one another. 
When SOC is accurately estimated, overcharging and over-
discharging are prevented, which is essential for extending 
battery life and ensuring the effective operation of electric 
cars. However, the explanation for SOC's complex internal 
states, such as battery cell temperature, electrochemical 
reaction process, battery ageing, and internal material states, is 
primarily dependent on these complex internal states. The 
internal battery states cannot be directly monitored, and can 
only be inferred and anticipated by the use of a limited set of 
signals, such as voltage, current, and temperature signals, as is 
the case with the majority of electrochemical energy storage 
systems [5-8]. 

The internal states of the battery have a very nonlinear 
relationship with the externally observed signals as a result of 
the intricate electrochemical reaction occurring inside the 
battery. This problem is made worse by complex or demanding 
operating conditions. Additionally, the battery degradation 
during the cycle affects the state estimation accuracy and 
makes it more challenging. Since battery performances is 
change with ageing and a stable and exact estimation is needed 
for the entirety of the battery life, accurate battery state 
estimation is still a technical challenge. Lithium-ion batteries' 
performance will degrade during the continuous charging and 
discharging process as their capacity and impedance decrease. 
This is lead to battery faults like internal short circuits and 
thermal runaway, which cause catastrophic accidents and 
equipment failure. To increase the battery's dependability, it is 
crucial to precisely measure the battery's SoH and predict its 
RUL. The battery's health status is clearly seen in the capacity 
change that occurs over its life cycle. As a result, the ability 
has been used extensively to define SOH and RUL indicators. 
A Li-ion battery is typically considered to have failed when its 
capacity declines by 20–30% of the rated values [9-12]. 

SOH and RUL were mostly determined in the early Li-ion 
battery applications using impedance measurement using a 
probe. However, this method required a pricey apparatus and 
took a lot of time. As a result, methods such as discharge to a 
specified cut-off voltage, open-circuit voltage, voltage under 
load, battery temperature, and the amount of float charge have 
been used to assess the battery capacity indirectly. Both 
model-based and data-driven strategies have been used in 
recent years to forecast SOH and RUL. The model-based 
approaches call for the creation of a battery deterioration 
model that strikes a balance between complexity and accuracy. 
In actual applications, nevertheless, a variety of variables 
including environment and load had an impact on these 
approaches. Furthermore, accurate degenerate models are very 
challenging to derive due to the relative complexity of the law 
of physicochemical reactions of Li-ion batteries. Data-driven 
approaches are a popular area of research since they do not rely 
on Li-ion battery ageing dynamics models. To accomplish 
RUL and SOH prediction, they extract the implicit data on the 
battery health state from a range of experimental datasets [13-
15]. Even though there are many advancements in the battery 
management system of electric vehicles, there are still required 
many improvements for better estimation of SoC, prediction 

of remaining useful life and SoH of batteries by eliminating 
the prediction errors, problems in the charge balancing 
strategies and other limitations in the present research. Major 
contributions in this research are given as follows 
 In battery management systems in battery packs of

electric vehicles, the complexity in SoC estimation due to 
energy loss during charge balancing is removed by MIMO-Bi-
LSTM Unit that receives the parameters of each cell in the 
battery pack and providing better SoC estimation and the 
different SoC values of each individual cell SoC values are 
estimated with high accuracy by FFOA.  
 To balance charge in battery management system,

adaptive matrix switch algorithm, selects the pairs of cells 
having a large difference in SoC values thereby avoiding 
charge imbalance and reduced the energy loss during 
switching and improving the cell life cycle. 
 In the prediction of life cycle of battery, the

complexity in predicting RUL and SoH in the battery is 
removed by UK Filter that eliminate the non-linearity in the 
measured values of parameters and the ANFI Network 
receives these linearized data and predicts the RUL and SoH 
of the battery pack and optimize output parameters with 
enhanced life cycle prediction.  

These contributions have been mentioned considered for 
solving the problems in charge balancing in each cell of the 
battery and prediction of RUL and SoH in the existing 
methods. The Content of the research is organized as section 2 
describes the literature survey, section 3 describes the 
proposed methodology and its working process, and section 4 
discusses the proposed model evaluation, performance, and 
comparative analysis. Finally, section 5 concludes the 
research. 

2. LITERATURE SURVEY

Kyungnam Park et al [16] offered a new long short-term
memory (LSTM)-based RUL prediction algorithm in which a 
variety of quantifiable variables were used from the battery 
management system, such as the voltage, current, and 
temperature charging profiles, which patterns change with 
battery ageing, to estimate RUL even in the presence of the 
capacity regeneration phenomenon. They used a many-to-one 
structure instead of the conventional LSTM prediction, which 
matches the input layer with the output layer as a one-to-one 
structure that be flexible for different input types and to 
drastically reduce the number of parameters for greater 
generalisation. According to the experimental findings, the 
single-channel LSTM model was superior to the baseline 
LSTM in terms of mean absolute percentage error (MAPE) by 
39.2%. But this approach involved more computational time 
for generalization. 

Shunli Wang et al [17] proposed an enhanced anti-noise 
adaptive long short-term memory (ANA-LSTM) neural 
network with high-robustness feature extraction and optimal 
parameter characterisation for reliable RUL prediction on the 
basis of an improved dual closed-loop observation modelling 
technique. Then, using multiple feature collaboration and 
characterization of its internal coupling mechanism, an 
adaptive state parameter feedback correction strategy was 
built, taking various current rates, ambient temperatures, and 
other influencing parameters into account. Then, model 
training and meta-structure fine-tuning were done in tandem 
with collaborative multi-parameter optimisation. However, the 
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increase in the parameter difference caused variations in the 
state information of the battery. 

Huixin Tian et al [18] suggested a brand-new multimode 
ensemble support vector regression (ME-SVR) technique to 
estimate SOC. This method used a clustering algorithm to 
separate the original data set into various data subsets while 
taking into account the characteristics of battery data. For each 
data subset, an SVR estimation model was then created. 
Finally, the output was produced using the weighted average 
concept of ensemble learning when the estimation results of 
various SVRs are merged. According to the experimental 
findings under various driving scenarios, this unique technique 
is greatly increase SOC estimating accuracy as well as the 
model's stability and generalizability. Still, there is a need to 
improve the clustering algorithm for accurately separating the 
battery characteristics data. 

Zhenhua Cui et al [19] suggested a hybrid approach based 
on the CNN-BWGRU network in which through the use of a 
bidirectional network and a "multi-moment input" structure, 
the method maximises the impact of battery information on the 
outcomes. The input feature parameters were taught by the 
convolutional neural network (CNN). Through adjusting the 
weights, the bidirectional weighted gated recurrent unit 
(BWGRU) is enhance the network's fitting ability at low 
temperatures. The suggested network had good robustness, 
estimation accuracy, and generalisation capabilities. To test 
the network's believability, the SOC estimate was carried out 
under a variety of circumstances. The results of the 
experiments demonstrated that the approach was more 
accurate and stable than other networks. However, the 
generalization ability needs to be improved further. 

Zuolu Wang et al [20] developed a parameter identification 
method based on the dynamic voltage responses in the 
practical constant current (CC) discharging process that 
identify the battery model parameters using the particle swarm 
optimisation (PSO) approach. A hybrid SOC estimate method 
was also suggested to reduce system errors brought on by the 
model, algorithm, and measurement system. The improved 
extended Kalman filter (EKF) approach with designed 
compensating error was used in the suggested hybrid method 
to suppress system errors. PSO was once more used to 
calculate the dynamic compensation error using the ampere-
hour counting (AHC) method's dependable increase over the 
whole SOC range. However, the estimation results strongly 
depended on the initialization of the parameters of the battery. 

Kuo Yang et al [21] proposed a deep learning strategy based 
on a dual-stage attention mechanism to increase SOC 
prediction accuracy and lessen the impact of noise. It 
integrated elements from the realm of lithium-ion batteries, 
such as current, voltage, and temperature, into an encoder-
decoder network based on a gated recurrent unit. They pre-
processed the attention mechanism's input data during the 
encoder input stage that enable adaptive feature extraction 
from the input sequence. Another attention mechanism was 
employed in the decoder stage to precisely estimate the SOC 
at the present time, take into account the correlation of the time 
series, and refer to the preceding encoder's state on the time 
scale. However, this approach is not handle multiple 
sequences of input signals with different step lengths which 
degraded the estimation accuracy. 

Yizhao et al [22] improved the partial differential equations 
with the Laplace transform, Pade approximation, and other 

techniques, an improved pseudo-two-dimensional 
electrochemical model is created to determine the transfer 
function between cell voltage and current. To derive the model 
temperature dependency, the temperature-sensitive 
parameters are identified at various temperatures. The 
temperature-dependent parameters are then extracted for 
model decoupling. With offline data, the provided model is 
tested to attain good accuracy over a wide range of state-of-
charges and temperatures. Finally, the model is discretized and 
implemented in the desired algorithm framework in an EV's 
BMS to validate its effectiveness. However, the interior 
electrochemical variables are not taken into account, which is 
reduce the precision of state prediction when the battery ages 
or the load changes. 

Sagar et al [23] analysed the battery's equivalent circuit 
model (ECM), which depicts the battery's behaviour at various 
temperatures while taking the battery's internal resistance into 
account. To ensure that batteries were replaced in a systematic 
manner based on calendar ageing, a stochastic model for 
battery ageing and replacement was devised. The Markov 
chain was used to examine the reliability of EV accessibility 
and availability. A case research of a diesel-renewable 
powered Electric Vehicle Charging Station (EVCS) in a 
micro-grid that meets the need of large-scale EV fleet 
integration to the grid for power transaction was conducted. 
The complexity and computing ability of the circuit increase 
as the number of R-C components rises. 

Bruno et al [24] analysed electronic battery management 
and SoC equalisation solutions are required to mitigate such 
imbalances. This article evaluates 24 SoC equalisation circuits 
commonly seen in automotive applications. The analytic 
hierarchy process (AHP) technique to rank these equalisation 
circuits based on several choice criteria (energy efficiency, 
equalisation speed, implementation and control simplicity, 
hardware size, and total price) and have created a survey to 
collect design opinions from several battery balance specialists 
from around the world to better understand the relative 
importance of different variables. The bypass and passive 
approaches are easy to install and have minimal costs, but they 
have low energy efficiency. 

Subramanian et al [25] examined the Peer-to-Peer (P2P) 
trade becomes familiar, which is primarily based on the 
completely decentralised process of power generation and 
consumption. Simultaneously, hybrid electric vehicles (HEV) 
have emerged as an important technology for achieving energy 
efficiency and environmental sustainability. Depending on the 
measurement, the BMS analyses the power and SoC and 
validates the well-being. Accurate SOC calculation is critical 
to ensuring the continuous operation of Li-ion batteries, which 
are commonly used in HEVs. A solid SOC prediction model 
is required to ensure accurate measurement of the vehicle's 
residual driving range and proper battery balancing. These 
methods combine a moving average prediction with a reduced 
electrochemical method capable of doing prediction with 
linearization error. 

From the given researches, it is clear that [16] involved high 
computational time, [17] variation in the state information of 
the battery affected the estimation, [18] the clustering 
algorithm needs to be improved, [19] generalization ability 
needs to be improved, [20] the estimation results strongly 
depended on the initialization of parameters and [21] is not 
handle multiple sequences of input signals with different step 
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lengths, in [22] the interior electrochemical variables are 
ignored, which is degrade the precision of state prediction as 
the battery ages or the load varies, in  [23] the number of R-C 
components increases, so does the circuit's complexity and 
computing power, in [24] the bypass and passive techniques 
are simple to install and inexpensive, but they are inefficient 
in terms of energy use, in [25] these approaches combine 
moving average prediction with a simplified electrochemical 
method capable of predicting with linearization error.   Hence, 
there is a need for a novel method for the accurate estimation 
of the SoC of Li-ion battery packs in electric vehicles. 

3. EFFICIENT LI-ION BATTERY MANAGEMENT
SYSTEM WITH LOSSLESS CHARGE BALANCER
FOR RUL AND SOH PREDICTION

Electric vehicles use batteries to create their own 
mechanical power for transportation. As a result, it is critical 
to design a Battery Pack that can provide appropriate power to 
the motor for an extended period of time without diminishing 
its lifespan. To increases the lifespan of the batteries in EV by 
cell-balancing approaches and Prediction of RUL and SoH. In 
the existing cell-balancing approaches, energy loss during 
charge balancing operation and prediction errors happens in 
RUL and SoH. Hence a novel Efficient Li-ion Battery 
Management System with Lossless Charge Balancer for RUL 
and SoH Prediction is proposed, to reduce energy loss during 
charge balancing operation and avoid the prediction errors 
happens in RUL and SoH thereby increasing the lifespan of 
the Electric vehicle battery. In the existing energy 
management systems in lithium-ion battery packs of electric 
vehicles use various cell-balancing approaches which involve 
SoC estimation complexity due to energy loss during charge 
balancing operation because, in these approaches, each cell is 
connected to passive electronic devices for energy balancing 
which involve energy losses in the form of heat and create 
unavoidable instant charge imbalance. Thus, a novel 
Optimized Multi I/O Bi-LSTM has been proposed to estimate 
the SoC of the battery pack in the EV in which the MIMO-Bi-
LSTM Unit receives the open circuit voltage (OCV), charging 
and discharging current (Ic and Id) and temperature of each cell 
in the battery pack and estimates the SoC. This unit is capable 
of utilizing and keeping information from both sides i.e., every 
component of an input sequence has information from both the 
past and present based on the output values thus providing 
better SoC estimation. Additionally, an FFOA is utilized in 
this SoC estimation where it uses unique initialization and 
maximum generation approach to identify the population size 
thereby globally optimizing the different SoC values of each 
individual cell and estimating the SoC of the Batter Pack. With 
this approach, the SoC of individual cells, as well as the whole 
battery pack, are estimated with improved accuracy.  

Moreover, to balance battery charge and improve cell life 
cycle, an Adaptive Matrix Gate Switch Balancer is introduced 
in which a matrix switch algorithm and Gate Turn-Off 
Thyristors are used for the charge balancing in each cell of the 
battery pack. The Adaptive Matrix Switch Algorithm 
compares the SoC values of each individual cell and selects 
the pairs of cells having a large difference in SoC values to 
assign first priority and then activates the relevant switches 
until they get charged equally. These steps are continued until 
every cell reaches the same SoC both during charging as well 
as discharging thereby avoiding charge imbalance. This 

Charge Balancer uses a having three terminals anode, cathode 
and a gate which switches the current in either direction in 
between cells aiding charging and discharging and the relevant 
switches are turned ON and OFF with the help of the Adaptive 
Matrix Switch Algorithm which applies a small positive and 
negative gate current accordingly. These switches have large 
switching frequencies and consume very less power for gate 
activation thereby reducing the energy loss during switching 
and improving the cell life cycle. 

Prediction of remaining useful life (RUL) and SoH is a vital 
parameter for batteries to estimate remaining cycle life, which 
is defined as how many cycles from the present cycle the 
battery capacity will approach the failure threshold. But in the, 
existing methods take the real-time SoC data, aging factor, 
number of the present charge cycle and battery parameters and 
finally predict the RUL and SoH. These approaches involve 
prediction errors that cannot provide more reliable information 
for timely battery maintenance and replacement because they 
did not consider the variation of the EV motor’s efficiency that 
changes over a period of operation and the motor terminal 
resistance which also affects the cycle life of the battery. So 
the novel Optimized UK-ANFI Network is introduced for both 
RUL and SoH prediction in which a UK (Unscented Kalman) 
Filter is utilized to eliminate the non-linearity in the measured 
values of parameters such as SoC, aging factor, real-time 
motor efficiency and the motor terminal resistance using mean 
and covariance matching technique. The ANFI (Adaptive 
Neuro-Fuzzy Inference) Network receives these linearized 
data and predicts the RUL and SoH of the battery pack. Then 
a GWO (Grey Wolf Optimizer) is used to optimize these two 
output parameters from the ANFI unit thereby providing an 
enhanced life cycle prediction. With this combined and 
optimized prediction network, the prediction errors are 
minimized and more reliable battery information is attained 
with better life cycle prediction. Overall, with this proposed 
battery management and life cycle prediction approach, the 
estimation errors are minimized, and the life cycle of the 
battery and prediction accuracy is improved shown in figure 1. 

Figure 1 despites the architecture of Efficient Li-ion Battery 
Management System with Lossless Charge Balancer for RUL 
and SoH Prediction of the proposed method. The battery has 
individual cell, each cell SoC is calculated by the MIMO-Bi-
LSTM unit. The FFOA is used to optimize the individual SoC 
into the total SoC. Then the Adaptive Matrix Switch 
Algorithm compares the SoC values of each cell and activates 
the relevant switches until they get charged equally. The cells 
are connected with DGTO, it having three terminals anode, 
cathode and a gate which switches the current in either 
direction in between cells aiding charging and discharging and 
the relevant switches are turned ON and OFF with the help of 
the Adaptive Matrix Switch Algorithm. Furthermore, an 
Optimized UK-ANFI Network is introduced for both RUL and 
SoH prediction in which a UK (Unscented Kalman) Filter is 
utilized to eliminate the non-linearity in the measured values 
and the ANFI (Adaptive Neuro-Fuzzy Inference) Network 
receives these linearized data and predicts the RUL and SoH 
of the battery pack. Then a GWO (Grey Wolf Optimizer) is 
used to optimize these two output parameters from the ANFI 
unit thereby improving life cycle prediction. 
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Figure 1. Architecture of Efficient Li-ion Battery 
Management System with Lossless Charge Balancer for RUL 

and SoH Prediction 

3.1. Optimized Multi I/O Bi-LSTM 

An Optimized Multi I/O Bi-LSTM has been proposed to 
estimate the SoC of the battery pack in the EV in which the 
MIMO-Bi-LSTM (Multi Input Multi Output-Bi directional 
Long Short-Term Memory) Unit receives the OCV, charging 

and discharging current ( cI  and dI ) and temperature of each 

cell in the battery pack and estimates the SoC. Since some 
complication occurs in gated memory structure, LSTM solves 
the gradient disappearance or explosion problem that happens 
in regular RNNs and surpasses other recurrent architectures in 
dealing with sequential problems with long-term 
dependencies, however, that the LSTM structure can only 
leverage positive dependencies, and that some useful 
information will be filtered in the long-term gated memory 
chain. To address this issue, this research employs a 
bidirectional LSTM, which comprises of two LSTM layers 
facing opposite ways, two independent LSTM layers, one for 
forward sequence input and the other for reverse sequence 
input. This structure compensates for LSTM's lack of 
knowledge, better capture contextual long-term dependencies 
in sequence tasks, and enable more accurate predictions. This 
model's input data are multiple parameters such us OCV and 

charging and discharging current ( , )c dI I  and the input 

sequence    , , ,t t c d tt
X OCV I I T is voltage, current 

and temperature with t as the time step, and the output 

sequence is SoC. The hidden layer of neuron node for the 
forward propagation of the model is given in equation 1 (26). 

 1,t t tH LSTM X H 
 

 (1) 

Where, 1,t tH H 

 
is the hidden layer of neuron node for the 

forward propagation of the model 

 1,t t tH LSTM X H 
 

 (2) 

In equation (2), where 1,t tH H 

 
is the hidden layer neuron 

nodes for the reverse propagation of the model. The forward 
and reverse implied state outputs of the Bi-LSTM are then 
connected and fed into the same fully connected layer, and the 
output implied layer state is considered as input using the fully 
connected layer. Its dimensionality reduction is calculated 
using the sigmoid function's activation function, and the final 
output is the projected charge state. The SoC estimation of the 
model output shows in equation (3). 

m f rlSoC W h O   (3) 

Where, mW denotes weight matrix, fh is output of the fully 

connected layer, and rlO  is output regression layer. The flow 

diagram of BI- LSTM is shown in figure 2 

Figure 2. Structure of the Bi-LSTM 

Figure 2 represents the structure of the Bi-LSTM of the 
proposed method. The four inputs such us OCV, charging and 

discharging current ( , )c dI I  and temperature of each cell in 

the battery pack are sent to the LSTM hidden layers, this 
LSTM receives the input parameters and processing by the 
reverse and forward channels in the LSTM hidden layer. Then 
it connected to the full connection layer, and finally the 
bidirectional LSTM is calculated the SoC of each cell. This 
unit is capable of utilizing and keeping information from both 
sides i.e., every component of an input sequence has 
information from both the past and present based on the output 
values thus providing better SoC estimation. 
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Additionally, an FFOA is utilized in this SoC estimation 
where it uses unique initialization and maximum generation 
approach to identify the population size thereby globally 
optimizing the different SoC values of each individual cell and 
estimating the SoC of the Battery Pack. It is used to solve 
optimization problems and is especially useful for ongoing 
optimization activities. The algorithm simulates the behaviour 
of fruit flies as they look for the best food sources in their 
surroundings. 

Algorithm 1. FFOA (Fruit Fly Optimization Algorithm) 

Input: The SoC of individual cell (SoC1, SoC2, SoC3 and 
SoC4) in the battery 
Output: Total SoC  
Step 1: Define an objective function that measures the fitness 
or quality of a certain SoC estimation. The objective function 
is based on estimation accuracy, divergence from actual SoC 
measurements, or other relevant factors. 
Step 2: Create an initial population of potential SoC 
estimations that reflect various candidate solutions. These 
estimates are created at random within a defined range. 
Step 3. In the FOA metaphor, each estimation candidate 
symbolises a fruit fly, and their behaviour is driven by the 
objective function. Fruit flies engage in a variety of 
behaviours, such as looking for food and associating with 
other fruit flies. 
Step 4. The movement of fruit flies are depicted by modifying 
population calculations. Exploration and exploitation tactics 
can lead this trend in the pursuit for more accurate SoC 
estimations. 
Step 5 Using the stated objective function, evaluate the fitness 
or quality of each estimation candidate. This evaluation 
determines how well each proposed SoC estimation 
corresponds with the desired estimation requirements. 
Step 6. Apply a selection method to identify the most 
promising SoC estimation candidates based on their fitness 
scores. Higher fitness scores suggest estimates that are closer 
to the real SoC measurements. 
Step 7. Repeat steps 4–6 for a set number of iterations or until 
a convergence requirement is reached. This iterative method 
allows the SoC estimating algorithm to continuously improve 
and converge towards a more accurate estimation. 
Step 8. Once iterations, choose the estimation candidate with 
the best fitness score as the final SoC estimation. 

The Fruit Fly Optimization Algorithm is well-known for its 
ability to efficiently explore the search space, find a balance 
between exploration and exploitation, and settle on solid 
solutions. It excels at continuous optimization issues with 
complicated and multimodal search spaces. With this 
approach, the SoC of individual cells, as well as the whole 
battery pack, are estimated with improved accuracy. 

3.2. Adaptive Matrix Gate Switch Balancer 

The Adaptive Matrix Gate Switch Balancer is introduced in 
which a matrix switch algorithm and Gate Turn-Off Thyristors 
are used for the charge balancing in each cell of the battery 
pack. This Charge Balancer uses a DGTO  having three 
terminals anode, cathode and a gate which switches the current 
in either direction in between cells aiding charging and 
discharging and the relevant switches are turned ON and OFF 

with the help of the Adaptive Matrix Switch Algorithm which 
applies a small positive and negative gate current accordingly. 
The two gates are known as the main gate and the auxiliary 
gate. The main gate regulates the turn-on procedure, while the 
auxiliary gate controls the turn-off process. Are utilising the 
auxiliary gate, DGTOs can radically minimise turn-off losses, 
resulting in faster switching frequencies and lower power 
dissipation. DGTOs are often built to handle high voltages and 
currents, making them appropriate for high-power 
applications. DGTOs are distinguished by their ability to be 
turned off by applying a negative voltage pulse to the gate 
terminal.  This feature distinguishes DGTOs from other 
thyristor devices, such as silicon-controlled rectifiers (SCRs), 
which can only be switched off by lowering the current 
flowing through them to zero. When a negative voltage pulse 
is supplied to the gate of a DGTO, the conductivity of the 
thyristor is reduced, causing the current to drop and eventually 
stop flowing. This is known as "gate turn-off." The DGTO's 
ability to be shut off quickly makes it excellent for applications 
needing fast and efficient switching, such as motor drives, 
traction systems, high-power inverters, and other industrial 
power electronics applications. These switches have large 
switching frequencies and consume very less power for gate 
activation thereby reducing the energy loss during switching 
and improving the cell life cycle. The DGTO shown in figure 
3  

Figure 3. DGTO (Duplex Gate Turn-Off Thyristors) 

Figure 3 represents the of the proposed method. The DGTO 
has three terminals anode, cathode, and a gate that switches the 
current in either direction between cells, assisting charging and 
discharging, and the relevant switches are turned ON and OFF 
with the help of the Adaptive Matrix Switch Algorithm, which 
applies a small positive and negative gate current accordingly. 
First it focused to balancing the maximum difference of SoC 
between two cells and balanced that two cells SoC then 
focused on other cells. This cycle was continuously repeated 
by DGTO by using adaptive matrix switch algorithm. 

The Adaptive matrix switch algorithm is the computational 
approach or logic used to control and manage the switching of 
signals or data using a matrix switch in the context of 
networking or signal routing. The Adaptive Matrix Switch 
Algorithm compares the SoC values of each individual cell 
and selects the pairs of cells having a large difference in SoC 
values to assign first priority and then activates the relevant 
switches until they get charged equally. The matrix switch 
algorithm defines how signals are routed by the switch 
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depending on particular criteria or rules. The following is the 
adaptive matrix switch algorithm. 

Algorithm 2. The Adaptive Matrix Switch Algorithm 

Input: Control the switches of DGTO for SoC balancing in 
each cell 
Output: Balanced the SoC of each cell in the battery 
Steps: 

1. The size of the matrix is determined by the number of
input and output ports necessary. 

2. The gate signal governs the DGTO's turn-on and turn-off
behaviour. A control circuit commonly employs a pulse 
generator or a microcontroller to generate the gate signal. 
Based on the required switching action, the algorithm 
determines the timing and duration of the gate pulses. 

3. A negative voltage pulse applied to the gate initiates the
turn-off process in DGTOs and sets the time and duration of 
the gate turn-off pulse.  

4. DGTOs are susceptible to overcurrent and overvoltage
circumstances, which is destroy the device or cause it to 
behave abnormally. In the event of an overcurrent or 
overvoltage incident, the control algorithm comprises 
protective mechanisms that monitor the current and voltage 
levels and initiate necessary responses, such as lowering the 
gate voltage or halting the gate pulses. 

5. The control algorithm communicates with the gate drive
circuitry to convert control signals into the voltage or current 
levels needed to efficiently operate the DGTO gates. 
Depending on the DGTO's exact gate drive needs, this is entail 
level shifting, isolation, and amplification approaches. 

6. Feedback methods is used to monitor real device
behaviour and compare it to desired switching characteristics. 
This enables the control algorithm to dynamically alter the 
gate signals to maintain optimal performance and respond to 
changing load conditions or system requirements. 

To accomplishes efficient and reliable switching operations, 
the adaptive matrix switching algorithm is used for specific 
device features such as gate capacitance, gate charge, and 
switch turn-on and turn-off characteristics. These steps are 
continued until every cell reaches the same SoC both during 
charging as well as discharging thereby avoiding charge 
imbalance. The flow diagram of Adaptive Matrix Gate Switch 
Balancer is shown in figure 4. 

Figure 4 represents flow chart of adaptive matrix gate 
switch balancer of the proposed method. The Adaptive Matrix 
Gate Switch Balancer is introduced, which uses a matrix 
switch algorithm and Gate Turn-Off Thyristors for charge 
balancing in each cell of the battery pack. The Adaptive Matrix 
Switch Algorithm examines the SoC values of each individual 
cell and picks pairings of cells with a big difference in SoC 
values to assign first priority, and then activates the relevant 
switches until they are charged equally. These procedures are 
repeated until every cell reaches the same SoC when charging 
and draining, avoiding charge imbalance. This Charge 
Balancer employs a DGTO  with three terminals anode, 
cathode, and a gate that switches the current in either direction 
between cells, assisting charging and discharging, and the 
relevant switches are turned ON and OFF with the assistance 
of the Adaptive Matrix Switch Algorithm, which applies a 
small positive and negative gate current accordingly. 

Figure 4. Flow chart of adaptive matrix gate switch balancer 

These switches have high switching frequencies and use 
relatively little power for gate activation, decreasing energy 
loss and enhancing cell life cycle. In following section 
discussed about the prediction of RUL and SoH of the battery 
efficiently. 

3.3. Optimized UK-ANFI Network 

An Optimized UK-ANFI Network is introduced for both 
RUL and SoH prediction in which a Filter is used to eliminate 
the non-linearity in the measured values of parameters such as 
SoC, aging factor, real-time motor efficiency and the motor 
terminal resistance using mean and covariance matching 
technique. The UK Filter eliminate the non-linearity by a 
mathematical model, that represents the system dynamics and 
how the measured values relate to the parameters of interest is 
established. The model represents the non-linear correlations 
between the parameters (SoC, aging factor, real-time motor 
efficiency, motor terminal resistance) and the measured values 
in the scenario. Then the state vector contains the estimated 
parameters of interest, such as SoC, aging factor, motor 
efficiency, and motor terminal resistance. The measured 
values of these parameters are included in the measurement 
vector. The UKF predict the present state (parameters) based 
on the prior state and the system dynamics model. It 
propagates the mean and covariance of the state through the 
non-linear model to estimate the projected state. The UKF 
employs the unscented transform to choose a collection of 
sigma points (representative points) that encapsulate the mean 
and covariance of the anticipated state. These sigma points are 
then fed into the non-linear measurement model to generate 
anticipated measurements. The UKF estimates the Kalman 
gain by comparing expected and actual measurements. The 
Kalman gain adjusts the mean and covariance of the state 
estimate by combining the anticipated state estimate with the 
actual data. Using the Kalman gain, the UKF updates the state 
estimate. The revised state estimate becomes the estimated 
values of the parameters (SoC, aging factor, motor efficiency, 
motor terminal resistance). The method is then repeated for 
consecutive measurements. The UKF provides an effective 
method for estimating the parameters of interest by iteratively 
propagating the mean and covariance of the state through non-
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linear models and adding actual data. The SoC of each cell 
(SoC1, SoC2, SoC3, SoC4) is converted into total SoC by FFOA 
(Fruit Fly Optimization Algorithm) and the total SoC is sent to 
the (Unscented Kalman) Filter. Then the parameters such as 
SoC, aging factor, motor efficiency, motor terminal resistance 
are entered in the ANFI  Network.  

The ANFI Network receives these linearized data from UK 
Filter and these data are first analysed under fuzzy conditions 
in ANFIS modelling. The data is then trained using fuzzy 
rules, and the error is decreased using IF-THEN and 
membership functions. The Sugeno type of fuzzy inference 
system is built from cluster information and employs a small 
number of rules to accurately represent data behaviour. The 
rules are self-divided in terms of the fuzzy properties of each 
data cluster. To train the ANFIS model, derivative-based 
methods such as backpropagation make use of each node with 
differentiable functions. To update the parameters of the ANFI 
network, use the training dataset. The training method seeks to 
minimise the difference between the projected RUL and SoH 
values and the ground truth values in the training dataset. 
Using the testing dataset, evaluate the performance of the 
trained ANFI network. To analyse the accuracy of the 
predictions, compute relevant performance metrics such as 
mean squared error or root mean squared error. Based on the 
evaluation results, adjust the ANFI network parameters as 
needed. Input new battery operating conditions and metrics 
into the trained ANFI network. The ANFI network uses fuzzy 
inference based on language rules and membership functions 
to predicts the RUL and SoH of the battery pack. The GWO 
is used to optimize these RUL and SoH output parameters 
from the ANFI unit. The following is the Grey Wolf Optimizer 
algorithm.  

Algorithm 3. Grey Wolf Optimizer 

Input:       RUL and SoH from ANFI unit 
Output:     Optimized RUL and SoH values 
Steps: 

1. The objective function should examine the accuracy and
dependability of the forecasts, taking into account the actual 
RUL and SoH values as well as the predictions provided by 
the ANFI unit. 

2. Identify the two output parameters, RUL and SoH, that
must be optimized to improve life cycle prediction and the 
define the search space boundries for these parameters, 
describing their permitted ranges. 

3. Set the GWO algorithm parameters, such as population
size, maximum number of iterations, and search space 
boundaries for RUL and SoH. Randomly locate the grey 
wolves (solutions) inside the defined search space and 
calculate the fitness value for each grey wolf based on the goal 
function as predicted by the ANFI unit. 

4. Iterate over a number of generations or until a termination
condition is met.  Update the grey wolves' positions based on 
their fitness scores, as well as the positions of the alpha, beta, 
and delta wolves (best solutions identified so far). Utilise grey 
wolf hunting behaviour to alter the positions of the grey 
wolves while exploring and utilising the search space 

5. Using the ANFI unit's predictions, update the fitness
values for the grey wolves' new placements. Update the 
placements of the alpha, beta, and delta wolves on a regular 
basis based on the greatest fitness values obtained. 

6. Decide a termination condition, such as completing the
maximum number of iterations or getting a desirable fitness 
value. Return to step 4 and resume the optimisation procedure 
if the termination condition is not fulfilled. 

7. When the optimization procedure is finished, the position
of the alpha wolf represents the optimised values for RUL and 
SoH from the ANFI unit.  These optimized parameter values 
were used to improve life cycle prediction, resulting in 
increased accuracy and reliability of RUL and SoH 
estimations. 

 Through using the GWO algorithm to optimize the RUL 
and SoH output parameters from the ANFI unit, and achieve 
more accurate and reliable life cycle predictions for the 
system. The GWO's exploration and exploitation capabilities 
aid in the discovery of optimal RUL and SoH values, thereby 
providing an enhanced life cycle prediction. With this 
combined and optimized prediction network, the prediction 
errors are minimized and more reliable battery information is 
attained with better life cycle prediction. 

Figure 5. Flow chart of optimized UK-ANFI Network 

Figure 5 represents the flow chart of optimized UK-ANFI 
Network in the proposed method. A UK Filter is used to 
eliminate non-linearity in measured values of parameters such 
as SoC, ageing factor, real-time motor efficiency, and motor 
terminal resistance using mean and covariance matching 
technique in the optimised UK-ANFI Network for both RUL 
and SoH prediction. The ANFI Network gets this linearized 
data and forecasts the battery pack's RUL and SoH. Then, a 
GWO is utilised to optimise these two output parameters from 
the ANFI unit, delivering an improved life cycle prediction. 
With this merged and optimised prediction network, 
prediction errors are reduced and more trustworthy battery 
information is obtained with superior life cycle prediction. 

Overall, the proposed MIMO-Bi-LSTM (Multi Input Multi 
Output-Bi weDirectional Long Short-Term Memory) Unit 
receives the OCV, charging and discharging current (Ic and Id) 
and temperature of each cell in the battery pack and estimates 
the SoC and the FFOA is used to calculate the different SoC 
values of each individual cell and estimating the SoC with high 
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accuracy. In the charge balancing in each cell of the battery 
pack, the Adaptive Matrix Switch Algorithm compares the 
SoC values of each individual cell and selects the pairs of cells 
having a large difference in SoC values and avoiding charge 
imbalance. The DGTO have large switching frequencies and 
consume very less power for gate activation thereby reducing 
the energy loss during switching and improving the cell life 
cycle. In the prediction of RUL and SoH of the battery pack, 
UK Filter is used to eliminate the non-linearity in the measured 
values. ANFI Network receives these linearized data and 
predicts the RUL and SoH of the battery pack. Then a GWO 
is used to optimize these two output parameters from the ANFI 
unit thereby providing an enhanced life cycle prediction. 
Thereby, the existing techniques drawbacks are overcome by 
this proposed method. In following section, 4 discussed about 
performance and comparison of proposed method. 

4. RESULT AND DISCUSSION

The results obtained from the proposed model have been
provided in this section. The results showed that the proposed 
model minimized the estimation errors, and improved the life 
cycle of the battery, and the prediction accuracy of the 
proposed approach is also proved by comparing it with other 
existing approaches.  

4.1. Experimental setup 

OS : Windows 10 Professional 64 bit 
RAM : 8GB 
Processer : intel(R) Core (TM) i3-4130 CPU 

@ 3.40GHz   3.40 GHz 
Tool : Matlab 

4.2. Simulation result 

This section described the simulation result of the proposed 
method. The circuit diagram of the balancing algorithm, and 
thyristor filter are shown in figure 6 and figure 7. 

Figure 6. Simulated view of Balancing algorithm of the 
proposed method 

Figure 6 represents the Balancing algorithm of the proposed 
method. The energy pass through the battery, the cell SoC, 
temperature of cell balance by adaptive matrix switch 
algorithm. This adaptive matrix switch algorithm control the 
DGTO switches and tranfering the power in each cell of the 
battery, the first prioritygiven to large difference charge values 
in cell and it balanced, then check to the other large difference 

charge in the cell. The total SoC of battery pack is calculated 
by FFOA and the total SoC sent to the Unscented Kalman 
Filter. 

Figure 7. Simulated view of thyristors filter of the proposed 
method 

Figure 7 represents the thyristor filter of the proposed 
method. The first step is to measure the current or voltage 
waveform that has to be filtered. The signal is acquired using 
sensors or transducers. Based on the desired filtering 
characteristics, a reference waveform is constructed. The 
measured and reference waveforms are compared to discover 
the differences or errors between them. A microcontroller or a 
digital signal processor is often used for this. Control signals 
are generated to trigger the thyristors based on the comparison 
results. Control signals dictate whether the thyristors conduct 
or inhibit current flow.Control signals are created and supplied 
to thyristors that are coupled in a specified configuration (such 
as a bridge or matrix). To selectively enable or stop current 
flow, the thyristors are switched on and off based on the 
control signals. Thyristors can alter the current or voltage 
waveform when they turn on and off by introducing 
compensatory currents or voltages. This compensatory effect 
cancels out the unwanted harmonics and noise in the original 
waveform, resulting in a cleaner output waveform. The entire 
process is constantly watched, and adjustments are made as 
needed to keep the optimum filtering performance. The 
feedback loop guarantees that the filter responds to changes in 
the input waveform and compensates accurately. 

Figure 8. RMSE and loss prediction of the proposed method 

Figure 8 represents the RMSE and loss prediction of the 
proposed method. During simulation, set up the UKF's initial 
state estimation, covariance matrices, and other relevant 
parameters. Apply the UKF algorithm to the measurement data 
to estimate the system state at each time step. The UKF 
incorporates nonlinear system dynamics and measurement 
equations to iteratively update the state estimation and 
covariance matrices. When running the UKF, compare the 
estimated state values to the genuine state values at each time 
step. To determine the RMSE value, compute the squared 
differences between the estimated and true states, total them 
over all time steps, divide by the total number of time steps, 
and take the square root. 
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4.3. Performance metrics of the proposed model 

The performance metrics of the proposed model in the 
battery management system and high prediction of RUL and 
SoH of the proposed approach based on achieved outcome 
were explained in detail in this section. 

Figure 9. Performance of demand in the proposed model 

Figure 9 illustrates the performances of the demand of the 
proposed model. When the number of cell sequence is 210 it 
achieves the maximum demand of 1.42 MW and while the 
number of cell sequence is 215, it achieves the minimum cell 
sequence of -0.32 MW. The MIMO-Bi-LSTM, input sequence 
has information from both the past and present based on the 
output values thus providing better SoC estimation than actual 
SoC value. 

Figure 10. Performance of convergence fitness in the 
proposed model 

Figure 10 illustrates the performances of the convergence 
fitness of the proposed model. When the number of iteration is 
0 it achieves the maximum convergence fitness of 1.7 x 10-3 
and while the number of iteration is 200, it achieves the 
minimum convergence fitness of 1 x 10-3 and it constant upto 
500 iteration. The FFOA is utilized in this SoC estimation 
where it uses unique initialization and maximum generation 
approach to optimize the convergence fitness once every 
iteration. 

Figure 11 illustrates the performances of the first state 
validation of the proposed model. When the time is 0 second 
it achieves the maximum first state validation of 2 and it 
gradually decreasing while the time is 3 seconds, it achieves 
the minimum first state validation is -2 for true value. The 
Unscented Kalman Filter, filtered the non-linearity values in 
the parameter, thus the curve is not more fluctuated from the 
true value.  

Figure 11. Performance of first state validation in the 
proposed model 

Figure 12. Performance of RUL and SOH in the proposed 
model 

Figure 12 illustrates the performances of the RUL and SOH 
of the proposed model. When the time is 0.6 second, the RUL 
achieves the maximum battery pack of 3.82 and while the time 
is 2.1 seconds, it achieves the minimum battery pack of 2.4 
and the time is 0.6 seconds SOH achieves the maximum 
battery pack of 3.82 and while the time is 2.1 seconds, it 
achieves the minimum battery pack of 2.4. The adaptive 
neuro-fuzzy inference network receives linearized data from 
UK Filter and predicts the RUL and SoH of the battery pack. 

Figure 13. Performance of best score in the proposed model 

Figure 13 illustrates the performances of the magnitude of 
the proposed model. When the number of iteration is 0 it 
achieves the maximum best score of 101.2 and while the 
number of iteration is 360 it achieves the minimum best score 
of 10-15 and it continuous constant upto 500 iteration. The grey 
wolf optimizer is used to optimize the two output parameters 
from the ANFI unit thereby the best score obtained is gradually 
reduced once every iteration.  
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Figure 14. Performance of number of life cycle in the 
proposed model 

Figure 14 illustrates the performances of the number of life 
cycle of the proposed model. When the number of iteration is 
0 it achieves the maximum number of life cycle of 1.7 x 106 
and while the number of iteration is 200 it achieves the 
minimum number of life cycle of 1 x 106 and it continuous 
constantly upto 500 iteration. The number of life cycle of the 
battery is optimized by grey wolf optimizer by optimizing 
ANFI outputs, the number of lifecycles decreased once every 
iteration. 

The comparison of the performance of the proposed 
approach with other existing approaches is discussed in the 
following section 4.4. 

3.4. Comparison of Proposed Model with Previous Models 

This section highlights the proposed method’s performance 
by comparing it to the outcomes of existing approaches and 
showing their results based on various metrics. 

Figure 15. Comparison of RMSE in RUL prediction in the 
proposed model 

Figure 15 depicts the comparison of the RMSE in RUL 
prediction of the proposed model with other existing 
approaches. The RMSE of the proposed approach is compared 
with existing techniques such as ELM, RVFL, SVM, and ESN 
[27]. The RMSE of the proposed model obtains the value of 
1.8% whereas the RMSE of ELM, RVFL, SVM, and ESN are 
2.4%, 2.2%, 3.6%, and 3.12% respectively. The RMSE in 
RUL prediction of the proposed model is low whereas the 
RMSE in RUL prediction of SVM is high. 

Figure 16 depicts the comparison of the RMSE in SoH 
prediction of the proposed model with other existing 
approaches. The RMSE of the proposed approach is compared 
with existing techniques such as ELM, RVFL, SVM, and ESN 
[27]. 

Figure 16. Comparison of RMSE in SoH prediction in the 
proposed model 

The RMSE of the proposed model obtains the value of 0.8% 
whereas the RMSE of ELM, RVFL, SVM, and ESN are 
0.91%, 1.06%, 0.9% and 0.87% respectively. The RMSE in 
SoH prediction of the proposed model is low whereas the 
RMSE in SoH prediction of RVFL is high. 

Figure 17. Comparison of Accuracy in the proposed model 

Figure 17 depicts the comparison of the accuracy of the 
proposed model with other existing approaches. The accuracy 
of the proposed approach is compared with existing techniques 
such as GA-SVM and PSO-SVM [28]. The accuracy of the 
proposed model obtains the value of 99.6% whereas the 
accuracy of GA-SVM and PSO-SVM are 97.8%, and 96% 
respectively. The accuracy of the proposed model is high 
whereas the accuracy of PSO-SVM is low. 

©

Figure 18. Comparison of optimization time in the proposed 
model 

Figure 18 depicts the comparison of the optimization time 
of the proposed model with other existing approaches. The 
optimization time of the proposed approach is compared with 
existing techniques such as GA-SVM and PSO-SVM [28]. 
The optimization time of the proposed model obtains the value 
of 6.1 seconds whereas the optimization time of GA-SVM and 
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PSO-SVM are 12.8 seconds, and 9 seconds respectively. The 
optimization time of the proposed model is low whereas the 
optimization time of GA-SVM is high. 

Figure 19. Comparison of prediction time in the proposed 
model 

Figure 19 depicts the comparison of the prediction time of 
the proposed model with other existing approaches. The 
prediction time of the proposed approach is compared with 
existing techniques such as GWO-S and TMGWO1 [29]. The 
prediction time of the proposed model obtains the value of 76 
seconds whereas the prediction time of GWO-S and 
TMGWO1 are 80 seconds, and 120 seconds respectively. The 
prediction time of the proposed model is low whereas the 
prediction time of TMGWO1 is high. 

Overall, the proposed method has a good result compared to 
the existing method, the RMSE in RUL prediction and the 
RMSE in SoH prediction value is 1.8% and 0.8% compared to 
exiting method, the proposed is high. The accuracy of the 
proposed method is 99.6 % and the optimization time is 6.1 
seconds. The prediction time of RUL and SoH is 76 seconds, 
when compared to existing method, the proposed method 
obtains good result. As a result, the battery management 
system of the proposed method gives low RMSE in RUL and 
SoH prediction, high accuracy, low optimization time, and low 
prediction time. 

5. CONCLUSION

Electric vehicles employ a Battery Maintenance System
(BMS) to protect the battery pack by combining additional 
cells and dealing with the voltage and current demands of EV 
motors. The estimation of the SoC in battery pack by MIMO-
Bi-LSTM Unit and the FFOA is utilized in which the SoC of 
individual cells, as well as the whole battery pack, are 
estimated the SoC with high accuracy of 99.6%. Moreover, the 
Adaptive Matrix Switch Algorithm compares the SoC values 
of each individual cell and selects the pairs of cells having a 
large difference in SoC values thereby avoiding charge 
imbalance. The DGTO switches have large switching 
frequencies and consume very less power for gate activation 
thereby reducing the energy loss during switching and 
improving the cell life cycle and low optimization time of 6.1 
seconds. Furthermore, the UK Filter is utilized to eliminate the 
non-linearity in the measured values of parameters and the 
ANFI Network receives these linearized data and predicts the 
RUL and SoH with low RMSE of 1.8% and 0.8%, then the 
GWO  is used to optimize these two output parameters from 
the ANFI unit and reduced the prediction time of 76 seconds. 
Overall, the cell charge balancing and the prediction of RUL 
and SoH also obtained good results compared to the existing 
method. Thus, the proposed battery management system of 

electric vehicles, successfully estimated the better SoC value, 
prediction of remaining useful life and SoH of batteries by 
eliminating the prediction errors, problems in the charge 
balancing strategies.  
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