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Cerebrovascular disease constitutes a set of disorders within the brain, and its rates of 

disability and mortality are extremely high. Digital subtraction angiography serves as a 

crucial clinical image data for the diagnosis and treatment of cerebrovascular diseases, and 

the quality of it will influence the complexity of diagnosis and interventional therapy. 

Nevertheless, artifacts frequently occur in the images, potentially obscuring or blocking the 

vascular structure. In this paper, it was proposed that a novel deep learning framework could 

utilize the training strategy of information decoupling to generate superior quality DSA 

images. We proposed the deep decoupling network, a feature decoupling framework. 

Through a decoupling training strategy founded on disentangled representation learning, it 

is capable of maximizing the disparity among diverse structures. The results indicated that 

our method obviously superior to existing methods in all metrics with the SSIM of 93.57% 

and the PSNR of 24.18dB. Our framework has the capacity to generate DSA images with 

few artifacts and create DSA images of superior quality characterized by complete and 

distinct vascular structures. 
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1. INTRODUCTION

Cerebrovascular diseases, such as arteriovenous fistula, 

intracranial aneurysm, intracranial arterial stenosis, and 

malformation, etc., affect the brain [1-4]. These diseases have 

a high prevalence among middle-aged and elderly people, 

along with a high rate of disability and fatality. Digital 

subtraction angiography (DSA) is frequently utilized in the 

clinical diagnosis and interventional treatment of 

cerebrovascular diseases [5-7]. Compared to CTA and MRA, 

DSA is regarded as the gold standard for cerebrovascular 

diseases due to its high resolution and clear vascular structure 

[8-10]. In clinical practice, as illustrated in Figure 1, DSA 

images are procured by performing a dual subtraction of live 

images (with the contrast agent) and mask images (without the 

contrast agent) by virtue of the same detector to nullify the 

impact of tissues unrelated to the vascular structure. Given the 

protracted inter-frame time interval during the acquisition 

process between acquisition processes, the advent of artifacts 

such as motion artifacts, aliasing artifacts, and beam hardening 

artifacts becomes inevitable. Due to the protracted time 

interval during the acquisition process, the occurrence of 

artifacts becomes unavoidable. Furthermore, even the slightest 

movement of the patient can give rise to discernible artifacts 

in the DSA images. The existence of these artifacts 

significantly reduces image quality and blurs out the small 

vascular structures that are otherwise difficult to notice. This 

makes it difficult to diagnosis the types of diseases and 

determine the location of lesions, which indirectly reduces the 

success rate of interventional therapy. Consequently, reducing 

or even eliminating the artifacts in DSA images has always 

been regarded as an essential yet challenging undertaking.  

(a) Artifact-free DSA image

(b) Tiny artifacts DSA image

(c) Grave artifacts DSA image

Figure 1. Illustrations of cerebrovascular DSA images are 

presented. The images are respectively the live image, the 

mask image, and the subtraction image from left to right 
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Although artificial intelligence has demonstrated excellent 

performance in clinical tasks like lesion detection, 

segmentation, and classification [11, 12], relatively few 

studies have focused on DSA image generation. At present, 

two principal research orientations currently exist in this task. 

The first one pertains to the registration of the two images 

through motion alignment [13, 14]. And the second one, 

referred to as virtual DSA, endeavors to generate DSA images 

from single live images by Generative Adversarial Nets 

(GANs) [15-17]. In GANs, the generator is employed to obtain 

DSA images from the single live images, and the discriminator 

distinguishes the global truth and the generated results. 

Despite certain accomplishments of these algorithms in DSA 

image generation, two major issues persist to be addressed. 

Firstly, mask images exhibit a high correlation with artifacts, 

entailing their minimal utilization. Secondly, the small vessels 

might become blurred or disappear in the absence of the 

assistance of the mask images. Thus, the actual mask image 

simultaneously serves as both an element that disturbs the 

generated image and a protective measure against the 

vanishing of the vascular structure. A positive settlement is 

indispensable to handle this equivocal issue. 

In this paper, we present the deep decoupling network 

(DDN), which consists of the vessel network (V) and the mask 

network (M). V is responsible for extracting the vascular 

structure, and M is for extracting bone tissue to assist V in 

obtaining accurate features. Moreover, a conjoint loss function 

is established to restrict the framework, intending to gain the 

greatest differences from the extracted features. With the 

process of the decoupling of the vascular structure from other 

structures, they can be differentiated from live images. 

Alternatively, the two generators extract more comprehensive 

vascular structures and less artifacts. The key contributions of 

this work can be recapitulated as follows: 

⚫ DDN can generate DSA images without actual mask 

images. The C-arm detector only need to work once, 

which can reduce the radiation dose they receive.  

⚫ The specific tubular vessel structure can be extracted 

more effectively with the help of the axial residual block. 

⚫ A learnable sampling approach is put forward to 

effectively prevent the lack of crucial features. 

Meanwhile, the artifacts are got rid of and the integrity 

of the vascular structure is ensured. 

 

 

2. RELATED WORK 

 

The temporal subtraction algorithm is the typical one 

currently employed in clinical practice for subtraction. It 

subtracts the live images from the mask images in order to 

obtain unobscured vascular structures and eliminate bone 

tissues. Nevertheless, the algorithm might generate a 

considerable amount of artifacts. In this part, several methods 

for generating DSA images based on deep learning will be 

introduced. Subsequently, the disentangled representation 

learning will be presented. 

 

2.1 Motion alignment method 

 

The differences between the live images and the 

corresponding mask images were initially detected by the 

motion alignment algorithms. Afterwards, the mask images 

were deformed in accordance with the relevant live images. 

Eventually, in accordance with the principle of DSA imaging, 

the live images and mask images were subjected. The results 

obtained through these methods depended on the results of the 

mask image generation. In consequence, the outcome was not 

satisfactory. 

 

2.2 Virtual DSA method 

 

The virtual DSA algorithms were a series of methods that 

generate DSA images from the single live images. Initially, a 

straightforward GAN method [15] was proposed to mitigate 

artifacts. Nevertheless, issues emerged like the problem of the 

disappearance of the small vascular structures. Subsequently, 

a series of methods were put forward to generate DSA images 

with GANs [16, 17]. The dataset is divided depending on the 

severity of artifacts before training by these approaches to 

reduce artifacts. But these algorithms could bring about 

unanticipated problems, for instance, the loss of vascular 

structures and blurry vascular structures. 

 

2.3 Disentangled representation learning 

 

Disentangled representation learning imitates the processes 

of human’s cognition and is at present mostly employed in 

some simple scene generation tasks [18, 19]. High-

dimensional abstract representations within the latent space 

lead to the generation of target features. DR-GAN [20] 

achieved pose-invariant face recognition task based on the 

disentangled representation learning. With the assistance of 

this model, one could frontalize or rotate a face with any pose. 

CausalVAE [21] combined disentangled representation 

learning with variational autoencoder (VAE) to obtain the 

latent representation. Disentangled representation was 

employed by DR-MTCDR [22] to learn the user-level domain-

shared and domain-specific information on several financial 

datasets for multi-target cross-domain recommendation. 

Currently, disentangled representation learning still has no 

superior definitions or metrics. Moreover, its performance is 

unsatisfactory in complicated situations. The initial definition 

of disentangled representations [23] was proposed under the 

assumption that a feasible group decoupling has been 

determined. Nevertheless, in numerous circumstances, several 

intricate correlations among the groups are required to be 

decoupled. 

 

 

3. METHOD 

 

Taking advantage of the theory underlying DSA imaging, 

DSA images can be generated through a disentangled 

approach. Firstly, we will present the overall framework and 

detailed modules of DDN. Secondly, the task-specific loss 

function will be put forward. 

 

3.1 Deep decoupling framework 

 

Specifically, it should be noted that the live image 𝑥 and the 

mask image 𝑚 are respectively generated as a result of X-rays 

penetrating the body before and after the contrast agent is 

added. The DSA image then can be defined as: 

 

𝐼𝑣 = 𝐼𝑥 − 𝐼𝑚 (1) 

 

where, 𝑣 represents the DSA image, 𝐼∙ represents the intensity 

of ∙. 
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Due to the prolonged scan time and the slight movement, 

the artifact (donated by ε) is frequently present. This implies 

that 𝑣 is composed of the predicted vascular structure �̂� and ε, 

and m is regarded as made up of �̂�  and ε , and �̂�  is the 

impartial appraise of 𝑚  in 𝑥 . Accordingly, the intensity of 

vascular structure can be defined as: 

𝐼�̂� = 𝐼𝑥 − 𝐼�̂� = 𝐼𝑥 − (𝐼𝑚 − 𝜀) (2) 

Upon conducting a comparison between (1) and (2), it 

becomes evident that ε is the additional element of 𝑣 and the 

deficient portion for 𝑚 . This further constitutes a kind of 

pivotal related attributes between 𝑣  and 𝑚 . Consequently, 

minimizing ε is directed towards disentangling the live images. 

With the intent of maximizing the disparity in outputs, the 

most appropriate features are extracted and filtered by these 

networks. Being both adversarial and mutually reinforcing, 

this constitutes a process for the networks. The overall 

framework, comprising two networks and adversarial loss 

functions with regression loss, which is shown in Figure 2. 

Figure 2. The framework of DDN 

3.2 Network details 

Both the two networks are constructed on an architecture 

similar to U-net. The stem block is a convolution with a 7-

sized kernel for both networks. V initially utilizes an axial 

residual block (ARB) for feature extraction. Since the special 

vascular structure, the conventional kernel encounters 

difficulties in extracting effective features. Although the 

dynamic snake convolution [24] is sensitive to the tubular 

structures, this algorithm can be misled by the noise. We find 

that, in contrast to ordinary convolutions, ARB is more 

sensitive to tubular features and have lower computational 

burdens. Hence, ARB is defined as: 

𝐹𝑜𝑢𝑡 = (𝑊𝑥𝐶𝑥(𝐹𝑖𝑛) ∥ 𝑊𝑦𝐶𝑦)(𝐹𝑖𝑛) + 𝑊𝑠𝐶𝑠(𝐹𝑖𝑛) (3) 

Here, 𝐶  represents convolution, ∥  indicates the 

concatenation operation, and 𝑊 donates learned convolution 

weights. The features then are concatenated along the channel 

dimension. The longer size of the kernels in the axial 

convolutions is 5 to acquire larger receptive field. Eventually, 

the pixel wise convolution is utilized to adjust the number of 

channels. This structure constitutes a residual block to prevent 

the loss of long-term features. 

Thereafter, down-sampling blocks and up-sampling blocks 

in a learnable manner are implemented to enhance the 

presentation of the output features. With respect to the down-

sampling blocks, a dilated convolution is incorporated that can 

gain larger receptive field. Subsequently, the depth-wise 

convolution is used. Furthermore, an average pooling is used 

to rescale the size of the features and a pointwise convolution 

is followed. For the up sampling block, a bilinear up sampling 

block is used, and other structures are the same as the down-

sampling block. Furthermore, the output features of this 

structure are richer in semantics. In the end, a pixel-wise 

convolution with a Tanh activation function is integrated to 

project the output results. 

M is designed to acquire the virtual mask images. Therefore, 

we used Res-UNet with learnable down-sampling and up-

sampling blocks. GELU and BatchNorm are used respectively 

following by the convolutions. In addition, the 

hyperparameters are the same in both V and M to keep the 

same level of the semantic information. 

3.3 Loss function 

V aims to extract the features of vascular structure, but for 

M, the aim is to obtain features of other structures. That means 

the distance of �̂� and �̂� needs to be maximizing: 

𝔼𝑣2𝑚 = minimize (√�̂� − (𝑥 − �̂�)2) (4) 

In other words, the objective function is the same as 

minimizing the Euler distance between �̂� and 𝑥 − �̂�. As far as 

we know, minimizing the Euler distance is the function of the 

mean square error (MSE) loss. Therefore, the objective 

function is defined as: 

ℒ𝑣2𝑚 =
1

𝑛
∑(�̂� − (𝑥 − �̂�))2

𝑛

𝑖=1

(5) 

Similarly, the objective function of M is defined as: 

ℒ𝑚2𝑣 =
1

𝑛
∑(�̂� − (𝑥 − �̂�))2

𝑛

𝑖=1

(6) 

Additionally, the regression loss is used to supervise �̂� keep 

away from unanticipated features. Based on (2), the 

expectation and standard deviation of 𝑣 is the same as that of 

�̂�. L1 is used as the loss of the expectation, and MSE is used to 

approximate the standard deviation. Thus, the regression loss 

is defined as: 

ℒ𝑣2�̂� = 𝐿1(�̂�, 𝑣) + 𝑀𝑆𝐸(�̂�, 𝑣) (7) 

We use the smooth L1 function as the loss function, which 

can avoid zero-point distortions. The smooth L1 function is 

defined as: 

𝐿1(�̂�, 𝑣) = {
0.5(�̂� − 𝑣)2, 𝑖𝑓 |�̂� − 𝑣| < 1

|�̂� − 𝑣| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8) 
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At the beginning, �̂� and �̂� are far from the expected values. 

𝑣  is predominant, guiding �̂�  to approach 𝑣 . As the training 

process the factor of ℒ𝑣2�̂�  needs to be lower to avoid the

unexpected objects. Therefore, the total loss function of V is 

defined as: 

ℒ𝑣 = (1 − 𝜆)ℒ𝑣2𝑚 + 𝜆ℒ𝑣2�̂� (9) 

𝜆 stands for the weight factor of ℒ𝑣2�̂�, which decreases from

0.999 to 0.0001 along with the training process, and ℒ𝑚2𝑣 is

the loss function of M. 

3.4 Training strategy 

Since the two networks are required to facilitate each other 

mutually, they are trained in a manner similar to GANs. V 

generates the DSA images and use the backpropagation 

method to update the optimization function. Subsequently, M 

generates the mask images and uses the same progress as V 

but keep no gradient broadcast. In this way, these to network 

can be trained like GANs. 

4. EXPERIMENTS

4.1 Data collection 

In this paper, the data is from the Department of 

Neurosurgery, the General Hospital of Northern Theater 

Command in Shenyang, China. We collected totally 342 

sequences from 312 patients, consisting of 45486 frames in 

total, acquired by SIEMENS AXIOM Artis equipment and the 

patient information was removed. These images had size of 

960 × 960, 960 × 1024 pixels. We further divided these images 

into two dataset, artifact-free dataset (41496 images) and 

artifact dataset (3990 images). We divided the artifact-free 

dataset by a ratio of 7:1:2 for the training set, validation set 

and the test set. The artifact dataset was used as the additional 

test set. 

4.2 Preprocessing 

Because the images had varying pixel sizes, we first padded 

the images to a uniform size and then resized all images to 256 

× 256. To facilitate the convergence of the network, we used 

the image inversion operation firstly. The Contrast Limited 

Adaptive Histogram Equalization (CLAHE) was used for 

enhancing the contrast. 

4.3 Experiment results 

In our experiment, we merely trained our model and the 

models for comparison using the artifact-free dataset, since we 

discovered that data with artifact would lead to a significant 

degradation of the comparison models and prevent obtaining 

normal results. 

4.4 Evaluation metrics 

Although the artifacts in the real DSA images within the 

dataset have a minor visual impact, they still exert a 

considerable influence on numerical calculation. A solitary 

result indicator cannot fully depict the quality of the generated 

results. Firstly, it should be noted that the aforementioned 

indicators assess the generated results in a multifaceted and 

comprehensive fashion, encompassing similarity, distortion, 

and distribution. Therefore, the structure similarity index 

measure (SSIM), the peak signal-to-noise ratio (PSNR), the 

visual saliency-induced index (VSI), Fréchet Inception 

Distance (FID), and the feature similarity index measure 

(FSIM) are used for evaluation metrics.  

In this paper, SSIM pertains to the resemblance of the 

overall structure in the generated image with respect to the real 

DSA image. PSNR indicates the integrity of the small vessel 

area. VSI can evaluate the degree of the sharpness of the 

vascular. FID is utilized to describe the difference of the total 

distribution between the generated image and the gold 

standard. Moreover, the FSIM represents the similarity in 

detail. 

4.5 Results on artifact-free dataset 

Firstly, we compared DDN with several state-of-art 

methods on our artifact-free dataset.  

The quantitative results are presented in Table 1. In this task, 

CycleGAN [24], DiscoGAN [25], and DualGAN [26] fail to 

produce outcomes effectively. This is attributed to the fact that 

the style domain is too similar for the live images and the mask 

images. Notably, although the metric results of DualGAN are 

not bad, the FID reaches 803.92, indicating that the 

distribution significantly distorted. The result of RDBGAN 

[15] shows that the method does not work. UNIT [27] and

MUNIT [28] yield disparate results although these two

methods are based on disentangled representation learning.

Distortion is appeared in the result of UNIT, whereas the

results of MUNIT are superior with the FID of 367.70, which

means MUNIT has greater potential in this task. UNet [29] has

a higher structure similarity with 2.2% than that of Pix2Pix

and MUNIT. However, the PSNR, VSI, and FID are

respectively 0.39 dB, 0.021, and 237.75 inferior to these

methods. The results of Pix2Pix show that it works better than

these methods, yet VSI of 0.001 and FSIM of 0.001 lower than

MUNIT. For DDN, the results outperform other methods.

Compared to the other methods, all metrics are superior.

The qualitative results of DDN were thoroughly 

demonstrated through a comprehensive comparison with 

MUNIT, Pix2Pix, and UNet, as illustrated in Figure 3. 

Evidently, it is manifest that DNN achieves the best results. 

Notably, this conclusion is in perfect alignment with that 

derived from the quantitative analysis. 

Table 1. DSA image generation performance for different 

networks on artifact-free dataset 

SSIM PSNR VSI FID FSIM 

CycleGAN 0.401 6.46 0.764 2261.19 0.487 

DiscoGAN 0.759 13.90 0.865 1522.72 0.789 

DualGAN 0.805 21.70 0.920 803.92 0.813 

RDBGAN 0.732 18.40 0.899 865.91 0.795 

UNIT 0.752 12.98 0.837 841.13 79.06 

MUNIT 0.877 24.01 0.969 367.70 0.873 

Pix2Pix 0.882 24.05 0.968 360.96 0.872 

UNet 0.904 23.66 0.947 598.71 0.874 

DDN 0.936 24.18 0.980 351.59 0.900 

4.6 Results on artifact dataset 

According to the results of the artifact-free dataset, we 

compared our method with three models MUNIT, Pix2Pix and 
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UNet. The quantitative results are listed in Table 2. We did not 

use FID because the definition is conflict with the existence of 

artifacts. From the results, our model were robust and kept 

stable results. The performance was better than other methods. 

The qualitative results are shown in Figure 4. Compared with 

other methods, our model kept the clear and intact vascular 

structure. Compared with the label images, our model 

removed the artifacts successfully, while other methods 

remained a small number of artifacts. 

Figure 3. Generation results on the artifact-free dataset (the 

images from left to right are gold standard, MUNIT, Pix2Pix, 

UNet and DDN, respectively.) 

Table 2. Generation results on artifact dataset 

SSIM PSNR VSI FSIM 

MUNIT 0.869 23.93 0.970 0.874 

Pix2Pix 0.871 23.90 0.969 0.872 

UNet 0.900 23.42 0.971 0.875 

DDN 0.921 23.93 0.979 0.892 

Figure 4. Generation comparisons of MUNIT, Pix2Pix, 

UNet and DDN on artifact dataset 

4.7 Ablation studies 

A comprehensive ablation study has been presented to 

validate the efficacy of the modules integrated within our 

approach. Specifically, we scrupulously evaluate the 

importance of ARB (denoted as A), the sampling blocks 

(denoted as B), and the decoupling strategy (denoted as C). 

The corresponding results has been illustrated in Table 3. 

The results is evident that each of A, B, and C can 

independently improve the results. A and B have a more 

pronounced impact on enhancing structural completeness with 

SSIM is improved by 0.001 and 0.022. C significantly 

enhances the authenticity in details; VSI is improved by 0.021. 

The combination of A and B effectively enhances not only the 

overall fidelity but also the structure similarity in details, 

PSNR is improved by 1.4 dB and FSIM is improved by 0.03. 

The results of Baseline + A + C is similar to Baseline + B + C. 

DNN demonstrates a obviously enhancement through the 

combined utilization of A, B, and C. Specifically, SSIM 

increases by 0.032, VSI increases by 0.033, and FID decreases 

by 247.12. 

Table 3. The ablation experiment results 

SSIM PSNR VSI FID FSIM 

Baseline 0.904 23.66 0.947 598.71 0.874 

Baseline+A 0.905 23.74 0.954 477.85 0.884 

Baseline+B 0.926 24.62 0.959 396.08 0.897 

Baseline+C 0.909 23.65 0.968 598.18 0.868 

Baseline+A+B 0.929 25.06 0.957 432.35 0.904 

Baseline+A+C 0.926 24.40 0.956 592.35 0.893 

Baseline+B+C 0.927 24.77 0.958 482.30 0.899 

DDN 0.936 24.18 0.980 351.59 0.900 

5. CONCLUSION

As mention above, we have delved into a novel approach 

for DSA generation, named as DDN. This innovative 

methodology demonstrates the proficiency to mitigate artifacts 

effectively. 

Firstly, ARB can extract the vascular structure with notable 

efficacy. Secondly, sampling blocks are presented, enabling 

the sampling of features in a learnable manner. This 

compensates for the drawback where existing sampling 

methods often tend to overlook significant features. Thirdly, 

loss functions are used to constraint the results of V and M 

with the decoupling strategy. Finally, the learning strategy can 

reduce the artifacts resulting from registration. Experimental 

outcomes clearly indicate that DDN generates DSA images 

successful and outperforms other methods. 

For clinical applications, this approach holds substantial 

significance as it can diminish artifacts in DSA images, 

enhance the contrast of the vascular structure. What’s more, it 

can assist doctors in diagnosing more quickly, and it can also 

accelerate the speed of interventional therapy and reduce the 

risks. Hence, DDN has the potential to become a clinically 

available method for DSA generation. 
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