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Visual impairment caused by glaucoma is a commonly observed phenomenon around the 

world. As it progressively damages the optic nerve fibers, it is incurable in its later stages. 

Therefore, early detection serves an essential purpose in the aging society to prevent 

irreversible vision loss. One of the diagnostic factors for glaucoma is the evaluation of the 

Cup-to-Disc Diameter ratio. To detect glaucoma, an existing pipeline is used, initially Data 

Preprocessing is implemented to eliminate all the noise from images and then the partition 

of the optic disc and cup is executed, continued using the evaluation of ratio values among 

cup and disc, which is then used to make a prediction. To fragment the optic disc, a 

threshold-based steps are employed. However, segmenting the optic cup is a challenging 

problem that has been tackled by numerous algorithms. The suggested techniques involve 

this problem by introducing an innovative approach for segmenting the optic cup. A 

modified area enhanced steps is implemented to partition the optic cup area, which is 

continued by morphological operations and infilling blood vessels. Through the partitioned 

images, the ratio values of the optic cup and disc are determined, and the values are fed to 

an SVM pattern for classification. The metrics demonstrate that the suggested technique can 

rigorously speculate the appearance of glaucoma with minimal computational complexity. 

In general, the suggested approach is a successful and efficient way to divide the optic cup 

for glaucoma analysis. 
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1. INTRODUCTION

Several eye conditions fall under the category of glaucoma 

which causes irreparable injury to the optic nerve that leads to 

sightlessness or partial ocular impairment. The optic nerve 

which carries the signals from organ of vision to brain and then 

produces the image. If there is any severe damage to optic 

nerve the effect will be shown only on peripheral vision loss 

and the central vision remains largely unaffected until the 

advanced stages of the disease, resulting in a gradual and often 

unnoticed peripheral vision loss that eventually progresses to 

complete blindness. This insidious nature of glaucoma has led 

to its characterization as a 'silent thief of sight’. Even in 

developed countries, the detection rate of glaucoma is 

typically below 50%, making it a significant health concern. 

By 2040, it is evaluated that, 116 million citizens will be 

affected by this situation. The most prevalent form of 

glaucoma is Open Angle Glaucoma (OAG). OAG is the main 

variant of Glaucoma. The inclination (where iris meets the 

sclera and cornea) have the high fluids because of the 

congestion of drainage system, which leads to enhancement of 

optic cup, disc, and high ocular pressure. The National Eye 

Institutes estimates that in 2030, it is projected that there will 

be 4.2 million individuals in the United States with glaucoma, 

increased by 60 percent. In India at least 12 million people are 

affected with glaucoma and Almost 1.23 million citizens are 

lost the vision due to the disease, with over 90% of them 

remaining undiagnosed in society. Nearly 1.2 million people 

blind with disease and 91 percent are continued as unidentified 

in the society.  

Experienced ophthalmologists to detect glaucoma must 

manually observe, the screening involves examining the optic 

disc and optic cup, because individuals with glaucoma exhibit 

a higher optic cup in relation to the optic disc caused by 

elevating the ocular hypertension. Reliable segmentation and 

calculation of the optic cup and optic disc, along with 

determining the ratio of disc to cup, plays a crucial step in 

computer-aided diagnosis (CAD) that seek to identify 

glaucoma. Detecting the optic disc is a fundamental process in 

identifying retinal anatomy, example the fovea. CAD systems 

utilize computers, software, and medical data to provide 

automated diagnoses for clinical conditions. Conventional 

computer vision methods have been utilized by researchers for 

several decades for an automated process, which requires the 

partition of the optic disc in the ocular fundus photography, 

while more recent studies have extensively explored deep 

learning techniques on the implementation of image 

classification and segmentation. 

With this research, a deep learning is suggested for the 

automatic optic nerve head localization in ocular fundus 

photography, the approach involves employing knowledge 

transfer and partially supervised learning, where the former 

entails acquiring knowledge from a significant quantity of 

unlabeled data, also limited number of annotated data and is 
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useful when there is a inadequacy of annotated data compared 

to the quantity of unannotated data available. Transfer learning 

is another technique that leverages wisdom gained from 

finding a solution of one challenge to tackle another challenge 

[1]. This approach is typically effective when the features 

learned from solving one problem are comparable to those 

required for solving the other problem. 

 

1.1 Causes of Glaucoma 

 

Causes of Glaucoma are not defined scientifically but most 

of the people with glaucoma have high eye pressure and 

certain people are at elevated risk such as high blood pressure, 

diabetes, myopia, heart disease, over age of 60, taking 

corticosteroid medications and specially using of eye drops, 

for a long time. 

 

1.2 Eye anatomy to understand the Glaucoma 

 

The Figure 1 projects outside of the eye part covered with 

white layer called the sclera [2]. The cornea is the transparent 

glass at the outside of the eye, protecting the coloured parts of 

the eye (the iris and the pupil). The iris, colored tissue of the 

eye which monitors the level of the light that enters the eye. At 

the centre of iris hole, called pupil and the size of pupil is 

controlled by iris. At the back side of retinal, the light-sensitive 

layers of nerve tissue accept images and converts as electric 

signals called retina. The electric signals from the retina are 

transmitted through nerve to brain. The optic disc is the space 

on the retina where all the never tissues are gathered to connect 

with brain.  

 

 
 

Figure 1. The analysis of human eye 

 

 
 

Figure 2. Fundus image with Optic Cup, Disc and 

Neuroretinal Rim 

 

Ciliary bodies fill the anterior chamber of the eye with 

aqueous humour. The pressure at the inner eye (“IOP” or 

intraocular pressure) depends on the balance between fluid 

made and drain out of the eye. Proper eye drainage system and 

eye fluid system keeps the pressure of eye at normal level 

which is necessary for healthy eye. In major types of 

glaucoma, the intraocular fluid cannot drain because of the 

eye’s drainage system and gets clogged which causes pressure 

in eye and results in damaging the nerve fibers and then vision 

loss. As the nerve tissues are damaged the optic disc begins to 

increase and progress as a cupped shape. Figure 2 illustrates 

the fundus image with optic cup and disc in ocular fundus 

photography. Cup to disc ratio and disc to rim ratio 

measurements are used to detect the Glaucoma.  

 

 

2. RELATED WORKS 

 

Deep Learning techniques became so popular in last two 

years to detect the infected regions. The U-Net model was 

developed in the year of 2015, which is more popular in 

analysing the medical images. U-Net focused on segmenting 

neuron structures, and it is more useful for optic disc 

segmentation also. And another best method in Deep Neural 

Network is GAN (Generative Adversarial Network) was 

developed in 2014 by Goodfellow et al. [3]. GANs consists of 

discriminator and generator networks. The generator network 

produces the output same as the learning data and the classifier 

distinguishes between the outputs. produced by the generator 

as a real or fake. Mathematical formula of GANs is similar to 

game of minimax, the classifier is used for minimizing its 

reward K (L, M) and the Generator is used for minimizing the 

classifier’s reward or maximize its loss. It can be expressed as 

shown below:  

 

 Minmax K (L, M) 

   real   generated 

𝐾(𝐿, 𝑀) = 𝐸𝑋~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐿(𝑥)] + 𝐸𝑍~𝑃𝑍(𝑍)[log (1

− 𝐿(𝑀(𝑧)))] 
 

The Conditional Generative Adversarial Network (cGAN) 

can be implemented through partition of optic disc in ocular 

fundus photography. The M can be used to predicate the mask 

segmentation and the L is used to predicate if the obtain image 

is the guessed mask or the original image. A complete 

convolutional encoder-decoder structure is utilized by the G 

network [4]. 

Fu et al. [5] Suggested the technique of partition for optic 

cup and optic disc utilizing multi-label U-Net like structure for 

detection of glaucoma. Yu et al. [6] suggested a segmenting 

the optic cup and disc using the ResNet-34 pattern as the 

encoder and the U-Net framework as the decoder for glaucoma 

prediction represents a new variant of the U-Net pattern. U-

Net algorithm used to retinal fundus image to separate cup and 

disc is suggested by Wang et al. [7] and implemented 

overlapping strategy for elimination of false classifier and 

recognize the optic disc section. Tan et al. used CNN pattern 

for segmentation of retinal vasculature, the fovea and optic 

disc from ocular fundus photography [8]. Fu et al. [9] 

implemented DENet for optic disc identification and glaucoma 

evaluation. Raghavendra et al. [10] suggested classification for 

identifying Glaucomatous Optic Neuropathy (GON) using 4 

CNN, 1 Rectified Linear Unit layer, group Normalization, 

single max polling channel at each channel later with complete 

connected layer and Soft-max layers implemented on private 

dataset consists of 8000 images. Srivastava et al. [11] proposed 

Disc Segmentation on dataset of SIMES using Categorization 
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of each picture element with the optic disc and utilizing 

handcrafted features. Employing Neural Networks, which 

consist of 7 layers, to test the robustness of the OD 

decomposition and achieved the accuracy of 90%. Also 

implemented the work of Disk, vessels, fovea segmentation on 

data set of DRIVE using CNN architecture with 7 layers, 

incorporating background a Leaky Rectified Linear Unit 

(LReLU), normalization, a SoftMax function and achieved 

accuracy of 62%. Wang et al. [12]. suggested partition of optic 

cup and optic disc by deploying a framework for adversarial 

learning in the output space, which is based on patches. U-Net 

used for segmentation of disc and cup of the optic nerve from 

source and target images.  

For detecting the borders (ellipse box) of the optic disc, Sun 

et al. [13] utilized quicker R-CNN as the identification of 

objects. The ellipse window parameters were then utilized to 

create an oval contour that closely approximated the Optic 

Disc. In support of segmentation of disc and cup from ocular 

fundus photography, Almubarak et al. [14] utilized mask of 2 

phase R-CNN approach with previously primary trained 

weights obtained from the COCO dataset. In the Initial phase, 

the previously learned mask R-CNN infrastructure was 

employed to retrieve the area of focus encompassing the optic 

disc using bounding box(ellipse) technique. After the initial 

phase, the ellipse circle was utilized to extract the required 

image, which was then fed into a Mask R-CNN model for 

generating the last partition. 

Machine learning methodologies, particularly deep learning 

approaches like CNNs, have shown significant promise in 

various fields. in the study of Sekhar et al. [15] leverages such 

advancements to enhance the accuracy and robustness. In their 

study, Laves et al. [16] employed autoencoders with 

variational inference acquire the regularized latent feature 

space was then employed to categorize various diseases, 

consisting of Diabetic Macular Edema (DME), drusen, and 

Choroidal Neovascularization (CNV). To denoise retinal 

fundus images, prior research has employed stacked deep 

convolutional autoencoders and deep variation auto encoders 

[17, 18]. Furthermore, In other studies, denoising 

autoencoders and a set of sparsely learned, stacked 

autoencoders, denoised, were employed to become familiar 

with the features of blood vessels in fundus images [19, 20]. 

To partition the optic disc and classify glaucoma, Biswas et al. 

[21] utilized a two-phase structure. In the initial phase, a

Quicker R-CNN was employed to detect and retrieve the optic

disc from the retinal photograph. Subsequently, in the next

phase, a neural network with convolutional layers that are deep

was utilized to categorize the optic disc regions as either

affected or healthy by glaucoma. To extract global features, a

ResNet-50 network was utilized. In addition, to identify the

optic disc (OD) area, a network guided by segmentation using

U-Net was utilized. Using the segmentation network, the

partition corresponding to the optic disc accustomed to isolate

the disc area based on the fundus photographs. Furthermore,

distinctive attributes of the Optic Disc were derived from two

grouping ResNet-styled networks. The glaucoma evaluation

was fetched by combining the outcomes of each route.

Meanwhile, Shankaranarayana et al. [22] suggested a pattern

of complete convolutional neural network, accompanied by a

Dilated Residual Inception (DRI) section, for both spatial

intensity analysis and partitions of optic disc. Al-Bander et al.

[23] presented the deep network pattern that consists of

DenseNet accompanied by a complete convolutional neural

network for segmentation of disc and cup. To preprocess the

images, the inverted channel was retrieved by the color retinal 

images, and subsequently, the Optic Disc area was pruned 

using the processed images as input. The FC-DenseNet was 

then employed to perform the partition. The researchers 

demonstrated that the pattern exhibited good generalization to 

partition the optic cup and disc from 4 variety retinal image 

datasets obtained from distinct equipment, without requiring 

further learning of the pattern. Edupuganti and colleagues [24] 

utilized a complete CNN based on the pre-trained VGG16 

framework to partition the optic cup and optic disc regions 

using retinal imaging. Modern deep learning approaches, such 

as those employing Convolutional Neural Networks over 

various fields in many ways are explained [25]. 

The literature reveals that traditional methods rely on hand-

crafted features that vary across different datasets and tasks, 

making it a challenge to generalize. Conversely, deep learning 

methods can automatically discover the features that are the 

most significant during training, reducing the need for domain-

level knowledge and improving performance compared to 

traditional methods. Unsupervised feature learning has been 

achieved with autoencoders and the denoising of retinal 

images, followed by classification. However, to our 

understanding, autoencoders, has never utilized in a semi-

supervised learning for the disc partitioning in fundus images. 

The proposed method utilizes transfer learning and semi-

supervised techniques constructs an automated system for 

optic disc segmentation, suitable for integration into CAD for 

detecting glaucoma.  

3. PROPOSED METHOD

In this research, Classification and Segmentation of 

glaucoma are done using the deep learning techniques from 

the Drishti-GS1 dataset comprises 101 images in total. For 

classification, is accomplished using a convolutional neural 

network architecture on retinal fundus images to detect 

glaucoma. For segmentation, the RESU-Net architecture is 

used and a pre trained conv2d architecture, employed for 

feature extraction from the segmented image. The suggested 

methodology relies heavily on the accurate computation using 

values of CDRs to detect glaucoma, in which the proper 

partition of optic disc and optic cup is crucial in determining 

the turn. The complete system workflow is explained in Figure 

3, where a fundus image is used as input. when doing 

preliminary processing, Data Augmentation and resizing are 

implemented to enlarge image quality and contrast. The Sobel 

edge detection method are used to extract features and identify 

the area of optic nerve. The needed area is pruning with the 

dimensions of 512 × 512 to partition the optic disc and optic 

cup using two distinct CNN patterns. The resulting masks 

from both models are used to evaluate the cup-to-disc ratio, 

which is then used to diagnose glaucoma. A Brief description 

of each part is provided below. 

3.1 Dataset description 

Drishti-GS1 datasets consists of 51 testing and 50 training 

images. Images have been classified with help of 4 eye 

experts. Images were composed at Aravind eye hospital. 

Images with dimensions of 2896 × 1944 pixels were captured 

on optic disc with a Line of sight of a third of a right angle. 

Dataset also provides the Segmentation Soft Map, which has 

been pointed using medical experts. Average Optic Disc and 
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Cup boundaries are pointed directly with physical effort from 

various angles. CDR (ratio of cup to disc) values are also 

provided as it is an important parameter in detecting the 

Glaucoma.  

Figure 3. Suggested method work flow 

3.2 Pre-processing 

Pre-processing is significant technique to improve the 

standard of both input and output intensity images. It is the 

initial stage where the auto encoder and segmentation are 

performed. It consists of multiple steps like data augmentation, 

cropping and resizing. 

3.2.1 Image resizing 

Dataset images are much enhanced in size. Hence for the 

purpose of minimizing the network computation and size, the 

images that are provided as inputs are resized to get the RGB 

image with a dimension of 224 × 224 pixels wide and then the 

value of each pixel is balanced to the limit [0, 1]. 

3.2.2 Enhanced data generation 

To boost sample quantity, we use a technique called data 

augmentation. This method modifies the original images in 

several ways and is a key part of our work in interactive media 

and applications. It is used to train two important parts of our 

system: the segmentation and autoencoder network. Data 

augmentation is like an orchestra of changes - it includes 

rotating images in all directions, shearing, flipping, and 

shifting images both horizontally and vertically. But the 

performance does not end there; it also adjusts the contrast and 

brightness of the images. To avoid using intermediary images 

and their optic disc and optic cup versions, the segmentation 

model uses the same features as the original eye image and its 

matching validated ground images during the augmentation 

process as projected in Figure 4. 

3.2.3 The convolutional encode decode network 

In this innovative approach, we employ convolutional 

encoding and decoding on an unlabeled dataset to unearth 

hidden features. Within the intricate web of a deep learning 

neural network, we harness the power of an autoencoder. This 

technique breaks down images into smaller, manageable 

pieces and then uses these representations to recreate an image 

that closely mirrors the original. In the realm of image 

compression, the size of the hidden layers in the autoencoder 

does not exceed the dimensions of the output layer. When we 

train an autoencoder using error correction learning and align 

the input specifications with the target values, it nudges the 

autoencoder to craft a model that captures the essence of the 

input parameters in a lower-dimensional space. 

The activation of the hidden layer corresponds to the 

compressed data as shown in Figure 5, with the initial part of 

the network functioning as an image encoder and the 

concluding part serving as a decoder. This elegant dance 

between encoding and decoding allows us to compress and 

reconstruct images with remarkable accuracy. 

Figure 4. (A) retinal image, (B) optic disc mask, (C) image 

with optic disc mask, (D) optic cup mask, (E) image with 

optic cup mask 

Figure 5. Illustration of image compression 

Figure 6. Illustration of image de-noising 

In the realm of image de-noising, autoencoders prove to be 

a powerful tool. It eliminates the gaussian noise. In the realm 

of images Gaussian noise can represent by random variations 

in brightness or color information in an image, generally 

caused by electronic noise in the sensors of cameras or by 

environmental conditions during image acquisition. This 

Gaussian noise can degrade the quality of an image, making it 

appear grainy or speckled. They serve as non-linear functions 

with the ability to filter out image noise, transforming grainy 

images into clear, crisp visuals. The training process involves 

introducing random noise (specifically Gaussian noise) into 

the input image, while the pristine, noise-free original image 

serves as the target output. This approach motivates the 

autoencoder to learn a noise reduction function, enabling it to 

accurately reconstruct the image, free from noise, as depicted 
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in Figure 6. This procedure not only purifies the image but also 

amplifies its overall quality, rendering the visuals more 

captivating and comprehensible. 

The Convolutional Autoencoder is an extension of the 

uncomplex Autoencoder, where the completely linked 

channels are replaced with convolutional layers. While the 

dimensions of the output and input layers remains the similar, 

the decoder network is modified to use transposed 

convolutional layers. Figure 7 illustrates the architecture of the 

Convolutional Autoencoder, and Table 1 provides detailed 

hyper-parameters for each convolution layer, including kernel 

size, stride, and padding.  

 

 
 

Figure 7. Structure of convolutional autoencoder 

 

Table 1. Details of the various layers in the convolutional 

autoencoder 

 
Layer Type Window Stride Padding 

conv2d 3 1 1 

max_pooling2d 2 1 1 

conv2d 3 1 1 

max_pooling2d 2 1 1 

conv2d 3 1 1 

max_pooling2d 2 1 1 

conv2d 5 1 1 

up_sampling2d 2 1 1 

conv2d 3 1 1 

up_sampling2d 2 1 1 

conv2d 3 1 1 

up_sampling2d 2 2 1 

conv2d 3 2 1 

 

 
 

Figure 8. Input image and decomposed output using 

autoencoder with reconstruction loss calculation 

 

Figure 8 illustrates an image processing technique using an 

autoencoder [26]. The autoencoder takes an input image (left), 

processes it to minimize reconstruction loss, and outputs a 

decomposed version of the image (right), aiming to capture 

essential features while reducing data redundancy. The 

capacity for filtration of a convolutional layer l is expressed as 

Kl ∈ RHl×Wl×Dl×nl. The block of nl learnable filters, 

expressed as Kl = {Kl1, Kl2, ..., Klnl} comprised the filter 

volume Kl, where each Kli referred to as a filter and i belongs 

to integer values i.e. {1,2,n}. The filter capacity is 

characterized by the equivalent depth (Dl), width (Wl) and 

height (Hl) and dimensions. The distance of the filters in a 

convolutional layer matches the extent (i.e., total layers) of the 

input capacity (XI) to that channel. The number of filters (nl) 

in a convolutional layer identifies the extent of the output 

capacity from that layer [26]. The filter conditions, also known 

as weights, are randomly selected initially, and the model 

learns their values while learning. The convolution 

implementation is executed by a convolutional channel among 

the input channels (XI) and the filter capacity (Kl) to generate 

nl feature maps. Each filter in the filter capacity convolves 

with the input volume to generate a distinct feature map, and 

due to the fact that nl filters there available in the filter 

capacity, the complete nl feature maps are produced. The 

stride (s) of the 3D convolution operation is 1, denoting the 

pixel count in the input capacity that are changed when a filter 

is relocated throughout the extent of input. To manage the 

output volume's width and height corresponding to of the input 

capacity, every layer of the input capacity is zero-padded as 

necessary [27]. The feature maps provide the filter reactions at 

each position, and the 3D convolution functioning is expressed 

as Kl ∗ X1, as shown in Eq. (1). 

 

Kl ∗ X1 = ∑ ∑ ∑ 𝐾𝑙𝑋𝑙

𝐷𝑙

𝑑=1

𝐻𝑙

ℎ=1

𝑊𝑙

𝑤=1

 (1) 

 

To produce the result capacity (XO) of a convolutional 

channel (l), the activation maps are aggregated with a bias 

weight and fed into activation nonlinearity function to create 

the output signal maps. Popular non-linear activation blocks 

utilized in the literature include rectified linear unit (ReLU), 

sigmoid, SoftMax and tanh. To generate the output volume, 

the function maps from each and all filters in the convolutional 

channels are arranged throughout the extent dimension and 

stacked together, as shown in Eq. (2). 

 

XO=σ(Kl∗XI +Al) (2) 

 

In this context, the bias parameter at the lth convolutional 

channel is represented by Al∈R1×1×nl, and σ is the activation 

nonlinearity block utilized to eliminate proportionality in the 

response maps. The output capacity of the convolutional layer 

Eq. (l) is XO∈BP×Q×nl, in this Q and P indicate the width and 

height of the output capacity, in the order given, and nl 

corresponds to the output volume's limit, which equals the 

count of filters contained in the filter capacity at the 

convolutional channel Eq. (l). 

A pooling channel is typically placed among 2 

convolutional channels in a neural network [28]. The primary 

function of a pooling channel is to decrease the locational size 

of its input among the width and height dimensions, while 

maintaining the extent constant [29]. This supports to 

minimize the computational complexity and total attributes in 

the network. In this study, a maximum pooling channel is 

utilized, which decrease in sampling rate the input capacity by 

selecting the maximum capacity across a frame specified by a 

filter of dimensions nf×nf. Suppose X∈BP×Q×n, is the input 

volume to a maximum pooling channel, here P, Q, and n 

expressed as the width, height, and total layers of the input 

capacity, individually. The result of the maximum pooling 

channel is denoted as X' and is given by X’∈BP’×Q’×n, here 

P' and O' denote the space decreased width and height of the 

result capacity, as shown by Eq. (3) and Eq. (4), individually. 

 

𝑃′ =
P − nf

𝑠
+ 1 (3) 
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𝑁′ =
N − nf

𝑠
+ 1 (4) 

 

Eq. (3) and Eq. (4) define the spatially decreased width and 

height of the output capacity of a maximum pooling channel, 

respectively. The variable s denotes the stride, which 

represents the number of pixels by which the filter is shifted 

among the input volume. 

An Upscaling channel, on the other hand, executes the 

inverse of the pooling function by increasing the spatial 

dimensions of its input along the width and height dimensions 

while maintaining the extent constant. The degree to which the 

width and height should enhance the specified as input to this 

channel. Suppose X∈BP×Q×n, is the input capacity to an 

upscaling channel, here P, Q, and n denote the width and 

height, and total layers of the input capacity, individually. The 

output of the upscaling layer is denoted as X' and is given by 

X’∈BP’×Q’×n, where P' and Q' represent the spatially enhance 

width and height of the output capacity, individually [30]. Let 

h and w be values that determine the total count by which the 

height and width of the output capacity should be enhanced. 

Then, P'=P×h and O'=Q×w. 

                                

3.3 Retinal disc segmentation 

 

To preprocessing a fundus photograph for optic disc 

partition, the red channel requires extraction from the RGB 

image due to the fact that optic disc stands out prominently 

derived from surroundings through the red channel [26]. as 

illustrated in Figure 9. Subsequently, the standard and mean 

divergence are subtracted from the image to additionally 

improve the perceptibility of the optic disc, as exhibited shown 

in Figure 10.  

 

 
 

Figure 9. Results of original and preprocessed 

 

 
 

Figure 10. Results from optic disc segmentation 

 

To partition the optic disc, Otsu's technique is utilized to 

evaluate the threshold for segmentation of the preprocessed 

image. In the optic disc the blood vessels are then identified 

by applying a threshold derived from the local mean strength 

of every pixel's neighbourhood with a "responsiveness 

measure of 0.8, which was determined empirically. The 

resulting image is complemented since it excludes the other 

dark regions and vessel. Next, to retrieve the vessels present in 

the optic disc, an ellipse is created by fitting it to the binary 

image using the Least-Squares criterion, and this ellipse is 

used as a mask on the blood vessel image. Subsequently, an 

OR operation is performed to merge the output vessel and 

binary image. Next, opening operations and morphological 

closing using an ellipse structured object is carried out on the 

merged image to acquire the partitioning of optic disc. An 

example of the resulting partitioned image, with a dice score 

of 0.96, is illustrated in Figure 10.  
 

3.4 Retinal cup segmentation 
 

To perform the segmentation on optic cup the image must 

undergo several stages. 
 

3.4.1 Preprocessing 

The retinal picture undergoes preprocessing by deriving its 

green layer and applying variation modification, where the 

bottom 1% and top 1% of dimensions are saturated. It was 

observed that the green layer retinal fundus photograph is 

distinguishable for this purpose, as depicted in Figure 11(a). 
 

3.4.2 Edge detection 

The optic disc's edge dimensions are detected in the 

segmented disc object, and their standard deviation is 

calculated [31]. 
 

3.4.3 Seed value selection 

Random dimensions are chosen from the edge dimensions 

and fix it as a seed value. The number of seed points used was 

determined through experimentation, with a value of 10 being 

chosen. 
 

3.4.4 Space growing steps 

For every seed value, the space growing steps are utilized 

and combined. This technique appends dimensions to the seed 

values if their severity variations is below the evaluation 

threshold. The procedure halts when the variation among the 

mean severity of the enhanced area and the neighbouring 

dimensions turns into bigger when compared with the 

threshold. 
 

3.4.5 Thresholding 

The standard deviation computed initially is fixed as the 

threshold to add every dimension affiliation to the optic disc, 

eliminating which belonging to the OC, from the area of 

enhanced object. 
 

3.4.6 Partitioning 

The beginning stage of partitioning, optic cup object, as 

projected in Figure 11(b), is derived by considering the 

variations of the partition optic disc object and the enhanced 

area.  

 

3.4.7 Morphological operations 

The Specific Morphological Operations used are Closing 

operation and Morphological Opening 

Closing operation: The resulting image then undergoes 

closing operation, used to fill small gaps and holes in the 

segmented image. It is a scattering followed by an erosion, 
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which helps to close small holes and connect nearby areas. 

This operation is useful in nurturing the outlines of the 

segmented optic cup and ensuring a more continuous and 

sensible shape. 

Morphological Opening: The morphological opening 

operation is used to remove small objects from the emphasize 

(brighter part of the image) while saving the shape and size of 

larger objects in the image. It is corrosion followed by a 

dilation. Using an ellipse-sized specific element for this 

operation helps to polish the edges of the segmented optic cup 

and remove irrelevant structures that may have been included 

in the segmentation.  

3.4.8 Ellipse fitting 

Finally, an ellipse is fit to the conclude image using the 

Least-Squares criterion to retrieve a mask, which is 

implemented to the blood vessel image to retrieve the vessels 

present within the OC.  

3.4.9 Combination 

The derived vessel picture and the beginning partition cup 

elements are combined using logical-OR operation, and a 

predicted partition image is illustrated in Figure 11(c). 

Figure 11. Transitional results from optic cup segmentation 

3.5 Cup and disc ratio 

3.5.1 Feature extraction 

The features used for classification are the ratio values of 

the segmented optic cup and optic disc. To estimate the 

diameter of segmented objects in CDR measurement and 

prediction, an approach based on fitting ellipses is utilized. 

The respective object's diameter is determined by finding the 

most suitable fit ellipse for the optic cup and disc taking the 

distance of its major axis [32].  

3.5.2 SVM model 

For the prediction of Glaucoma, RBF kernel is employed by 

using SVM model, which was learned utilizing the ground 

truth of 250 pictures from dataset of Drishti-GS [33, 34].  

3.5.3 Classification 

The input pattern is the ground truth ratio values of cup and 

disc, and the destination is the analysis of the associated retinal 

image. After estimating the ratio values of the segmented optic 

cup and optic disc [35-37], this pattern is utilized to determine 

the classification of Glaucoma. 

The reasoning for choosing SVM over other classifiers in 

this context could be: 

• Effectiveness in High-Dimensional Spaces: SVM is

known for its validity in high-dimensional spaces, which

is applicable while handling with features extracted from

images.

• Kernel Trick: The RBF kernel allows the SVM to handle

non-linearly separable data, which is more useful in

medical image analysis.

• Robustness: SVMs are robust to overfitting, mainly when

the count of features is high compared to the number of

samples.

• Proven Performance: SVMs have a proven track record in

various classification tasks, including medical image

analysis, which might have influenced the choice of SVM

in this study [38-40].

4. RESULTS

In this study, the suggested process is calculated using the 

dataset of Drishti-GS. The dice metric is a common evaluation 

score used in image partitioning tasks to evaluate the similarity 

among predicted and ground truth segmentations. It is also 

termed as the Sørensen–Dice coefficient. The dice score limits 

from 0 to 1, where 0 means no converge among the predicted 

and ground truth segmentations and 1 means perfect overlap. 

The formula for calculating the dice score is: 

DCS =
2 ∗ |𝑃 ∩ 𝑄|

(|P| + |Q|)
(5) 

where, Q and Pare the ground truth and predicted 

segmentations, individually, and |P| and |Q| are their respective 

areas. To calculate the dice score, first step is to compare the 

predicted and ground truth segmentations pixel by pixel and 

determine which dimensions associated to the element of 

interest (foreground) and which belong to the background. 

You can then use the above formula to calculate the dice score. 

In practice, the dice score is often computed over a set of 

images, and the average dice score is reported as the final 

evaluation metric. It is also common to report the dice score 

separately for each class or object of interest in the 

segmentation task. 

Respectively denoting the number of elements in the sets A 

and B as |A| and |B|. individually. The Eq. (5) and Eq. (6) 

denotes the derivation for Dice coefficient. This Dice 

coefficient are termed as True Positive (TP), True Negative 

(TN), False Negative (FN), and False Positive (FP).  

DCS =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(6) 

The Intersection over Union (IOU) is a frequently utilizes 

score in semantic segmentation that measures the identity 

among 2 finite sets by calculating the proportion of the region 

of overlap to the area of union. It is also referred to as the 

Jaccard Index and is represented in set notation. The formula 

for IOU, expressed in Eq. (7), is used to quantify this metric. 

IoU =
|𝑃 ∩ 𝑄|

|P| + |Q| − |𝑃 ∩ 𝑄|
(7) 

The F1 score is used to evaluate the accuracy of binary 

classification results. It is calculated using Precision (X) and 

Recall (Y) and expressed in Eq. (8).  

F1 = 2 ∗
𝑋 ∗ 𝑌

𝑋 + 𝑌
(8) 

Precision is determined with the total number of true 

positive results identified by the discriminator, while Recall is 

evaluated by partitioning the true positive results by the total 
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number of relevant examples. Recall is also referred to as 

sensitivity. 

The Accuracy of an image classification is determined by 

calculating the proportion of accurately classified dimensions 

in the image. This is evaluated using the pixel accuracy 

derivation, as expressed in Eq. (9). 

ACC =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(9) 

All the appropriate scores listed above were computed for 

both Optic Disc and Optic Cup evaluation. After training and 

testing the proposed model multiple times, its performance 

was evaluated by calculating the parameters. Figure 12 

presents the accuracy metrics for both the disc and cup using 

various metrics on the RGB image. 

Figure 12. Evaluation of performance indicators for disc and 

cup segmentation 

The methodology that was proposed underwent training and 

testing (fine-tuning) for 500 epochs while utilizing all 

performance indicators. However, the DCS score was utilized 

as the standard metric for comparison with existing 

techniques, and its results are presented in Figure 12. Figure 

13 provides the information about other traditional techniques 

result and proposed method results for comparison. 

Figure 13. Comparing the dice score derived from the 

suggested method with those of traditional techniques 

In Table 2, provides the comparison of the performance 

metrics for various deep learning models in the task of 

segmenting the optic disc (OD) and optic cup (OC), which are 

important structures in the analysis of retinal images for the 

diagnosis of glaucoma. 

Table 2. Comparison of OC and OD Performance parameters over traditional methodologies 

Method Dice Score (OD) Dice Score (OC) Sensitivity Specificity Computational Efficiency 

Proposed Methodology 0.972 0.989 0.97 0.98 High 

VGG-19 0.948 0.971 0.94 0.95 Moderate 

Inception ResNet 0.917 0.949 0.92 0.93 Low 

ResNet V2 0.929 0.969 0.93 0.94 Moderate 

DenseNet 0.952 0.972 0.95 0.96 Moderate 

In order to establish the credibility of the findings, we 

performed a statistical analysis to determine the statistical 

significance of the results obtained from our proposed 

methodology compared to other techniques. This analysis 

involved the calculation of p-values and confidence intervals 

for the key performance metrics, including the Dice Score for 

the optic disc (OD) and optic cup (OC), Sensitivity, 

Specificity, and Computational Efficiency. 

P-value Calculation: The p-values were calculated using a

two-tailed t-test for independent samples to compare the mean 

performance of the proposed method against each of the other 

methods for OD and OC segmentation. A p-value of less than 

0.05 was considered to indicate statistical significance. 

Confidence Interval Estimation: For each performance 

metric, a 95% confidence interval was computed to provide an 

estimate of the range within which the true metric value lies 

for the population of retinal images under study. The 

confidence intervals account for sample size and variability 

and offer a degree of certainty around the mean performance 

measures reported. 

Results of Statistical Tests: The p-values for the comparison 

of Dice Scores between the proposed methodology and each 

of the traditional techniques were found to be less than 0.05, 

indicating that the differences in performance are statistically 

significant. 

The 95% confidence intervals for the Dice Scores of the 

proposed method for OD and OC were narrow, reflecting high 

precision in the estimate and robustness of the model across 

different images in the dataset. 

Sensitivity and specificity estimate also showed statistically 

significant improvements over other methods, with their 

respective confidence intervals excluding the performance 

metrics of the comparative methods. 

The computational efficiency was qualitatively assessed, 

and the proposed method demonstrated a lower computational 

cost, which, although not quantified in this study, suggests a 

direction for future empirical evaluation. 

5. CONCLUSION

The utilization of adaptive training and transferable 

knowledge for optic disc partition from the ocular image was 

analysed in this study. Scores of the experiments showed that 

the suggested pattern implements comparably to Cutting-edge 

deep learning methods for the optic disc partitions. The pattern 

has a small disk space footprint and learns rapidly analyse to 

patterns with unique implementation. The suggested approach 

can be employed in computer-aided diagnosis (CAD) device 

for self-detection of retinal imaging evaluation, which can 
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detect and identify the optic disc accurately, it is an important 

stage in the automated detection of glaucoma. 

 

 

6. LIMITATIONS AND FUTURE WORK 

 

The proposed methodology projected promising results 

with certain limitations. For instance, the results may vary 

when subjected to datasets from various sources due to 

variations in image acquisition techniques. In the future, the 

focus will be on emerging new semi-supervised methods like 

leveraging unlabeled images using generative adversarial 

networks (GANs). Additionally, simultaneous training of the 

segmentation network and autoencoder could lead to more 

robust feature extraction and representation. The applicability 

of pre-learned CAE pattern could also be used for variant 

works such as Segmentation of vasculature or fovea. and 

identifying diseases. Furthermore, it might be fascinating to 

explore the implementation of segmentation of novel and 

element identification methods such as the mask optimized R-

CNN for partition of the optic disc and cup from retinal fundus 

images. 

 

 

7. COMPLIANCE WITH ETHICAL STANDARDS 

 

This research did not contain any studies involving animal 

or human participants, nor did it take place on any private or 

protected areas. Data was provided by the public data sets and 

the information about used dataset, which has been used is 

already explained in the dataset description. 
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