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The evaluation of audiometric tests, which assess an individual's ability to perceive various 

sounds and frequencies, is crucial for diagnosing and monitoring hearing loss. This study 

aims to evaluate the effects of the audiological testing process on individuals by classifying 

their galvanic skin response (GSR) with a one-dimensional convolutional neural network 

(1D-CNN). GSR, which reflects physiological changes due to psychological states such as 

stress and relaxation, was measured during audiological tests to distinguish between resting 

and active states. Various transformations of the GSR data were applied to the 1D-CNN 

input to determine the most effective method in classification. The results demonstrate that 

GSR data, when processed through 1D-CNN, can reliably reflect the physiological and 

emotional impacts of audiological testing on individuals. This approach provides a novel 

method for enhancing the understanding of the audiological test experience through 

objective physiological measures. 
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1. INTRODUCTION

GSR is used to measure the electrical conductivity of the 

skin in response to certain stimuli. When individuals 

experience an emotional event, it causes their sweat glands to 

become more conductive of electricity. GSR shows small 

changes in the electrical conductivity of our skin in response 

to certain stimuli. 

Audiometric tests are a process that measures a person's 

ability to hear different pitches, sounds, or frequencies, and 

with these tests, hearing thresholds in individuals can be 

determined. These tests provide relevant data regarding the 

ability to detect noise-related hearing losses from birth to 

aging [1]. 

In this study, it is aimed to determine the effects of the 

audiological testing process on individuals, based on galvanic 

skin response, using deep learning. There are studies in 

different fields in the literature aimed at determining 

emotional changes by classifying GSR data [2-7]. 

Sun et al. [2] designed a method to generate a signal 

spectrogram with GSR and convolutional neural network-long 

short-term memory (CNN-LSTM) joint learning model for 

sensitivity classification using the MDSTC data set, they used 

the GSR channel, which has six types of emotion labels for 

100 volunteers, to perform human sentiment analysis. 

Gündoğdu et al. [3] recorded GSR and heart rate variability 

(HRV) data from volunteers while resting and playing, and 

extracted a total of 9 features, 4 from GSR and 5 from HRV. 

They determined their classification success by creating 

subsets with different combinations of these features, and 

achieved the highest success rate in the average and maximum 

value features extracted from GSR. 

Seo et al. [4] found a suitable classification algorithm, they 

classified boredom using features in GSR and 

electroencephalogram (EEG) datasets trained and tested by 

thirty models based on different machine learning algorithms. 

They stated that the Multilayer Perceptron model showed the 

best performance with an average accuracy of 79.98%. 

Sharma and Gedeon [5] systematically investigated the 

classification of stress during reading for men and women 

based on an ANN (artificial neural network) model. They 

experimented with stressful and non-stressful reading as 

stimuli, stating that reading stress was significantly different 

(p < 0.01) in men compared to women. 

Arsalan et al. [6] extracted time domain features in their 

study, namely kurtosis, entropy, standard deviation, variance, 

and mean absolute rate, from GSR, photoplethysmography 

(PPG), and EEG data were taken from 28 volunteers sitting 

with their eyes open in. The different machine learning 

enhancements were used for detected stress cells, with the best 

improvements of 75% emerging using the multi-layer 

perceptron (MLP) classifier. 

In their study, Arsalan and Majid [7] recorded the GSR, 

PPG, and EEG signals at rest and during public speaking. They 

extracted time domain features from GSR and PPG and 

frequency domain features from EEG signals.  The highest 

accuracy of %96.25 was achieved using a support vector 

machine (SVM) classifier with a radial basis function. 

Audiological tests are important in terms of correctly 

diagnosing hearing health and hearing loss conditions in 

individuals. The results obtained from these tests are used to 

understand the cause of the individual's hearing problem and 
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determine appropriate treatment options according to 

audiological tests. It is frequently applied today, both for 

individuals applying for hearing problems and for people who 

want to certify that they do not have any hearing-related 

problems. There are also places where annual certification of 

the hearing thresholds of people working in noisy 

environments is required, and most testing is performed in the 

field or on-site, with many measured in mobile vans or single-

wall sound booths [8]. It is important to determine the 

emotional effects that the audiological testing process, as well 

as the testing rooms and/or areas, will have on individuals. 

GSR data analysis is frequently used to determine and evaluate 

conditions such as stress, especially in different application 

areas. This study, in which the difference between the 

audiological testing process and the resting state is revealed by 

creating a 1D-CNN structure from GSR data, is a pioneer in 

determining the emotional impact of the audiological testing 

process on individuals based on deep learning. 

The results of these audiological testing processes on 

individuals were determined by classifying GSR data. In the 

following section, the methods used are detailed. 

2. MATERIAL AND METHODS

2.1 Collection of data 

Volunteers participating in the study were explained the 

content of the study to which they were subjected and had 

written informed consent forms filled out. The study included 

people between the ages of 18 and 50 of both genders and 

people with normal hearing [9]. 

Participants first underwent a clinical ear, nose, throat (ENT) 

examination, which included an external ear examination to 

exclude earwax, debris, discharge, polyps, and hearing loss 

due to perforation in the eardrum. After the otoscopic 

examination, audiological evaluations were taken. 

38 healthy individuals, 26 women and 12 men, in the 

specified age range, were included in this study. GSR data 

were recorded from volunteers at the rest stage and during the 

audiological test process in the specially insulated room where 

audiological tests were carried out in the Audiology Unit of 

Akdeniz University Hospital Ear Nose and Throat Department. 

The demographic characteristics of the volunteers are shown 

in Table 1. 

Table 1. Demographic characteristics of the volunteers 

The Number of Participants 

Gender 

Female 26 

Male 12 

Total 38 

Age 
18-30 20 

31-50 18 

A sample of data recorded by a volunteer in the insulated 

room where audiological tests were carried out is shown in 

Figure 1. 

The audiological evaluation in the study was performed in 

a soundproof room using TDH 50 (Telephonics, USA) 

headphones together with the ''Grason-Stadler'' GSI Audio 

Star Pro clinical audiometer system. At this stage, airway and 

speech thresholds were determined, and a speech 

discrimination test was applied. Additionally, bone conduction 

thresholds were determined using the "Radioear" B-71 brand 

bone vibrator. 

GSR from volunteers was recorded using the NeuLog GSR 

logger sensor NUL-217, shown in Figure 2. In the study, GSR 

data was recorded at 10 samples per second. Electrodes were 

placed on the participant's ring and index fingers. 

Figure 1. Sample data collection image from a volunteer in 

the audiometric testing room 

Figure 2. GSR sensor and USB connection module 

2.2 GSR 

GSR results from autonomic activation of sweat glands in 

the skin, and when individuals are emotionally aroused, GSR 

data show distinct patterns that can be seen with the naked eye 

and measured statistically. This response is caused by 

physiological changes in the individual, and variations in the 

psychological state of the individual, such as relaxation and 

stress [10]. The electrical resistance of the skin fluctuates 

rapidly with mental, physical, or emotional stimulation [11]. 

The GSR is a physiological reflection of the body's 

reactions, for example, due to excitement or stress. When the 

individual is excited, the amount of salt in the skin increases 

as the body sweats, and this salinity has the effect of increasing 

the electrical resistance of the skin and reducing the current 

passing through the skin. This situation creates a measurable 

electrical conductivity value, which can be detected by 

electrodes attached to the person's two fingers [12]. The 

electrodes consist of metal plates that create a safe low voltage 

when in contact with the skin. Constant contact between the 

electrodes and the person's fingers is ensured by a sheath [12]. 

Figure 3 shows the GSR changes in volunteer participation in 

the study during the rest and audiological test periods. 
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(a) 

(b) 

Figure 3. GSR changes of a volunteer during a) rest, 

b) test phase

2.3 1D-CNN 

Today, deep learning offers very successful results in many 

applications, such as object recognition, object detection, 

anomaly detection, and emotion recognition [13-16]. 

Traditional CNNs are designed to work only on 2-D data, such 

as images. Alternatively, it is a modified version of 2-D CNNs, 

1-D CNNs. In CNN structures, feature extraction and

classification processes are combined in a single process so

that they can be optimized to maximize classification accuracy

[17].

There are various application areas where 1-D CNNs are 

preferred over 2-D CNN structures. 1-D CNNs offer very 

successful results in applications such as real-time 

electrocardiogram (ECG) monitoring, speech recognition, and 

different EEG applications. 

1D-CNN configuration recommended in the study: 

The proposed 1D-CNN input layer consists of 600 nodes for 

GSR data input. This represents the length of each GSR record. 

The subtraction part includes a convolution layer; RELU has 

activation and normalization layers. There is also a fully 

connected layer, a softmax layer, and a classification layer. 

The number of nodes in the 1D-CNN input layer varies for 

cases where GSR transformations are taken. The number of 

nodes in the Fast Walsh-Hadamard transformation is 1024. 

There is no change in the other layers of the 1D-CNN in the 

structures from which the transformations are taken. 

2.4 The Goertzel Algorithm 

The Goertzel algorithm, a digital signal processing tool 

started by Gerald Goertzel, is the method that calculates 

preferred frequency components of smaller values from a 

signal. It is one of the techniques used to monitor and control 

a single frequency determined from the input signal with a 

minimum calculation [18-23]. 

The Goertzel algorithm, which is a special algorithm used 

to efficiently compute the individual terms of the discrete 

Fourier transform without calculating the entire spectrum, is 

used especially in detecting the presence and strength of a 

certain frequency component in a signal [24]. Due to this 

feature and the advantage of using it in real-time applications, 

this transformation of GSR data was taken, and its effect on 

success was examined. 

2.5 Fast Walsh-Hadamard transform 

The Fast Walsh Hadamard transform is used in signal 

processing applications and is a generalized version of the 

Fourier transform. This transformation is an orthogonal and 

lossless transformation. The fundamental functions of this 

transform (Walsh-Hadamard functions), which provides both 

time and frequency information, has only two values, +1 

and/or -1 [25, 26]. 

(a) 

(b) 

Figure 4. Fast Walsh-Hadamard transform variations of GSR 

of a volunteer during a) resting phase, b) test phase 
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The Walsh-Hadamard transformation is a mathematical 

operation that has a wide application area. It is especially used 

in areas such as digital signal processing and data compression. 

Since the Walsh-Hadamard transformation can mainly be 

calculated using only addition and subtraction operations, it 

has gained importance in various digital signal processing 

applications [27]. Since it has the advantage of providing 

computational efficiency and analytical convenience, this 

transformation of GSR data was taken, and its effect on 

success was examined, and the highest success was achieved 

for this transformation. 

Figure 4 shows the Fast Walsh Hadamard transform 

variations of GSR for volunteer participation in the study 

during the rest and audiological test periods.   

 

 

3. SIMULATION RESULTS 

 

In the study, 27 of the GSR data of 38 volunteers was used 

in the network training phase, and the remaining 11 were used 

in the testing phase. The data acquired from the volunteers 

during the resting state and audiological test phases was 

applied to the input of the network for the same length. If the 

filter size is five in the proposed deep learning model, the 

training and test success rates obtained for different filter 

numbers are presented in Table 2. 

 

Table 2. Average training and testing success rates with 

cross-validation for different filter numbers in CNN 

architecture 

 
Number of 

Filters 

Average Training 

Accuracy 

Average Test 

Accuracy 

8 85.1% 75.7% 

16 88.2% 74.2% 

32 87.0% 74.2% 

 

Within the scope of the study, cross-validation was carried 

out by using three different sets of 11 data points out of a total 

of 38 in the testing phase and the remaining 27 in the training 

phase for the phase where raw GSR data was input. 

 

 
 

Figure 5. Confusion matrix for the highest test accuracy 

 

Training and test success results have been tested for 

different solver types and different filter sizes, and the highest 

success was achieved with the "Adam" type solver. 

Additionally, it has been observed that different values of the 

filter size do not affect the classification success. As can be 

seen from the obtained results in Table 2, as the number of 

filters increases, Average training accuracy with cross-

validation increases when the number of filters is increased 

from eight to sixteen. Figure 5 shows the confusion matrix for 

the test data. This is for the situation where the highest test 

success is achieved. 

The study also examined the effects of applying different 

transformations of GSR data to the input of the 1D-CNN 

structure. At this stage, the accuracy results obtained for the 

Fourier transform, the discrete Fourier transform with the 

second-order Goertzel algorithm, and the fast Walsh-

Hadamard transform, are presented in the table below. As can 

be seen from the obtained results in Table 3, the training 

success for the Fourier transform and discrete Fourier 

transform with the second-order Goertzel algorithm is 100%. 

For test success, the highest success was achieved with the fast 

Walsh-Hadamard transform. Figure 6 shows the confusion 

matrix of the test data for the fast Walsh-Hadamard transform. 

This is for the situation where the highest test success is 

achieved. 

The columns of the confusion matrix represent the neural 

network’s prediction classification, while the rows represent 

the actual classes. This representation helps evaluate the neural 

network's classification of each class. When the average 

obtained test successes are examined, there does not appear to 

be excessive sensitivity in terms of any class. In addition, 

according to the results obtained in the confusion matrix for 

the test data for the Fast Walsh-Hadamard transformation 

given in Figure 6, there does not appear to be a significant 

difference in terms of the oversensitivity of a class. 

 

Table 3. Accuracy results obtained for different 

transformations of GSR data 

 

Transform 
Training 

Accuracy 

Test 

Accuracy 

Fourier transform 100% 54.5% 

Discrete Fourier transform with 

second-order Goertzel algorithm 
100% 68.1% 

Fast Walsh-Hadamard transform 92.5% 77.2% 

 

 
 

Figure 6. Confusion matrix for test data of the fast Walsh-

Hadamard transform 
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4. CONCLUSIONS AND DISCUSSION 

 

In this study, it was aimed at determining the effects of the 

audiological testing process on the GSR changes in individuals 

using 1D-CNN. GSR is affected by variations in the 

psychological state of individuals, such as physiological 

changes, relaxation, and stress. The audiological test process 

status was determined by classifying the resting state and GSR 

data taken during the audiological test from the volunteers 

participating in the study. At this stage, the highest testing 

success with cross-validation was achieved for the case where 

the number of filters in the CNN structure was eight. Within 

the scope of the study, the effects of applying different 

transformations of GSR data, such as the Fourier transform, 

the discrete Fourier transform with the second-order Goertzel 

algorithm, and the fast Walsh-Hadamard transform, to the 

input of the 1D-CNN structure, were also examined. At this 

stage, the highest test success was achieved with the fast 

Walsh-Hadamard transform. The results obtained using CNN 

show that the emotional variations created by the audiological 

testing process on individuals can be evaluated using GSR data. 

The proposed approach can be used especially to evaluate 

the stress that the audiological testing process and closed test 

rooms or areas will create on individuals and whether this 

stress will affect the test result. Thus, it can help plan the 

testing process and testing environment in a way that will have 

less impact on individuals. 

In the literature, two studies were found in which GSR 

changes were analyzed for the purpose of evaluating speech 

intelligibility, the decrease in the individual's pronunciation, 

and speech dissatisfaction, including oral and dental problems 

[28, 29]. Additionally, the researches [28, 29] evaluated the 

effects of mobile phone use and the audiological testing 

process on GSR changes in healthy individuals. In this study, 

the 1D-CNN approach was used in the GSR-based evaluation 

of the audiological testing process. The results obtained show 

that the GSR data change is distinctive in the audiological 

testing process, and from here, the physiological effects of the 

testing process on individuals can be evaluated. 
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