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Cancer is a major health issue worldwide. Classification of pulmonary (lung) nodules into 

benign and malicious is one of the stimulating exploration domain as it is the second most 

serious malignancy and the crucial source of universal deaths. Accurate identification of 

lung cancer from Computed Tomography (CT) scans achieves an important role in cancer 

diagnostics system. Besides, the accuracy of the manual isolation framework for lung cancer 

is dependent on the severity of the malignancy and the efficiency of the radiologist, which 

frequently cause inappropriate decisions. Thus, the segmentation of the affected area from 

the CT images is a very challenging task since the morphological features of pulmonary 

nodules are very complex. Recently, Machine Learning (ML) approaches, particularly Deep 

Learning (DL) methods enable medical industry to analyse huge data at remarkable speeds 

without debasing the accuracy of tumour segmentation algorithms. However, due to minute 

inter-class variances between the affected area and its adjacent tissues and the huge diversity 

of isolation targets, the deep models often fail to segment lung nodules accurately. To solve 

these issues, we develop an Orchestrated and Shifted Window Transformer (OSWT) with 

Multi-head self-attention (MSA) units to isolate the abnormal (diseased) area from 

pulmonary CT images precisely. We assess OSWT on a CT lung image dataset, called The 

Cancer Genome Atlas (TCGA or Atlas), and relate the performance of the proposed OSWT 

against 7 innovative classification models in terms of performance measures. The segment 

or using an OSWT delivers 98.4% dice similarity index (DSI), 96.5% of Jaccard similarity 

measure (JSM), 0.73% of volume error (VE), and 0.99s average computational cost. The 

extensive experimental results demonstrate that the OSWT model realizes improved 

performance and is more suitable for isolating abnormal cancer area from CT scans. 
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1. INTRODUCTION

The diagnostic imaging in current medical industry is 

considered as a leading discipline for deriving useful insights 

about medical abnormalities. Digital medical imaging is used 

to make photographic depictions of the internal tissues of the 

human body to observe, examine, or treat therapeutic 

disorders. Indeed, several pioneering modalities and 

techniques have been employed in medical industry to observe, 

examine, and understand cancer-like diseases. These 

techniques are used to obtain swift and more accurate results 

for making accurate verdicts in disease classification and 

management. According to the statistics obtain from the 

International Agency for Research on Cancer, there were 17 

million newly identified malignant patients and 9.5 million 

cancer-related deaths globally in 2018 [1]. The overall cancer 

burden is projected to rise to 27.5 million new patients and 

16.3 million fatalities in 2040. More precisely, one in 18 males 

and 1 in 46 females are anticipated to suffering from lung 

malignancy over a lifetime [2]. This burden will certainly be 

even more due to the increasing omnipresence of reasons that 

increase risk such as smoking, unnatural diet, fewer childbirths, 

physical idleness, etc. 

Generally, cancer is characterized by the abandoned 

partition of anomalous cells in tissues of any body parts. 

Occasionally, these cells also extent to other body parts by the 

process of metastasis, therefore leading to comorbidities [3]. 

There are different malignancies such as breast, brain, ovarian, 

lung, and cervical cancers. Among them, pulmonary 

malignancy is a critical cancer which is becoming the major 

source of 1.69 million mortalities annually [4]. Lung cancer is 

an abnormal growth of cells in the lung. The most significant 

lung cancer is carcinoma. This type of cancer is classified into 

two types: (i) small-cell lung carcinoma (SCLC) which is 

related to any kind of smoking; and (ii) non-small cell lung 

carcinoma (NSCLC) like squamous and adenocarcinoma 

tumors. About 10-15% of lung nodules are recognized as 

SCLC but 85-90% of patients with pulmonary cancer are 

affected by NSCLC [5]. 
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Generating right information about lung nodules can be 

applied for indexing more number of medical images with 

enormous lung cancer databases. This can be employed for 

analyzing and training the proposed segmentors and classifiers 

using ML/DL methods. Eventually, this data may support 

physicians to diagnose and treat patients by demonstrating the 

effectiveness of applied treatments and courses with related 

features of the cancer. Earlier research works have 

demonstrated that deep networks can effectively increase the 

efficiency of segmentation algorithm, especially for isolating 

the anomalous regions from medical scans. 

 Traditionally, the radiologist performs nodule 

segmentation physically [6]. Although the physical nodule 

isolation realized by a medical professional is deemed the 

reference (i.e., gold standard) it is an arduous and very 

laborious task. Besides, it comprises of complex procedures, 

and the results are dependent on the expertise of radiologists. 

Furthermore, the decisions vary from one professional to 

another professional and they are not reproducible by the same 

radiologist. Thus, automatic segmentation and reproducible 

approaches are vital for managing and treating pulmonary 

nodules. 

From a comprehensive survey, it is observed that DL 

approaches can inevitably isolate lung tumors from images 

precisely [7, 8]. However, these segmentors have some 

restrictions such as overfitting problems, morphological 

variations, poor accuracy, lower sensitivity, and higher 

computational cost. Overfitting befalls when the system fits 

too well into the training databases. It then becomes 

challenging for the segmentors to perform isolation from new 

image that were not in the learning set. Many DL methods are 

suffered from this issue when using high-dimensional sparse 

database. Designing segmentation models from high-

dimensional and low-sample-size databases is becoming ever 

more vital. Therefore, a fast, cost-effective, and very sensitive 

DL-based segmentation model for isolating lung nodules is a

key research domain. With more medical images being

collected from treatments the queries arise of just how the care

quality can be sustained or possibly even enhanced more. The

processing time in isolating affected area from diagnostic

images is a continuous challenge in the domain of clinical

image processing.

Deep networks, especially Convolutional Neural Networks 

(CNNs), has drawn huge attention from several researchers 

and is effectively used to segment Region of Interest (RoI) 

from lung images with improved performance. The 

convolution networks usually get an RGB (red, green, and blue) 

image as an input and perform a sequence of convolutional, 

regularization, and pooling functions. The convolution unit 

defines the inherent correlation among features (e.g., size, 

shape, and edge statistics) in the input image. CNNs encode 

biases, including translation equivariance and spatial 

relationships. These features support in creating standard and 

competent analytical models. Conversely, the local receptive 

module in a CNN confines the range of the distant relations in 

a medical scan. 

The convolution operation is content-free since the kernel 

biases are assigned with the identical weights used for all 

inputs, irrespective of their form. Since CNNs evolve, their 

depth also increases, and accordingly, the problem of gradient 

burst also increased. Hence, integrating extra layers leads to 

complex training inaccuracies. The CNN models often fail to 

acquire morphological and edge information from CT images. 

To resolve this problem of insufficient receptor areas and to 

simulate the complete representation, a self-attention method 

was proposed [9]. The attention-based models include an 

image-grid-based gating module that contains distinguished 

skip connections to permit signals to navigate and gather the 

localized data gradient from the encoding unit before it 

integrates with features of the decoding unit. This approach 

allows the model to control itself to a particular object 

segmentation procedure. Moreover, CNNs typically based on 

the learning process using huge datasets. Hence, an effective 

and reliable model for isolating lung tumours from medical 

scans is indispensable, mostly in the initial stage of the cancer. 

At present, transformer-based models have infiltrated into 

the domain of healthcare diagnostic imaging, where the self-

attention module is used as a supernumerary to the 

representative convolutional function to define reserved 

relations in an image. Presently, the Vision Transformer (ViT) 

network improves the performance of the attention mechanism 

using convolutional and recurrence functions. ViT employs a 

distinct configuration to get high-resolution data from features 

and coded global correlation from encoder unit [10]. Though 

ViT provides more accurate outcomes, most of the ViT-based 

segmentors hampered by the layered architecture of CNNs. 

Being inspired by the vast utilization of ViT in several clinical 

image processing applications, this research proposes a ViT-

based lung nodule segmentor to circumvent the shortcomings 

of conventional convolutional networks. 

This work targets to enhance the amalgamation mechanism 

used by the rudimentary ViT. It uses attention weights 

computed in the encoding layer to show up valuable tokens. 

The proposed OSWT model with MSA unit employs a cross-

contextual attention method to re-calculate the set of features. 

In contrast to the model proposed [11], which uses a 

transformer to produce the attention, our OSWT model uses 

the previously estimated attention vector from the encoder 

which does not include any additional computational and 

storage costs. Moreover, our model utilizes the attention 

approach in the scale of the encoding/decoding unit to form a 

multi-resolution feature vector. The main contributions of this 

research are given below: 

1) This work develop an effective segmentor using an

OSWT for segmenting the pulmonary nodules from CT

images. The application of the OSWT with MSA unit

upsurges the capacity of the system to excerpt features

associated with size, shape, edge, and flat region of

tumors from medical images.

2) This work proposes a low-frequency extraction unit with

a MSA unit to compute the distant reliance feature from

the clinical scan.

3) To process distant reliance scans, we employed an OSWT

to overcome the restriction of dividing the input image

into patches with constant size in traditional ViT model.

4) This study assesses the performance of the proposed

OSWT with MSA unit in isolating lung tumours from the

TCGA database.

The other sections of this article are organized as follows. 

This study analyses some relevant studies on lung cancer 

detection models in Section II. Section III explains the 

architecture and workings of the OSWT transformer in detail. 

Section IV discusses the application of the OSWT in the 

isolation of lung lesions. Section V and Section VI describe 

the experimental analysis and performance measures used in 

our study. Section VII summarize this research. 
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2. LITERATURE SURVEY

The revolution of DL approaches has revitalized the field of 

medical data analysis, forming a base for radical 

improvements and novel insights. Several deep networks have 

been developed in the literature to isolate diseased or 

cancerous cells from the histopathological scans. In this 

section, we have analyzed some state-of-the-art deep networks 

for addressing lung cancer segmentation problems from CT 

scans. Badrinarayanan et al. [12] developed a novel deep CNN 

model for semantic pixel-wise segmentation, known as 

SegNet. The proposed deep network comprises an encoder, a 

decoder module, and a pixel-wise classifier. The decoding 

module relates the feature map of the encoding module with 

lower resolution to the feature map of input with higher 

resolution to perform pixel-wise analysis. The decoding 

module employs pooling factors measured in the max-pooling 

layer of the encoding module to realize non-linear unpooling. 

This removes the training inevitability of unpool. The 

unpooled vectors are not dense. Hence, this model performs 

convolution operations with learnable kernels to create dense 

attribute vectors. Alam et al. [13] proposed a semantic 

segmentation CNN (SegNet) with a conventional computer 

vision method, called level sets. The level set provides more 

precise isolation results but it is sensitive to parameter 

initialization, which is often executed manually. 

A new improved convolutional model is proposed by Chen 

et al. [14], called 3D LungNet for lung cancer isolation. This 

model uses the 3D information present in the large volume of 

image. Initially, a binary classifier chooses image parts that 

may contain shares of a lump. To segment the nodules, the 

selected scans are given to the isolation model which selects 

feature matrix from each 2D image using dilated convolutions 

and then integrates the pooled maps through 3D convolution 

functions and combines the 3D structural attributes in the CT 

scan into the output. Li et al. [15] proposed a multi-view 

convolution model to isolate pulmonary tumors by applying 

coronal, axial, and sagittal information about any voxel of the 

malignant tumor. 

U-Net is a commonly used convolution network for

segmenting pulmonary cancers [16]. U-Net structure 

encompasses two paths; a symmetric increasing path to realize 

accurate localization and a decreasing path to collect context. 

The decreasing path includes consecutive convolutional and 

up sampling modules. It is used to choose attributes by 

restraining the dimension of the attribute map. The increasing 

path comprises a convolutional module and completes up-

conversion to find the size of the feature vector associated with 

the loss of structural attributes. Moreover, the positional 

information is improved from the decreasing path to the 

increasing path using dropout links. These links are worked 

independently and allow data to be transferred from one 

system unit to another without adding further computational 

cost. Nair and Hinton [17] developed an improved U-Net in 

which the encoder is replaced by a pre-trained ResNet-34 unit. 

This model employs a bidirectional convolution of long short-

term memory to combine the designated feature map of the 

corresponding decreasing path into the previous 

intensification of the up-convolutional unit. Now, a densely 

connected convolutional unit is utilized for the decreasing path. 

Huang et al. [18] proposed a 3D U-Net and contextual CNN 

to segment and classify lung malignancies automatically and 

help radiologists understand CT images. The skip connections 

in classical U-Net distort the clinical image attributes. The 

high-level features designated by this network frequently do 

not include adequate high-resolution edge data of the clinical 

scan, instigating higher indecision in which higher resolution 

boundaries disrupt the system results considerably. To tackle 

these problems, Szegedy et al. [19] introduced a Modified U-

Net (mU-Net) for isolating pulmonary malignancy from CT 

images. This network uses a residual module with 

deconvolution and activation tasks by applying drop out 

connections. This technique handles the problems in basic U-

Net related to features with low-resolution structures. 

Ioffe et al. [20] developed a novel 3D DL network for 

pulmonary cancer segmentation from CT images, named 

multiple-attention U-Net (MAU-Net). This network initially 

exploits a twofold attention module at the restricted access of 

the U-Net that describes the key correlation between spatial 

dimensions and layers. The multiple attention module is then 

employed to adaptively re-calculate and syndicate multi-

scaling features from the twofold attention modules, the 

preceding feature matrix of the decoding unit, and the 

equivalent attributes from the encoder. ResNet uses diverse 

residual convolution units to effectively excerpt the important 

features of the CT scans. All attributes from different layers of 

the ResNet were pooled into a distinct result. This model 

achieved an amalgamation of superficial features with high-

level semantic attributes to generate dense outputs. 

Szegedy et al. [21] proposed a transformer-based 

segmentation model using U-Net, called TransUNet. This 

research demonstrated that ViT and its hybrid architectures 

provide improved results than CNN-based self-attention 

networks. This network uses a fused CNN-Transformer model 

to derive comprehensive high-resolution dimensional data 

from attributes. Szegedy et al. [22] modified the structure of 

TransUNet by assimilating the attention technique into the 

Transformer dropout links for the skin lesion isolation task. 

Though TransUNet presents better outputs, this approach 

suffers from being reliant on CNNs layered attribute selection. 

To cope with this issue, Zhu et al. [23] designed a new network 

model using only a transformer called the Swin U-Net model. 

This network exploits the concept of a Swin transformer to 

construct the U-Net structure without any convolution module. 

Several aforementioned deep networks have met their target 

competently. Conversely, their isolation performance with 

respect to dice similarity index, volume error, Jaccard 

similarity measure, and average time for isolation is frequently 

not superior. Bearing the above issues in mind, this work aims 

to develop a new effective lung nodule segmentation model 

using a Vision Transformer. We develop an OSWT with 

MAM to segment the diseased or abnormal area from lung CT 

scans accurately. 

3. THE PROPOSED OSWT MODEL

Attention in image processing is either realized with CNN 

or used to adapt some layers of CNN while conserving its 

general structure. On the other hand, some studies demonstrate 

that the application of convolutional networks is not 

mandatory and a transformer hoard image patches directly. 

The transformer models attain promising results in image 

classification [24]. This model contains the 

encoding/decoding units which hoards multiple image blocks 

concomitantly without demanding any recurrent model. This 

type of parallel computing is unfeasible in traditional 

convolutional networks. The implementation of the 
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transformer has primarily employed the notion of self-

attention to control remote relations among the image patches. 

In this work, the ViT is recommended as an effort to upturn 

the utilization of the original transformer for vision. By 

optimizing a ViT model, we can attain better enactment on a 

medical image database. It outdoes the basic convolutional 

network-based classification algorithm by around 4 × 

regarding computational performance and accurateness. In 

recent times, ViT has proposed as a feasible supernumerary to 

convolutional networks that typically use local receptor areas 

with suitable kernels, the attention module in ViT allows it to 

consider every pixel of the input scan and assimilate data 

across the whole picture. ViT employs the transformer 

encoding module to perform disease identification by relating 

a patch of scan stacks to the corresponding tag through the 

attention mechanism as shown in Figure 1. An attention unit 

provides relationships between a stack of inputs and outputs to 

be modeled regardless of the distance between them. It has 

become a most important part of persuasive stack modeling 

and transformation models for different tasks, and self-

attention is an attention mechanism that investigates the 

statistics of a single stack by mapping different RoI in the 

image stack. 

Figure 1. Architecture of ViT with attention module 

Consider 𝐾 = {𝑀𝑖 , 𝑡𝑖}𝑖=1
𝑠  is 𝑠 set of CT scans, in which 𝑀𝑖

is an individual scan and 𝑡𝑖 represents its equivalent tag 𝑡𝑖 ∈
{1, 2}. Mostly, the rudimentary ViT design encompasses three 

layers such as a linear embedding layer, an encoding layer, and 

a head classifier. Primarily, an input image 𝑀 is split into a set 

of non-overlapping patches. Let a medical image 𝑀 with the 

size of 𝑤 × 𝑑 × 𝑐, in which 𝑤 is the width, 𝑑 is the depth, and 

𝑐 is the number of channels in the image. To process a 2D 

image, ViT divides each image into patches of length and 

width  𝛽 (i.e., the scan is converted into square patches). 

Consequently, we obtain sub-image patches 𝑚𝑖  with 𝛽 × 𝛽 ×
𝑐 size from these pictures. It converts the medical scan 𝑀 ∈

ℝ 𝑑×𝑤×𝑐  into a flattened stack of 2D patches 𝑚 ∈ ℝ 𝑚×𝛽2𝑐 ,

where, (𝑑 × 𝑤) is the resolution of the input image, (𝛽 × 𝛽) 

is the resolution of each image block, and 𝑛 =
𝑤𝑑

𝛽2  is the 

number of blocks in the input image. This creates a sequence 

of patches (𝑚1, 𝑚2, 𝑚3, … 𝑚𝑛)  of length n. Generally, the

block size 𝛽 is selected as 16×16 or 32×32 in which a reduced 

dimension of patch causes an extended block and vice versa. 

The transformer processes each patch as a separate token. 

Thus, input pictures are managed as a stack of sub-image 

blocks in which each block is flattened into a single vector by 

integrating the channels of all the pixels in a patch and then 

linearly projecting it to the selected input size. ViT transforms 

the flattened image blocks into s size through a learnable linear 

projection unit as discussed in the following section. 

3.1 Embedding layer 

The heap of sub-image blocks are directly related to a 

matrix of the size 𝑠 using a trained embedding vector 𝑎. These 

embedding (i.e., data representation technique in n-

dimensional space to cluster similar data points together) 

representations are then combined with a trainable class token. 

These tokens are very important in this study to perform the 

disease classification. Then, the transformer considers the 

embedded patches as a heap regardless of their sequence. To 

preserve the spatial organization of the patches as in the input 

scan, the location data 𝑎𝑃𝐼  is calculated and attached to the

patch. The output-embedded image blocks with the token 𝑇0

is defined by Eq. (1): 

𝑇0 = [𝑇𝑐; 𝑥1𝑎; 𝑥2𝑎; … . 𝑥𝑛𝑎] + 𝑎𝑃𝐼 , 𝑎 ∈ ℝ𝛽2𝑐×𝑠, 𝑎𝑃𝐼

∈ ℝ (𝑛+1)×𝑠 (1) 

The position (location) of an object in a heap of image 

patches is calculated by the positional encoder to facilitate 

each position is given a unique depiction. From a 

comprehensive survey, it is witnessed that 1D and 2D 
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positional encodings produce almost the same outputs [25]. 

Therefore, a simple 1D encoding module is used in this work 

to collect the location information of the flattened image 

patches. 

3.2 Encoding layer 

The output heap of embedded image patches 𝑇0  is

transferred to the dynamic encoding unit of ViT. The main 

architecture of the encoder in a transformer encompasses L 

identical layers as shown in Figure 2. Each layer contains two 

core components: (i) a MSA unit for generating attention maps 

from a specific embedded visual token. This process enables 

the model to emphasis on the most vital zones in the image 

(e.g., cancer cells); and (ii) a multi-layer perceptron (MLP) 

unit which is a classifier and encompasses two dense layers 

with a GeLU (Gaussian Error Linear Unit) activation unit. The 

MSA unit is the most important component in this layer. The 

sovereign attention outcomes are then combined and linearly 

transformed into the projected size. This study employs 12 

MSA unit modules in the encoder unit. The encoding module 

implements residual dropout links and is controlled by a 

normalization module. The layer norm (LN) keeps the training 

procedure on target and allows the model to adjust the 

differences in the training database samples. The mathematical 

functions of MSA unit and MLP are defined by Eqs. (2) and 

(3). 

𝑇𝑙
′ = 𝑀𝐴𝑈(𝐿𝑁(𝑇𝑙 − 1) + 𝑇𝑙 − 1,    𝑙 = 1,2 … 𝐿) (2) 

𝑇𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑇𝑙
′) + 𝑇𝑙

′,    𝑙 = 1,2 … 𝐿 (3) 

In the final encoding layer, we accept the first part in the 

heap 𝑇𝐿
0 and transfer it to an exterior MLP head classification

unit for calculating the tag 𝑡 as defined in Eq. (4). 

𝑡 = 𝐿𝑁(𝑇𝐿
0) (4) 

Figure 2. Encoding module in ViT 

3.3 Multiple-head self-attention unit 

The multi-head attention allows the model to extract local 

and global relationship in the input scan. It calculates the 

relative importance of an embedding of a block as compared 

to the other embeddings in the heap (i.e., determines the image 

blocks with maximum and minimum significance level) and 

excludes the input image stack with minimum significance 

level. This module contains 4 layers such as the linear layer to 

match the expected output size, the scaled dot-product 

attention layer where the dot products of queries, keys, and 

values are scaled down, the concatenation layer to connect a 

trainable (class) embedding with the other block predictions, 

and a final linear layer to obtain a linear block projection. 

In general, attention is defined by its weight at a high level 

and calculated from the weighted sum of entire values of the 

patch order. The self-attention module computes the weights 

of attention through calculating and scaling down the dot-

product of the query (𝑄), key (𝐾), and values (𝑉). Figure 3 

illustrates the details of the calculation that is performed by the 

self-attention unit. For each pixel in the heap, 𝑄, 𝐾, and 𝑉 are 

calculated by multiplying the pixel against the trained 

vector 𝜒𝑄𝐾𝑉  as given in Eq. (5).

[𝑄, 𝐾, 𝑉] = 𝐸𝜒𝑄𝐾𝑉 ,    𝜒𝑄𝐾𝑉 ∈ ℝ 𝑠×3𝑆𝑘𝑒𝑦 (5) 

Figure 3. Illustration of attention mechanism 

In order to determine the relative significance of a specific 

pixel as compared to other pixels in the picture sequences, the 

dot-product is computed between the query vectors of this 

pixel with the key of other pixels. The output defines the 

comparative significance of blocks in the stack. The outcome 

of the dot-product is then scaled down and given to a SoftMax 

unit. The softmax function is defined by Eq. (6). 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑆𝑘𝑒𝑦

) ,   𝐴 ∈ ℝ𝑛×𝑛
(6) 

Similar to usual dot product, the self-attention module 

performs the scaling function. However, it employs the size of 

the key (𝑆𝑘𝑒𝑦) as a scaling element. To end, the value of every

matrix of sub-image patch embeddings is multiplied by the 

result of the softmax layer to find out the area with the 

maximum attention values as defined by in Eq. (6). The 

comprehensive self-attention (𝜂) function is defined by Eq. 

(7). 

𝜂(𝐸) = 𝐴. 𝑉 (7) 

MSAU calculates the scaled attention for h heads by 
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applying a range of values for 𝑄, 𝐾, and 𝑉 instead of applying 

a specific value. The result of each head is integrated and 

calculated using a feed-forward function with trainable 

weights 𝑤 to the selected size. This function is defined by Eq. 

(8). 

𝑀𝑆𝐴𝑈(𝑇) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝜂1(𝑇); 𝜂2(𝑇); … . 𝜂ℎ(𝑇))𝑤, 𝑤

∈  ℝ ℎ𝑆𝑘𝑒𝑦×𝑆 (8) 

Inspired by the present encroachments of the Swin U-Net 

model [26], this study proposes an orchestrated Swin 

transformer model for RoI isolation in lung nodule 

classification. The intended model provides a twofold 

attention mechanism where the initial fold integrates the 

attention weight calculated from the encoding units to reveal 

the substantial tokens based on spatial attention. But the 

successive attention unit considers pair-wise tokens for 

updating significant features of the medical image. 

3.4 OSWT model 

In this research, we propose the orchestrated and shifted 

window approach to integrate the data with diverse scales. It 

is used as the backbone system to extract the features from the 

medical scan. Shifted window transformers are used as the 

filters in the transformer-based models that successfully 

implement the attention mechanism. It creates hierarchical 

feature vectors by integrating image blocks in deeper layers. 

The computational cost of this model is directly proportional 

to the size of the image. This is because of the calculation of 

self-attention only within every native window. Hence, it 

provides a flexible structure for identification and diagnosis of 

medical images. Conversely, the basic transformers produce a 

specific low resolution feature vectors and have quadratic 

computational cost to the input size due to the computation of 

global attention. Swin modules are often organized in a heap 

to excerpt more radical and deeper features. Within a Swin 

module, a shifted window is employed to calculate both global 

and local self-attention. The shifted windows are non-

overlapping windows that divide the input scans into blocks. 

To reduce the quadratic computational cost in computing 

attention, two serial Swin units can realize attention 

mechanism with reduced computational cost. 

Conventional self-attention mechanisms require 

determining correlations among all pixels, resulting in high 

processing cost. However, the Swin Transformer introduces a 

Window-based Self Multi-head Attention (W-SMA) 

mechanism shown in Figure 4. Initially, it splits the input scan 

into fixed-size blocks and then employs attention mechanism 

separately to every block, considerably minimizing processing 

overhead. When applying the W-SMA mechanism, despite the 

drop in processing overhead realized using the split function, 

attention calculation remains limited within individual 

windows, which thwart the data communication between 

various windows. To handle this problem, the Swin 

Transformer employs the Shifted Window Self Multi-Head 

Attention (SW-SMA) mechanism. This mechanism aims to 

accurately define both global and local attributes, different 

from the traditional MSA model normally used in classic ViT 

models. The standard Transformer structure for vision 

applications use a global attention approach that involves 

identifying correlations between a token and all other tokens. 

This global attention generates quadratic cost in terms of the 

number of tokens, making it inappropriate for several 

applications that need huge amount of tokens for computation 

or for presenting high-dimensional images. 

The key purpose of the shifted window is to perform self-

attention within localized windows. Each window consists of 

non-overlapping blocks, and self-attention is performed within 

this window. Consequently, there is a drop in processing 

overhead; while the original multi-head self-attention shows 

quadratic cost about the block number, the window-based 

MSA establishes linear overhead. The Swin Transformer 

assimilates a shifted window splitting approach, alternating 

between two structures across successive blocks to effectively 

model window connections. The early unit uses a standard 

window structure, allowing for local self-attention calculation 

from equally spaced windows, starting from the top-left pixel. 

Then, the successive Swin Transformer module implements a 

shifted window mechanism. This intended shift enables the 

model to calculate different spatial correlations efficiently. 

Figure 4. Structure of Swin block 

Figure 5. Architecture of the OSWT and image-merging process 
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The intended OSWT comprises of two sequential 

transformers. Conversely, all the MSA units are replaced by a 

window-based attention module. The first unit encompasses a 

window-based MSA unit that estimates the attention within 

the window, and the subsequent unit encompasses a multi-

attention unit using shifted-window. This unit calculates intra 

attention through the windows by interchanging two splitting 

configurations in following Swin transformer units as given in 

Figure 5. Consequently, two sequential Swin Transformer 

modules can estimate the intra attention concurrently across 

the entire scan, and consumes reduced time for processing. It 

increases the efficiency of the model in multi-scale nodule 

segmentation without including more hyperparameters. 

OSWT splits the CT scan into many windows and computes 

the relationship among the features within the window using 

the multi-attention unit, which not only increases the receptor 

region of the shallow network but also ensures the isolation 

ability of very small nodules in the lung image. 

4. OSWT-BASED SEGMENTATION MODEL

Isolation of lung tumor on CT scans is particularly very 

important task for cancer disease management processes such 

as diagnosis, treatment, and response evaluation. In this work, 

we develop a completely automated OSWT lung tumor 

isolation method that can handle a large variety of CT scans. 

We assess our segmentation model using the OSWT on the 

TCGA dataset by relating its performance with similar 

advanced segmentation models regarding VE, DSI, JSM, and 

speed. Since the attributes directly extracted from CT images 

presented different gray scales and strengths, it is 

indispensable to apply a preprocessing technique before such 

images are given to the isolation model. We use normalization 

and standardization methods for preprocessing. This study 

adopts a min-max strategy for normalization using Eq. (9). 

�̅� =
𝜇 − 𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛
(9) 

where, �̅� are normalized features retrieved from feature space; 

the terms 𝜇 and 𝜇𝑚𝑖𝑛 are minimum feature values; and 𝜇𝑚𝑎𝑥

is maximum value of feature. The CT images are preprocessed 

in this work by excluding noise and artifacts in the input 

images. Preprocessing comprises the following steps: (i) the 

input images are of different dimensions and intensity. 

Therefore, all the images have been converted into a constant 

dimension of 224×224 before implementing isolation 

technique; (ii) A filter with values ([-1, 0, -1], [0, 5, 0], [-1, 0, 

-1]) is applied for finding edges of the nodules [27]; (iii) the

values of each pixel are calculated by converting the red-

green-blue (RGB) color to the luma and chroma (YUV) color

space. Luminance is more authoritative than color for isolation.

Therefore, the resolution of V (red projection) and U (blue

projection) are reduced but Y is conserved at full resolution

(iv) then, the intensity values of each pixel are stabilized by

converting the YUV color space to RGB color by smoothing

edges and balancing histogram.

5. IMPLEMENTATION OF PROPOSED MODEL

The proposed OSWT model is implemented and its 

performance is analyzed through experimentation. A 

comprehensive empirical analysis is performed on an Intel 

Core i7-4790 CPU with 3.6GHz base speed, 16GB storage, 

and Windows 10 operating system. The performance of the 

OSWT approach is evaluated by comparing the empirical 

outcomes with 7 relevant segmentation models, viz. SegNet 

[13], 3D LungNet [14], U-Net [16], mU-Net [19], MAU-Net 

[20], TransUNet [21], Swin U-Net [23]. All of these networks 

including our OSWT use DL algorithms for isolating the lung 

nodule and are trained through the similar learning setup. The 

SegNet network structure solve the semantic segmentation 

problem of lung nodule. It contains an encoder-decoder 

module, and a pixel-wise classifier. The decoding module 

relates the feature map of the encoding module with lower 

resolution to the feature map of input with higher resolution to 

perform pixel-wise analysis. The 3D LungNet uses the 3D 

information present in the large volume of image. To segment 

the nodules, the selected scans are given to the isolation model 

which selects feature matrix from each 2D image using dilated 

convolutions and then integrates the pooled maps through 3D 

convolution functions and combines the 3D structural 

attributes in the CT scan into the output. 

U-Net structure encompasses a symmetric increasing path

to realize accurate localization and a decreasing path to collect 

context. Moreover, the positional information is improved 

from the decreasing path to the increasing path using dropout 

links. These links are worked independently and allow data to 

be transferred from one system unit to another without adding 

further computational cost. The 3D U-Net segments and 

classifies lung malignancies automatically. The skip 

connections in classical U-Net distort the clinical image 

attributes. The high-level features designated by this network 

frequently do not include adequate high-resolution edge data 

of the clinical scan, instigating higher indecision in which 

higher resolution boundaries disrupt the system results 

considerably. To tackle these problems, mU-Net uses a 

residual module with deconvolution and activation tasks by 

applying drop out connections. This technique handles the 

problems in basic U-Net related to features with low-

resolution structures. MAU-Net network initially exploits a 

twofold attention module at the restricted access of the U-Net 

that describes the key correlation between spatial dimensions 

and layers. The multiple attention module is then employed to 

adaptively re-calculate and syndicate multi-scaling features 

from the twofold attention modules, the preceding feature 

matrix of the decoding unit, and the equivalent attributes from 

the encoder. TransUNet uses a fused CNN-Transformer model 

to derive comprehensive high-resolution dimensional data 

from attributes. Though TransUNet presents better outputs, 

this approach suffers from being reliant on CNNs layered 

attribute selection. To cope with this issue, Swin U-Net model 

exploits the concept of a Swin transformer to construct the U-

Net structure without any convolution module. Several 

aforementioned deep networks have met their target 

competently. 

5.1 Dataset preparation 

To evaluate the performance of any DL algorithm, we need 

a large dataset that provides an improved solution. In this work, 

we employ numerous labeled lung CT images from the TCGA 

dataset. This dataset was collected from the National Cancer 

Institute Lung Cohort Consortium [25]. The collected 

information is associated with proteomic, genomic, and 

medical scans. The assembled images are stored in the form of 
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DICOM (digital imaging and communications in medicine) 

with certain tags such as gender, birth date, study dates, etc. 

This database comprises of 251,135 de-identified CT images 

from lung malignancy patients. Radiologist annotations on the 

cancer localities were also given for each scan. 5 academic 

thoracic radiologists performed the annotations: the bounding 

box was drawn by one radiologist and then verified by the 

other four. For our analysis, we only considered CT scans with 

a resolution of 1 mm. CT images with resolutions other than 1 

mm were omitted for the analysis. We made this choice since 

CT scans of diverse intervals may present changes in the 

Radiomics attributes that confuse the understanding of the 

results. A resolution of 1 mm is the most generally assimilated 

slice thickness in hospitals, and such CT scans were 

represented in this database efficiently. Hence, considering 1 

mm thick CT scans was the most appropriate selection for 

upcoming medical utilization. 

In this research, we use 5043 input scans for the 

experimentation and 70% of samples (i.e., 3530 scans) is used 

for learning and 30% (i.e., 1513 scans) of samples for testing. 

Figure 6 displays some example TCIA images. Vision 

Transformers are prone to overfitting, especially when the 

target dataset is small or different from the pre-training dataset. 

To prevent overfitting problem, we employed 10-fold cross-

validation (10-FCV). In this approach, the complete database 

is divided into ten parts (each of 10% of the entire dataset). 

Then, one part (10%) is used for validation, whereas the 

remaining data (90% of the entire dataset) are employed for 

testing and training. The application of 10-FCV guarantees 

that all the images in the database get to be in a trial just once. 

Figure 6. Sample lung cancer CT images 

5.2 Evaluation metrics 

The effectiveness of the OSWT network is numerically 

evaluated by some significant performance measures such as 

the VE, DSI, JSM, and average computational time. These 

measures are estimated by computing the difference between 

the isolation results and a physically labelled reference. VE is 

defined by Eq. (10). 

𝑉𝐸 =
2 × (𝑆 − 𝐺)

(𝑆 + 𝐺)
(10) 

where, 𝐺 is the gold standard image (i.e., ground truth) and S 

is the isolation output gained by the OSWT. For any healthcare 

application, 𝑉𝐸 < 5% is more likely acceptable [26]. DSI is 

normally used to calculate the performance of the isolation 

task. It is defined as a similarity measure between two picture 

elements. Also, it reflects the fitness level between the input 

image and the isolated image. The DSC value is always in [0, 

1] and it is calculated by Eq. (11).

DSI =
2 × |𝐺 ∩ 𝑆|

|𝐺| + |𝑆|
(11) 

JSM is a performance indicator used to evaluate the 

efficiency of any segmentation model. For a particular 

database, the JSM presents the resemblance between the 

output image and the reference image. It is calculated using Eq. 

(12). 

JSM =
|𝐺 ∩ 𝑆|

|𝐺 ∪ 𝑆|
(12) 

This work also takes the average computational time into 

account as the evaluation metric. 

6. RESULT ANALYSIS

The proposed OSWT segmentation model is realized 

through MATLAB R2018b/deep learning toolbox software 

package. Table 1 shows the complete results achieved from the 

OSWT isolation network. The 10-FCV method is employed to 

achieve superior results. Therefore, the entire dataset is split 

into ten fragments. For every test, one fragment is used for 

evaluation, and the other fragments are employed for learning 

the model. Then, the mean value of all ten trials is calculated 

for assessment. An inclusive investigation of our outcomes 

reveals the fortes and weaknesses of our OSWT segmentation 

model. In most cases, despite the size of the reference image, 

our model isolates the nodules very well. Figure 7 displays 

sample input scans employed for testing, isolated RoI achieved 

by the OSWT model, and their equivalent gold standard. 

Although the cancer-affected regions are in different arbitrary 

vicinities within the lung image and appear in numerous 

dimensions, the isolated RoI appear to overlap impeccably. 

Table 1. The segmentation results gained by OSWT 

Algorithm Criteria 
VE 

(%) 
DSI JSM 

Average 

Processing 

Time (s) 

SegNet [13] 
Mean 4.821 0.649 0.680 3.422 

SD 1.703 0.152 0.113 0.002 

3D LungNet [14] 
Mean 3.634 0.778 0.653 3.052 

SD 0.041 0.014 0.012 0.001 

U-Net [16]
Mean 2.302 0.835 0.704 3.128 

SD 0.058 0.177 0.011 0.001 

mU-Net [19] 
Mean 1.334 0.845 0.750 3.146 

SD 0.049 0.181 0.008 0.002 

MAU-Net [20] 
Mean 1.134 0.857 0.796 1.187 

SD 0.015 0.132 0.010 0.003 

TransUNet [21] 
Mean 1.332 0.943 0.806 1.156 

SD 0.016 0.014 0.009 0.004 

Swin U-Net [23] 
Mean 0.952 0.961 0.847 1.035 

SD 0.023 0.011 0.011 0.005 

OSWT 
Mean 0.733 0.984 0.965 0.992 

SD 0.003 0.009 0.009 0.008 
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Input Image Ground Truth Segmented Nodule 

Figure 7. Segmentation results 

The segmentation results obtained from different isolation 

approaches with respect to average and standard deviation (SD) 

are listed in Table 1. By applying max-pooling coefficients of 

the feature matrix and decoder network, the conventional 

SegNet model provides nominal segmentation results such as 

4.821±1.703% volume error, 0.649±0.125 of DSI, 

0.680±0.113 of JSM and 3.422±0.002 of average processing 

time. This model utilizes the 3D information existing in a CT 

image efficiently. Hence, this network can gain better 

segmentation fallouts than SegNet. This network achieves 

3.634±0.041% of VE, 0.778±0.014 of DSI, and 0.653±0.012 

of JSM. The average running time per trial of the 3D LungNet 

is 3.052±0.001s. 

The U-Net model achieves better results as compared to 

SegNet and 3D LungNet using the idea of global location and 

contextual information concurrently. Besides, it ensures the 

conservation of the whole texture of the input images. Thus, it 

realizes comparatively reduced VE (2.302±0.058%), higher 

DSI (0.835±0.177), and improved JSM (0.704±0.011). 

Besides, it consumes more time per case (3.128±0.001s). On 

the other hand, higher-level features designated by this 

network do not include adequate resolution to edge 

information of the input always, causing augmented 

uncertainty in which edges with higher-resolution mostly 

affect the results of pulmonary tumor isolation and 

classification. 

The modified U-Net (mU-Net) includes a residual path with 

deconvolution and triggering operations to the skip link of the 

U-Net to circumvent the repetition of low-resolution statistics

of features. For minor object scans, attributes in the drop-out

link are not assimilated with features in the residual module. 

Besides, the proposed network has additional convolution 

units in the dropout link to choose higher-level features of 

small object in scans and high-resolution features of high-

resolution edge information of huge objects. Therefore, this 

model delivers improved enactment for lung noodle isolation 

regarding VE (1.334±0.049%), DSI (0.845±0.181), and JSM 

(0.750±0.008). For efficient segmentation of anticipated RoI, 

it takes 3.146 ± 0.002s for every slice. 

Using a 3D encoding/decoding modules in CNN 

architecture, MAU-Net achieves better results in segmenting 

RoI from volumetric CT scans. This network gains 1.134± 

0.015% VE, 0.857±0.132 DSI, 0.796±0.010 JSM, and 

1.187±0.003s computational time. By implementing the idea 

of ViT with attention mechanism TransUNet provides 

1.332±0.016% of VE, 0.943±0.014 of DSI, 0.806±0.009 of 

JSM, and 1.156 ±0.004s of average computational time. The 

Swin U-Net deep network exploits the Swin Transformer 

modules with the U-Net structure without using any 

convolution module. Hence it provides better isolation 

performance with respect to VE (0.952±0.023%), DSI 

(0.961±0.011), JSM (0.847±0.011), and average isolation time 

(1.035±0.005s). 

Figure 8. The results obtained from different segmentation 

networks regarding mean values 

Figure 9. The results obtained from different segmentation 

networks regarding SD values 

The proposed OSWT outdoes all other approaches 

regarding the evaluation measures. We also emphasize the 

concept that the attention principle of OSWT ensures an 

efficient yet less processing cost as compared with other RoI 
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isolation approaches. It realizes results of 0.733±0.003%, 

0.984±0.009, 0.965±0.009, and 0.992±0.008s in VE, DSI, 

JSM, and average computational time, correspondingly. 

Figures 8 and 9 demonstrate the superiority of the proposed 

OSWT -based segmentation model in terms of mean and SD 

values of the evaluation metrics, correspondingly. The higher 

mean value and lower SD values reveal the dependability and 

sturdiness of the proposed model. 

The proposed OSWT-based segmentation model delivers 

98.4% dice similarity index (DSI), 96.5% of Jaccard similarity 

measure (JSM), 0.73% of volume error (VE), and 0.99s 

average computational cost. These results indicates the 

effectiveness of the proposed model. The reduced mean 

volume error (0.73%) indicates that it does not differ 

significantly from the expert’s decision. The increased value 

of DSI (98.4%) indicates improved performance of the 

segmentation process. Also, it reflects the fitness level 

between the input image and the isolated image. This model 

provides 96.5% JSM which indicates the better performance 

of the segmentation model. For a particular database, the JSM 

presents the resemblance between the output image and the 

reference image. Moreover, this model is quite faster than 

existing segmentation models since it consumes 0.99s for 

realizing segmentation. 

7. CONCLUSION

Lung cancer is the most detrimental type of malignancy. 

Designing an automated and reliable model to segment 

pulmonary nodules from a CT image is a very expedient tool 

in the medical industry. This study develops a novel OSWT 

network for isolating the affected regions from CT images. 

This network utilizes the concept of the simultaneous shifted 

window to assimilate the data with various scales and is used 

as the mainstay model to excerpt the attributes. Shifted 

window transformers are filters in the ViT-based models that 

effectively apply the attention mechanism. It creates 

hierarchical attribute vectors by combining image blocks in 

deeper modules and has direct computational cost to the 

dimension of scans owing to the processing of intra attention 

only depending on the local window. Thus, it acts as an 

adaptable configuration for both dense recognition and image 

classification endeavors. We evaluate OSWT on an open-

access lung image database, known as the TCGA, and relate 

the performance of OSWT against seven advanced 

segmentation models regarding performance indicators. The 

proposed segmentation model using an OSWT transformer 

provides 98.4% dice similarity coefficient DSI, 96.5% of JSM, 

0.73% of volume error (VE), and 0.99s average processing 

time. The extensive experiments prove that the OSWT model 

achieves a better performance and is appropriate for diseased 

area segmentation from CT scans. 
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