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Significant advancements in SISR have been achieved through the use of deeper CNNs, 

enhancing both speed and accuracy. However, a crucial challenge persists in restoring finer 

texturing details at higher up-scaling factors. Recent research efforts have focused on 

lowering Mean Square error of reconstruction to achieve high PSNR. However, these 

methods frequently fail to capture the high-frequency details necessary for preserving 

fidelity at higher resolutions. This paper introduces ResNet GAN, a GAN customized with 

residual learning for enhanced super resolution. Specifically, it excels in generating realistic 

images at a 4x upscaling factor. Notably, proposed perceptual loss function, encompassing 

both adversarial and content losses. A trained discriminator is employed to differentiate 

super-resolved and actual photos based on the computed adversarial loss. In contrast to 

traditional pixel space resemblance, the content loss relies on perceptual similarity. The 

results demonstrate that ResNet GAN with the proposed perceptual loss function 

outperforms Deep Residual Learning on Div2k. The framework exhibits superior metrics 

such as PSNR, SSIM, MOS, and MSE. By prioritizing perceptual details over pixel space 

on highly down-sampled images, the proposed approach successfully recovers photo-

realistic features, addressing previous methods limitations. This advancement holds 

promising implications for applications requiring high-resolution image reconstruction. 
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1. INTRODUCTION

The acquired face pictures in surveillance systems are 

frequently quite tiny and vary between low-resolution and 

high-resolution photographs. As a result, face recognition 

ability suffers. This paper specifically addresses face 

recognition applications using surveillance cameras. 

Conventional approaches involve employing image pre-

processing methods to mitigate lighting variations in raw 

video sequences captured by security cameras, thereby 

enhancing overall image quality. In the current computer era, 

optimal performance across a variety of applications hinges on 

the essential requirement for high-resolution images. 

Image processing finds diverse applications in fields like 

medicine, defense, and more. Photographs are everywhere 

nowadays, more than ever, and thanks to improvements in 

digital technologies, it is relatively easy for anyone to generate 

a substantial quantity of images. Traditional image processing 

systems must deal with more difficult problems because of the 

abundance of images, as well as their adaptation to human eye 

requirement. 

The availability of image datasets and benchmarks have 

contributed to the widespread applications of machine learning 

as well as image processing. The integration of machine 

learning into image processing is likely to bring significant 

advantages across various applications, enhancing the 

comprehension of complex pictures. As the need for 

adaptation increases, the number of image processing 

algorithms incorporating learning components is expected to 

rise. However, an increase in adaptation is frequently 

associated with an increase in complexity, and any machine 

learning technique must be well trained in order to be 

successfully adapted to image processing difficulties. 

Handling substantial quantities of images requires the 

capability to deal with vast amounts of data, which is 

troublesome for most machine learning algorithms.  

Super resolution (SR) fundamentally involves the complex 

task of generating a High-Resolution (HR) image from its 

Low-Resolution (LR) version. Super resolution has garnered 

significant interest in computer vision research because of its 

diverse range of applications. The SR task becomes 

particularly challenging when dealing with high up-scaling 

factors, as the reconstructed SR images often lack texture 

details. 

Minimizing the MSE between the reconstructed HR image 

and the ground truth served as a common optimization 

objective for supervised SR algorithms. This approach was 

advantageous because reducing the MSE also improves the 

PSNR, which is a common metric for assessing and comparing 

SR techniques [1, 2]. However, both PSNR and MSE are based 

on pixel-wise differences and struggle to detect perceptually 

significant details, such as intricate textures. To address this 
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limitation, we propose using a GAN that incorporates a deep 

residual network (ResNet) with skip-connections as the 

primary optimization objective, moving away from reliance on 

MSE. By utilizing high-level feature maps and a discriminator, 

we create a novel perceptual loss function that helps generate 

results nearly indistinguishable from high-resolution reference 

images.  

GANs (generative adversarial networks) [3-5] are 

computation networks which fit two neural networks against 

each other (hence the name "adversarial") to produce fresh, 

factitious samples of data which could pass for real 

information. Mostly, they were frequently used in photo, video 

as well as speech generation. The discriminator neural network 

model is utilized for categorizing whether the given image was 

real or the generated ones, and a generator model which 

utilizes inverse convolutional layers for transforming input to 

full two-dimensional picture with pixel values, are both 

required for developing a GAN for generation of pictures. 

Generative Adversarial Network GAN, is an architecture that 

trains the image generating framework through a picture 

discriminating framework using massive, unlabeled datasets. 

In some circumstances, the discriminating framework could be 

utilized as the starting point for creating classifier model. An 

SRGAN learns how to create upscaled pictures by combining 

the adversarial characteristics of GANs with deep neural 

networks (up to four times the resolution of the original). The 

resulting super resolution photographs are more accurate. 

 

 

2. LITERATURE SURVEY 
 

The researchers introduced an image SR method utilizing 

directional bicubic interpolation [6]. Bicubic interpolation is a 

common technique in image interpolation due to its low 

complexity and fairly good results. However, it typically 

operates only in horizontal and vertical directions, which can 

lead to issues such as blocking, blurring, and ringing along 

edges. Various methods for interpolating lost pixels were used 

depending upon local strengths as well as directions. The 

approach maintains sharp edges and details better than bicubic 

interpolation. The approach outperforms previous edge-

governed interpolations with regard to subjective, objective 

measurements as well as it has a low computational 

complexity.  

A lightweight hybrid dense with residual connections was 

used, evaluating the balance between network complexity and 

performance enhancement [7]. When compared to earlier 

approaches, the suggested methods can greatly lower both the 

memory requirement and the inference speed to hold 

parameters as well as intermediate feature maps while keeping 

equivalent picture quality. Even though increasingly deep 

neural network models outperform conventional approaches in 

terms of SR, however to the large network parameters and 

convolution operations of deeper and denser networks, it is 

hard to execute them on low computational complexity, 

limited power, and low-memory systems.  

The researchers introduced a novel algorithm that combines 

traditional methods with deep learning, leveraging the 

autonomous feature extraction capability of deep learning to 

embark on more profound reconstructions of low-resolution 

images [8]. The utilization of deep learning techniques, in 

conjunction with traditional interpolation methods, facilitated 

the training and learning processes, resulting in the production 

of high-resolution reconstructed data. This proposed method 

surpasses both standard interpolation algorithms and 

standalone deep learning approaches. Moreover, it excels in 

reconstructing intricate details, yielding sharper outlines and 

superior image quality. CDA's strong representational abilities 

and adaptable design ensure accurate matching of LR and HR 

image representations [9]. Its goal is to develop compact 

representation of input by keeping most crucial data.  

The model forecasts the high frequency residuals in a fine 

way, and robust Charbonnier loss function providing close 

supervision [10]. The network architecture is generic; thus, it 

might be used to solve different image modification and 

synthesis issues. CNN designed with array of up-scaling filters 

has proved successful in displaying layer activations and 

creating semantic segmentations based on network high-level 

features [11]. 

It introduced RCAN with multiple residual groups 

interconnected by long skip connections for selective rescale 

of channel features while considering channel 

interdependencies [12]. 

Dense Nets inter layer connection sequence has been used 

for solving vanishing gradient problem, improve quality of 

feature, as well as promote feature reuse. Furthermore, it is 

suggested that DBPN be enhanced by incorporating dense 

connections in projection units, resulting in Dense DBPN. 

Dropout and Batch-Norm, that aren’t ideal for SR because 

they lose range flexibility over features, were avoided, unlike 

in the original Dense Nets. Instead, before entering the 

projection unit, a 1×1 convolution layer is applied for feature-

pooling as well as dimensionality reduction. In D-DBPN, each 

part’s input is concatenation of all preceding units’ outputs. On 

huge scaling factors like 8X enlargement, the suggested 

network that surpasses state-of-art approaches such as 

SRCNN and DRRN [13]. 

Single scale and multi scale architectures were designed for 

reconstructing single SR and several scales of HR pictures in 

a model respectively [14]. Since Batch-Norm layers uses 

similar extent of memory as previous convolutional layers, 

GPU memory usage is likewise lowered. The proposed 

residual blocks are used to build a baseline (single scale) 

model. Although topology is similar to that of SRResNet, the 

model lacks ReLu activation external to the residual block. 

The multiscale representation adeptly manages various SR 

scales within a unified framework.  

When interpolation methods are used to improve image 

resolution, they cause severe losses in their HF components. 

This may be seen in the smoothing that occurs as a result of 

the interpolation technique. The suggested image 

enhancement method aims to deliver higher resolution than 

existing SR-DWT and DASR. It forms necessary to preserve 

the borders and fine characteristics of an image in order to 

improve its resolution. The main difference among designed 

method and other standard algorithms is better edge and fine 

feature preservation, i.e., producing a sharp optimized image 

through intermediary stage in the HF sub-band interpolation 

procedure, and able to perform the disparity among the LL and 

the LR pictures [15]. 

To generate a high-quality photo, the researchers focused 

on developing and refining perceptual loss functions derived 

from extensive features of pre-trained networks [16]. By 

utilizing these loss functions, they trained forward networks 

for various image enhancement tasks, effectively merging the 

strengths of both methods. Their approach showcased results 

in photo style transfer, where a feed-forward network was 

trained to address enhancement challenges in real-time. 
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The researchers introduced SinGAN, a generative model 

capable of being trained unconditionally on a single natural 

image [17]. This model is designed to learn the internal 

distribution of patches within an image, allowing it to generate 

high-quality, diverse samples that maintain similar visual 

content. SinGAN consists of a pyramid of fully convolutional 

GANs, each responsible for capturing the patch distribution at 

different scales of the image. The authors employed a compact 

hourglass-shaped CNN architecture to accelerate and improve 

super-resolution (SR), enhancing the performance of the 

existing SRCNN model [18].  

The SRCNN architecture was redesigned in three key 

aspects. First, a deconvolution layer was added at the end of 

the network to allow for direct learning of mappings from the 

low-resolution image to the high-resolution image. Second, 

the mapping layer was restructured by initially reducing the 

input feature dimension and then expanding it afterward. 

Finally, they adopted smaller filter sizes and increased the 

number of mapping layers in the third step. 

The researchers introduced PULSE, which is a latent 

oriented up-sampling super-resolution method that generates 

high-resolution, realistic images by exploring the HR natural 

image manifold [19]. This self-supervised approach is not 

restricted to a single degrading operator used during training 

and focuses on creating images that downscale accurately to 

the original low-resolution input. 

Even before training, the structure of the generator network 

could capture numerous low-level image details. In inverse 

tasks such as denoising, super-resolution, and inpainting, a 

randomly initialized neural network effectively serves as a 

prior, achieving remarkable results. The identical prior can 

even be utilized to analyze deep neural representations also 

restore images from flash-no-flash input pairs using the 

identical prior. Inductive bias is encapsulated within 

traditional generator network architectures [20]. 

The researchers proposed a self-supervised method with 

temporal self-containment, crucial for achieving temporally 

clear solutions without sacrificing spatial textures [21]. They 

introduced the Ping-Pong loss to enhance temporal 

consistency over time, preventing recurrent networks from 

accumulating artifacts while preserving detailed features. 

Additionally, they introduced a comprehensive set of metrics 

to objectively evaluate the correctness and perceptual quality 

of temporal evolution. 

A novel architecture aims to maintain spatially accurate 

high-resolution representations while extracting significant 

contextual information from low-resolution representations. 

This approach features a multi-scale residual block with 

concurrent multiresolution convolution flows for multi-scale 

feature retrieval, cross-flow information exchange, spatial and 

channel attention mechanisms for context acquisition, and 

attention-based multi-scale feature aggregation. In essence, it 

learns an extensive set of features across various scales while 

preserving high-resolution spatial details [22]. 

The researchers demonstrated that models with wider 

features before ReLU activation significantly enhanced SISR 

performance without increasing parameters or computational 

costs [23]. A novel projection-based method to incorporate 

conditional information into the GAN discriminator without 

altering its functionality in the probabilistic model was 

proposed [24]. The researchers introduced EDVR, a Video 

Restoration framework using Enhanced Deformable 

Convolutions [25]. They developed the PCD alignment 

module, which handles large motions through pyramid, 

cascading, and coarse-to-fine deformable convolutions for 

precise feature alignment. 

 

 

3. EXISTING METHODS FOR IMAGE SUPER-

RESOLUTION 

 

3.1 SISR 

 

The SISR [26] is a technique focused on making a high-

resolution (HR) image from a single low-resolution (LR) input. 

One approach within SISR, known as sample-dependent 

Super-Resolution, relies on example-based schemes. This 

technique involves constructing a dictionary that captures the 

relationships among LR and HR image patches. During the 

construction of this dictionary, irregular mappings are learned 

from LR to HR images. These mappings are crucial as they 

facilitate the generation of high-quality HR images during the 

super-resolution phase. 

The process of learning irregular mappings involves 

analyzing a dataset of LR along with HR image pairs. Machine 

learning algorithms, such as neural networks, are often 

employed to learn the complex relationships between LR and 

HR images. These algorithms adaptively adjust the mapping 

functions to minimize the difference between the generated 

HR images and ground truth HR images. Through this iterative 

learning process, the model gradually improves its ability to 

generate HR images that closely resemble the ground truth. 

Irregular mapping is crucial for capturing intricate details 

present in HR images not directly perceptible in LR images. 

By learning these mappings, SISR methods can infer missing 

high-frequency information and spatial correlations between 

LR and HR images, resulting in HR images with enhanced 

resolution, sharpness, and fidelity to the original scene. 

Essentially, irregular mapping bridges the resolution gap 

between LR and HR images, advancing SISR techniques in 

improving image quality and visual perception. 

In a typical SISR workflow, a conventional interpolation 

technique like Bicubic Interpolation is initially used to upscale 

the LR input image. Subsequently, this interpolated image is 

divided into smaller patches. Each patch is then compared 

against a dictionary in the SR processing unit, which contains 

pre-trained LR-HR patch pairs. These LR patches are matched 

with their corresponding HR patches in the dictionary. 

Additionally, missing high-frequency details in the LR image 

are estimated based on the overlaying of LR patches with 

appropriate HR patches. 

However, SISR faces several challenges. Recovering the 

content of a high-frequency image from a low-resolution 

image is inherently difficult, often resulting in HR images with 

poor quality due to the lack of high-frequency information. 

Additionally, a single LR image can lead to multiple potential 

HR images, posing another challenge in the SISR process. 

 

3.2 CNN 

 

There have been several sorts of Example-based Super-

Resolution techniques created so far. The CNN-dependent SR 

has received significant attention in recent research due to its 

remarkable achievements. One notable approach within this 

category is the SRCNN, which consists of three-layer 

networks designed to ensure convergence by adjusting the 

learning rate. Additionally, Super-Resolution methods based 

on sparse coding have emerged over the past few decades, 
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including A+ and ScSR. The input LR blotch was calculated 

through a linear allegation of many basements contained in 

dictionary, HR blotches are substituted, as well as the picture 

is overlaid to generate a high-resolution image in these 

approaches. 

The capabilities of Convolutional Neural Networks (CNNs) 

are already being harnessed across various applications, 

ranging from Facebook photo tagging to Amazon product 

recommendations, healthcare imaging, and autonomous 

vehicles. CNNs' success stems from their ability to require 

minimal preprocessing and effectively analyze 2D images 

using filters that other algorithms cannot.  

The depth of the filter matches the depth of the input. The 

filter convolves across the input image, shifting by one unit at 

a time. Each convolution yields a single value obtained by 

summing the products of corresponding elements. This 

process is repeated across the entire image, resulting in a 

smaller matrix compared to the original input. The final output 

is represented by the feature map or activation map. 

Convolution serves various purposes such as edge detection, 

sharpening, and blurring, achieved by applying multiple filters 

to an image. The task only requires specifying characteristics 

like filter size, number, and network design. 

The MSSR approach amalgamates A+, ScSR, and SRCNN, 

presenting a novel fusion of sparse coding and CNN-

dependent methodologies to yield visually appealing images. 

This methodology operates on the premise that Sample-

dependent Super-Resolution acts as a filter enhancing image 

quality solely through the SR processing unit, disregarding the 

enlargement process. The underlying principle relies on the 

uniform dimension conversion performed by the dictionary 

from LR to HR. Post standard super-resolution processing, 

MSSR bypasses the utilization of Bicubic interpolation, 

integrating SR processing units in series instead. A+ or ScSR 

was utilized in primary SR step, while SRCNN without 

bicubic interpolation is utilized in second SR step. After then, 

conventional super-resolution is carried out, followed by 

super-resolution without an expansion stage. The evaluations 

entailed manipulating the number of input images through a 

temporal analysis scheme, revealing that MSSR's performance 

is influenced by factors such as Signal-to-Noise Ratio (SNR). 

Although MSSR did not enhance much reconstruction 

accuracy, it yielded visually appealing images by combining 

sparse coding and CNN-dependent methodologies. This was 

achieved by bypassing Bicubic interpolation and integrating 

SR processing units, resulting in noticeably enhanced visual 

image quality. 

The MSSR approach extends its capabilities with the 

introduction of MSSR-2, which integrates additional rotation 

and inversion processing procedures alongside a restoration 

step into the secondary stage of super-resolution (SR). 

Drawing insights from prior studies on MSSR, MSSR-2 aims 

to further enhance the reconstruction accuracy of high-

resolution images. 

Specifically, MSSR-2 conducts SR processing on groups of 

images generated through rotations or inversions of the input 

image. Subsequently, these images are restored to their 

original orientation through averaging. By subjecting the 

images to SR processing at different rotations and inversions 

and then averaging them, MSSR-2 aims to reduce errors in 

blotch selection and mapping within the dictionary, thereby 

enhancing reconstruction accuracy. This meticulous approach 

results in MSSR-2 surpassing MSSR in terms of 

reconstruction accuracy, marking a significant advancement in 

the field of super-resolution techniques. 

Most modern super-resolution algorithms use neural 

networks or patch-based methods to learn the mapping 

between low-resolution and high-resolution image spaces. 

Specifically, CNNs are extensively used for this purpose in 

computer vision. A notable example of this approach is 

Convolutional Super-Resolution, with the pioneering method 

being the Neural Network-based Super-Resolution (SRCNN) 

[27]. SRCNN has surpassed previous super-resolution 

techniques in performance. The SRCNN network learns the 

mapping through three main operations: non-linear mapping, 

patch extraction, and representation reconstruction. 

Table 1 below offers a comparative analysis between SISR 

and CNN-based Super-Resolution techniques. SISR primarily 

aims at generating high-resolution (HR) images from single 

low-resolution (LR) inputs using example-based methods, 

while CNN-based approaches utilize Convolutional Neural 

Networks to learn the mapping between LR and HR image 

spaces. This comparison highlights the methodologies, 

learning approaches, advantages, and limitations of each 

technique, providing insights into their respective strengths 

and weaknesses in the context of super-resolution tasks [28]. 

 

Table 1. Comparison of SISR and CNN-based super-

resolution techniques 

 

Aspect SISR 
CNN-Based Super-

Resolution 

Focus 

Generation of HR 

images from single LR 

input 

Learning mapping of 

LR to HR image 

space 

Methodology 

Example-based, 

sample-dependent 

methods 

CNNs, often with 

sparse coding 

Learning 

Approach 

Machine learning 

algorithms (e.g., NNs) 

Convolutional 

Neural Networks 

(CNNs) 

Advantages 

Captures intricate 

details in HR images 

and improves visual 

image quality 

Efficient analysis of 

2D images and 

obtains promising 

results in generation 

of HR images 

Limitations 

Difficulty in accurately 

reconstructing HR 

images and struggles 

with recovering high-

frequency information 

from LR images 

Face challenges in 

accurately 

reconstructing fine 

details and textures, 

especially in 

complex scenes 

Typical 

Techniques 

Bicubic interpolation, 

example-based 

methods 

SRCNN, A+, ScSR 

 

 

4. PROPOSED METHOD 
 

ResNet-GAN is a technique used for super-resolution image 

generation, transforming low-resolution (LR) images into 

high-resolution (HR) ones. It leverages ResNet architecture 

for learning residual functions and generative adversarial 

networks (GANs) for generating realistic HR images. This 

approach enhances the quality and resolution of images, 

making them suitable for various applications requiring high-

quality visuals. 
 

4.1 Generative adversarial network with residual learning 

 

A GAN comprises a Generator and a Discriminator. The 
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Generator aims to craft realistic fake images, while the 

Discriminator discerns these fakes. This adversarial strategy is 

well-suited for generating high-quality SR images, as the 

iterative interaction between the Generator and Discriminator 

enhances results. GANs offer a robust framework for 

generating natural-looking, high-quality images. The GAN 

process guides reconstructions towards regions likely to 

contain photorealistic images, closely aligning them with the 

original image manifold. This paper introduces the first deep-

ResNet framework that employs GANs to implement a 

perceptual loss function for photorealistic single image SISR. 

The Res-Net GAN, tailored for this purpose, integrates a novel 

perceptual loss by replacing the traditional MSE-based content 

loss with one computed using VGG network feature maps, 

which are more attuned to changes in pixel space. 

 

4.1.1 Generator 

The Generator part in the GAN architecture here consists of 

Residual Network (ResNet) model for image processing. 

ResNet, a prominent neural network architecture in deep 

learning, is widely employed across various image processing 

tasks. As subsequent winning architectures incorporate more 

layers to reduce error rates in deep neural networks, they 

encounter a common challenge known as the 

vanishing/exploding gradient problem. This issue arises when 

the gradient becomes either excessively small or large, leading 

to increased training and test error rates with an increasing 

number of layers. To address the vanishing/exploding gradient 

problem, ResNet introduces the concept of residual learning, 

which involves utilizing skip connections in the network 

architecture. These skip connections bypass certain layers 

during training and connect directly to the output. 

Residual learning, implemented in ResNet, involves 

learning residual functions instead of direct mappings. Within 

residual learning, there are two types: global residual learning 

and local residual learning. In the suggested model, local 

residual learning is applied, which aids training by reducing 

task complexity and enhancing learning rates in deep learning. 

Shortcut connections between various layers within the 

network, of varying depths, are utilized in conjunction with 

element-wise addition to facilitate local residual learning. 

 

4.1.2 Discriminator 

The discriminator in a GAN represents a classifier which 

distinguishes between original data and data fed by the 

generator. The selection of the network architecture can be 

based upon the type of data. The generator generates fake data 

instances, and these are used by the discriminator as negative 

examples during training. Sigmoid function to classify the 

image whether they are similar or not. 

 

 
 

Figure 1. Discriminator architecture [29] 

 

Because the purpose of discriminative models is to detect 

fraudulent data, the discriminative neural network is trained to 

reduce the final classification error. It learns to distinguish 

between the various classes by examining both genuine and 

fake samples generated by the generator and attempting to 

determine which are real and which are fake. Figure 1 shows 

how the discriminator of GAN architecture differentiates 

between HR and SR images. 

The output of the discriminator, a binary value indicating 

real or fake, guides the generator in GANs to produce high-

resolution images from low-resolution inputs. When the 

discriminator identifies a generated image as realistic, the 

generator refines its parameters to produce even higher-quality 

images. Conversely, if the discriminator detects flaws, the 

generator adjusts to enhance image quality. This iterative 

process enables the generation of more realistic high-

resolution images from low-resolution inputs. 

 

4.2 ResNet GAN model 

 

Res-Net GAN is a state-of-the-art method for producing 

photo-realistic super-resolution(SR) images with high 

upscaling factors(x4), validated by exhaustive MOS analysis. 

The goal of SISR is to generate a high-resolution(HR) image 

from a low-resolution(LR) input. During training, HR images 

are available, and LR equivalents are created by applying a 

Gaussian filter and downsampling. 

The primary objective is to train a generator function (G) 

that estimates the HR counterpart of a given LR image using a 

feedforward CNN. The generator network consists of multiple 

identical residual blocks, each with convolutional layers, batch 

normalization, and parametric ReLu. The input LR image is 

processed through these residual blocks, followed by pixel 

shufflers to increase the resolution, and a final convolutional 

layer. 

The discriminator network is trained to distinguish real HR 

photos from generated SR images. It uses leaky ReLu 

activation and strided convolutions to reduce picture 

resolution, similar to the VGG network, and includes dense 

layers for classification. 

The performance of the generator network relies on a 

perceptual loss function, combining Mean Square Error (MSE) 

and VGG feature maps. This approach encourages the 

generator to produce images that align closely with the original 

image manifold, aiming to deceive the discriminator model. 

The architecture aims to generate high-quality SR images 

by promoting perceptually superior solutions found within the 

natural image subspace, as shown in Figure 2. 
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Figure 2. Schematic diagram of Res-Net GAN [29] 
 

First, the dataset requiring higher resolution images is 

collected. Use the generator function to process them. This 

generator function boosts the image’s resolution. The image is 

then sent to the discriminator function. The discriminator 

determines whether the image is genuine or not and returns a 

binary result. Return the picture to the generator function if the 

binary value is 0. Generator boosts the resolution once more 

and sends it to the discriminator, it checks the image once more. 

This procedure is repeated until a high-resolution image is 

obtained. Return the image if the discriminator’s output is 1. 
 

4.2.1 Training details 

The NVIDIA Tesla M40 GPU was utilized to train the 

networks using a random sample SR image set from Div2k 

[30]. These images differ from those used in testing. Low-

resolution (LR) images were created by downsampling high-

resolution (HR) images (BGR, C = 3) with a bicubic kernel 

and a downsampling ratio of r = 4. Each mini-batch involved 

randomly cropping sixteen 96×96 HR sub-images from 

various training photos. As the generator model is entirely 

convolutional, it can be applied to images of any size. LR input 

images were scaled to [0, 1], while HR images were scaled to 

[1, 1]. MSE loss was computed on images with an intensity 

range of [1, 1]. The rescaling of VGG feature maps by a factor 

of 1 to 12.75 aims to align the scale of VGG losses with the 

scale of Mean Squared Error (MSE) loss. This rescaling factor 

ensures that the magnitudes of the losses are comparable, 

allowing for more balanced optimization during training. By 

using a rescaling factor of 0.006, this alignment is achieved, 

ensuring that both types of losses contribute effectively to the 

overall optimization process without one dominating over the 

other. Utilizing Adam with β = 0.9 for optimization, provides 

a balance between adaptability and momentum making it 

effective for optimizing the training of deep neural networks 

when used in super-resolution tasks. SRResNet networks were 

trained with a learning rate of 104 and 106 update iterations. To 

avoid undesirable local optima, when training the GAN, MSE-

based SRResNet was used as initialization for the generator. 

Various SRGAN variants were trained using 105 update 

iterations and learning rates of 104 and 105. Generator and 

discriminator networks were alternately updated with k = 1. 

Remaining blocks in the generator network were identical (B 

= 16). Batch normalization updates were disabled during 

testing to ensure deterministic results dependent only on the 

input. 

4.3 Loss functions 

 

It’s a way of determining how well your algorithm models 

the data. At its most basic level, a loss function is a 

measurement of how well your prediction model predicts the 

expected outcome (or value). The learning problem is turned 

into an optimization problem, a loss function is established, 

and the algorithm is tuned to minimize the loss function. The 

difference between the expected output and the actual output 

of the machine learning model is computed which facilitates 

the gradient computation. Subsequently, the weights can be 

updated from the loss function. The cost is calculated as the 

average of all losses. There are three types of loss functions, 

they are: Perceptual loss, Content loss and Adversarial loss. 

 

4.3.1 Perceptual loss 

Below, the perceptual loss function utilized is elaborated 

upon. The performance of our generator network relies on 

super-resolution (SR). While Mean Squared Error (MSE) is 

often utilized for low-resolution to high-resolution (l-SR) 

tasks, it lacks the ability to evaluate solutions based on 

perceptually significant qualities. To address this, we 

introduce a loss function that considers perceptual aspects. 

This comprises a weighted sum of content loss (l-SR-X) and 

an adversarial loss component to compute the perceptual loss. 

In particular, our focus lies on image transformation 

problems, where an output image is generated from a modified 

input image. Recent methodologies tackling such challenges 

typically involve training feedforward convolutional neural 

networks using a loss measured in pixels per pixel, comparing 

the output to the ground-truth original images. We propose the 

utilization of perceptual loss functions for training 

feedforward networks designed for image transformation tasks. 

This approach amalgamates the benefits of both pixel-wise 

comparison and perceptual evaluation, potentially enhancing 

efficiency. Our feedforward network is trained to address 

optimization problems in real-time, demonstrated notably in 

the context of visual style transfer within this paper. 

Comparing our approach with optimization-based methods 

reveals qualitatively equivalent outcomes, achieved at a speed 

three orders of magnitude faster than the latter. As an 

additional experiment, we explore single-image super-

resolution, substituting perceptual loss for per-pixel loss, 

resulting in visually pleasing results. 
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4.3.2 Content loss 

It is the prevailing optimization target in image super-

resolution (SR), widely employed by state-of-the-art 

approaches. Nonetheless, solutions stemming from mean 

squared error (MSE) optimization often yield high peak 

signal-to-noise ratio (PSNR) but lack high-frequency content, 

leading to visually displeasing outcomes characterized by 

overly smooth textures. Instead of relying solely on pixel-wise 

losses, we opt for a loss function that prioritizes perceptual 

similarity, thereby mitigating the issue of excessively smooth 

textures and to measure how well the high-resolution output 

image preserves the structural content of the low-resolution 

input image. 

 

4.3.3 Adversarial loss 

A continuously trained discriminator network defines the 

adversarial loss. It’s a binary classifier that distinguishes 

between real-world data and data generated by a generative 

network. We add the generative block of our GAN algorithm 

to the perceptual loss function in addition to the losses from 

content discussed so far. By attempting to trick the 

discriminator network, this encourages the network to favor 

solutions which are based on a variety of natural images. The 

loss from generative function l-SR-Gen is calculated using the 

discriminator DD (GG (I-LR)) probabilities across all training 

samples. 

 

4.4 ResNetGAN for SR algorithm 

 

Take image data set to enhance resolution. 

Pass through Generator function.  

def Gen(): 

 // code to increase resolution of the input image. 

 //Return this to discriminator function. 

Take input to discriminator function to check whether the 

image is real or fake. 

def Dis(): 

 // code to check real or fake. 

 // if it is fake return that to generator to improve 

quality. 

 // if it is real, return to the output as SR images. 

 

First take the data set for which you want to get the super 

resolution images. Pass them through generator function. This 

generator function increases the resolution of the image. Then 

it sends that image to discriminator function. Discriminator 

checks whether the image is real or fake and generates a binary 

value. If the binary value is 0 return that image to generator 

function. Generator again increases the resolution and sends it 

to discriminator and again discriminator checks the image. 

This process continues until you get a high-resolution image. 

If the output of discriminator is 1 then return the image. 

 

 

5. RESULT DISCUSSION 

 

The input to the ResNet GAN network is a Low-Resolution 

image of size 96 × 96 where the output image size turns out 

into 4× up sampled one i.e., 384 × 384 from Div2K [30]. For 

a better observation, here we show the Low-Resolution image 

by up sampling it. The Res-Net GAN output is being compared 

with the ResNet without GAN and comparison is being made 

on 4 different parameters i.e., PSNR (Peak Signal to Noise 

Ratio), MSE (Mean Square Error), SSIM (Structure Similarity) 

as well as MOS (Mean Opinion Score) which are depicted in 

Figures 3-7. 

Following are the definitions associated with the parameters 

used for result analysis: 

Peak Signal to Noise Ratio (PSNR): It is computed as a 

fraction of the highest power of a signal and the power of noise 

affecting the accuracy of its representation. The metric is 

related to measuring the quality of transmission. In image 

processing applications, an individual pixel can be considered 

as a signal with 8-bit RGB values. 

 

PSNR = 10 ⋅ log10
MAX_PIX

MSE
 (1) 

 

In Eq. (1), MAX_PIX is the highest value that can be given 

for a pixel and MSE is the Mean Squared error between the 

high-resolution image and the super-resolved image. As the 

pixel values have a wide range, we use a logarithmic scale. 

Structure Similarity (SSIM): This metric is analogous to 

human visual system (HVS color model) which works upon 

three parameters namely: correlation, luminance distortion, 

and contrast distortion. It is computed on various windows of 

the image rather than a comparison on the basis of pixel-by-

pixel. 

Mean Opinion Score (MOS): It represents a metric related 

to the perceived quality of image. It can be computed through 

observers’ opinions about rating the images quality on a 

specific scale. 

Mean Square Error (MSE): It represents the cumulative 

squared error between the super-resolution image (SR) and the 

high-resolution image (HR) wherein each pixel in SR image is 

compared against the opposing pixel in HR image. 

Using NumPy package in python, we calculated MSE and 

from skimage metrics package, we had estimated SSIM. 

PSNR is formulated from MSE as follows: 

 

PSNR=20⋅log10(255.0 / MSE) (2) 

 
 

Figure 3. Results for input image 1 [29] 
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Figure 4. Results for input image 2 [29] 

 

 
 

Figure 5. Results for input image 3 [29] 

 

 
 

Figure 6. Results for input image 4 [29] 

 

 
 

Figure 7. Results for input image 5 [29] 

 

ResNet and ResNet-GAN generated photos performance is 

analyzed in terms four SR metrics, whose values are detailed 

in Table 2. It is clearly observed from Table 2, that ResNet 

GAN is more superior to ResNet without GAN model. The 

PSNR and MSE of HR images are represented as '-' when 

comparing the HR image against itself because the MSE 

becomes zero in this case, leading to a division by zero in the 

PSNR formula and resulting in an infinite value. So, it is here 

denoted by '-'. The ResNet Generative Adversarial Network 

(GAN) model surpasses the standard ResNet due to its use of 

adversarial training and perceptual loss functions. Adversarial 

training enables the generator to produce images 

indistinguishable from real data, while perceptual loss 

functions optimize for high-level features, resulting in visually 

appealing and realistic outputs with fine details. Mean squared 

error (MSE) of reconstructed photographs of the ResNet GAN 

is lower when compared to ResNet, which is depicted in 

Figure 8. This indicates that reconstructed ones are closer to 

realistic photographs while maintaining low MSE values. 

Figure 9 and Figure 10 illustrate a comparison between our 

proposed ResNet_GAN model and other state-of-the-art 

models developed using the Div2K dataset, utilizing PSNR 

and SSIM metrics. The results reveal that our model 

outperforms the other models. Limitations of the proposed 

model includes, performance evaluation is constrained to 

images exclusively from the Div2K subset, thereby lacking 

validation on diverse datasets. It overlooks an examination of 

computational efficiency, which is essential aspect for 

assessing the model's real-world applicability.  
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Table 2. Performance analysis of five sample images based on ResNet GAN and ResNet models 

 
 Image 1 Image 2 

Metrics 
ResNet 

GAN 
ResNet HR 

ResNet 

GAN 
ResNet HR 

PSNR 29.63 28.94 - 30.74 29.88 - 

SSIM 0.68 0.52 1 0.77 0.69 1 

MOS 3.56 3.24 4.21 3.68 3.08 4.23 

MSE 0.71 0.83 - 0.55 0.67 - 
 Image 3 Image 4 

Metrics 
ResNet 

GAN 
ResNet HR 

ResNet 

GAN 
ResNet HR 

PSNR 29.33 28.75 - 35.54 33.61 - 

SSIM 0.71 0.60 1 0.93 0.86 1 

MOS 3.28 2.99 4.15 3.25 2.98 4.38 

MSE 0.76 0.87 - 0.18 0.28 - 
 Image 5  

Metrics 
ResNet 

GAN 
ResNet HR  

PSNR 30.77 29.82 -  

SSIM 0.75 0.65 1  

MOS 3.49 3.19 4.23  

MSE 0.55 0.68 -  

 

 
 

Figure 8. Performance of ResNet-GAN and ResNet in terms of MSE 

 

 
 

Figure 9. Performance of ResNet-GAN and state-of-the art models in terms of PSNR 

 

Initially, we used a Gaussian filter with a state-of-the-art 

model architecture similar to the one [29], but found that 

Gaussian filtering blurred fine details and edges, producing 

less realistic and effective training data for super-resolution 

models. We then switched to bicubic filtering, which better 

preserved image details and edge sharpness, making it more 

suitable for high-quality super-resolution. Additionally, we 

optimized the model by fine-tuning training configurations 

such as rescaling factors, mini-batch cropping, learning rates, 

and Adam beta values. This resulted in consistent 

improvement across all four metrics. 
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Figure 10. Performance of ResNet-GAN and state-of-the art models in terms of SSIM 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

The Res-Net Generative Adversarial Network (GAN) has 

demonstrated highly effective in enhancing low-resolution 

images, establishing its superiority over traditional ResNet 

through comprehensive comparisons across four different 

parameters based on the perceptual quality of super-resolved 

images. The study focuses on the perceptual quality of super-

resolved images over computational efficiency. The proposed 

approach plays a vital role across diverse applications in 

computer vision field. It can enhance the resolution of medical 

scans for precise diagnosis, improve satellite imagery for 

environmental monitoring, aid surveillance for better object 

identification, and enhance digital media content for superior 

visual experiences.  

Furthermore, our study detailed SRResNet, achieving state-

of-the-art performance in image super-resolution based on 

PSNR evaluation. We introduced SRGAN, combining content 

loss and adversarial loss for improved realism, particularly 

evident in large upscaling factors through MOS testing. We 

emphasized the limitations of PSNR and SSIM metrics in 

capturing perceptual image quality. While shorter networks 

offer efficient alternatives with minimal degradation, deeper 

designs benefit performance, influenced by ResNet 

architecture. Deeper networks enhance SRResNet 

performance, though longer training times are required. 

However, deeper SRGAN variations face challenges due to 

high-frequency aberrations in data. The optimal loss function 

varies based on application needs. Achieving perceptually 

convincing image reconstructions is a significant challenge for 

future research, involving the development of algorithms for 

real-time processing in fields like video streaming and surgery, 

handling dynamic environments in surveillance and 

autonomous vehicles, addressing limited annotated data in 

specialized fields like medical imaging, mitigating noise and 

artifacts in satellite imaging and microscopy, incorporating 

semantic understanding for scene understanding and medical 

diagnostics, and ensuring adaptability to diverse domains such 

as urban environments and industrial settings. Designing 

content loss functions that take into account the spatial content 

of the image while maintaining uniformity to changes in the 

pixel space will likely enhance the photorealistic results of 

images even further in the future by employing variants of 

CNNs, along with regularization techniques. 
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