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Non-traumatic vertebral compression fractures are increasingly common due to longer life 

expectancies. Age-related bone mass loss significantly contributes to these fractures. 

Typically asymptomatic for extended periods, early detection of non-traumatic vertebral 

compression fractures can reduce associated health issues and enable more effective 

treatment. Deep learning methods have shown high accuracy and sensitivity in detecting, 

classifying, diagnosing, and segmenting various pathological conditions in healthcare. 

Recently, these methods have been applied more frequently in the detection of non-traumatic 

vertebral compression fractures and vertebral body segmentation research. This study 

introduces a unique dataset to apply deep learning techniques, using raw computed 

tomography (CT) images of patients. The dataset was compiled from retrospective CT 

images taken at Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, 

Department of Radiology. It includes 197 individuals, with 100 diagnosed with non-

traumatic vertebral compression fractures and 97 without. Radiological diagnoses of non-

traumatic vertebral compression fractures were added based on CT reports. The dataset 

comprises a total of 118,200 cross-sectional images in DICOM format, which were 

enhanced using the Wiener filter. The U-Net network was used to segment 6,301 vertebrae, 

achieving a 100% dice overlap index score. Additionally, 593 features of vertebral fractures 

confirmed by reports were extracted using the radiomics method, and 537 features were 

selected via the logarithmic lambda method. The convolutional neural network (CNN) 

classification model was employed, achieving an accuracy of 86.7%. The classification 

results were evaluated through ROC-AUC, loss, and accuracy graphs.  

Keywords: 

vertebra dataset, non-traumatic vertebral 

compression fracture detection, CNN 

classification, U-Net segmentation, deep 

learning 

1. INTRODUCTION

In recent years, there has been an increasing focus on the 

application of machine learning to radiological images [1]. 

Studies have demonstrated that deep learning can interpret 

complex medical data at a level comparable to healthcare 

professionals [2]. The vertebral column, consisting of 33 

vertebrae organized into cervical, thoracic, lumbar, sacral, and 

coccyx groups, forms the main structure supporting the body's 

weight. A non-traumatic vertebral compression fracture is a 

type of fracture that occurs gradually without a sudden injury. 

Early detection of these fractures can facilitate effective 

treatment to prevent future fractures and osteoporosis. 

However, non-traumatic vertebral fractures are often 

asymptomatic before becoming noticeable, leading to 

underdiagnosis and insufficient treatment [3]. 

Multiple imaging techniques, such as radiographs, CT scans, 

MRI, and PET, are utilized to assess vertebral anatomy and 

diagnose spinal conditions. CT scans, with their current 

generation scanning techniques, offer a spatially accurate 

method for evaluating the three-dimensional structure of 

vertebrae [4]. Computational algorithms are employed to 

process these images, extracting valuable information, or 

enhancing image quality through techniques like enhancement, 

convolution, and filtering. Minimizing data loss during the 

enhancement of vertebral images is crucial. Segmentation and 

labeling of vertebrae are key for subsequent analysis tasks like 

identifying abnormalities, biomechanical modeling, or image-

guided interventions, which often require high precision. 

Manual segmentation is labor-intensive and subjective, hence 

fully automated, or semi-automated methods are preferred for 

clinical applications. 

For semi-automatic or automatic vertebral fracture 

detection, specific characteristics of fractures must be 

identified and selected using methods like radiomics, Bayesian 

approaches, and logarithmic lambda. Classification methods 

then help segregate patients into groups with or without 

fractures. Success rates of classification, accuracy, loss, and 

ROC-AUC evaluations provide quantitative evidence for these 

methods. Non-traumatic vertebral fracture detection uses 

various imaging techniques and tools, including MRI, DXA, 

QBT, PET, SPECT/CT, CT, and the fracture risk assessment 

tool (FRAX) [5]. However, there is a lack of studies applying 

deep learning to detect fractures in CT scans [6]. Radiologists, 
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orthopedic surgeons, and physical therapists diagnose diseases 

by analyzing biomedical images of the vertebrae. Given the 

limited number of specialists and the increasing number of 

patients with vertebral disorders, there is a shortfall in medical 

professionals [7]. 

This study created a CT image dataset of human vertebrae 

based on research conducted at Istanbul University-

Cerrahpasa Faculty of Medicine's Radiology Department. 

Ethical approval was obtained from Istanbul University-

Cerrahpasa for the dataset's creation and use in scientific 

studies. The dataset includes 197 patients, with a total of 

111,8200 DICOM images and 6301 vertebral bone images. 

Among these, 100 patients were diagnosed with vertebral 

fractures, while 97 patients had no fractures. 

In the proposed model, Wiener filtering was applied in the 

preprocessing phase. Vertebra segmentation was performed 

using the U-Net convolutional neural network method, and its 

success was measured with the Dice score. Accurate labeling 

is crucial for classification success, and the labels for each 

patient's vertebrae were created using connected-component 

labeling (CCL). Feature extraction and selection were 

conducted using the radiomics library, resulting in 593 

fracture-related features. Logarithmic lambda selection 

reduced these to 537 features. The convolutional neural 

network classification method was used to classify the 

vertebral bone images, and results were evaluated using loss 

scores, accuracy, and AUC-ROC curves. The classification 

performance of the proposed model was compared with other 

methods such as MobileNetV3, EfficientNetB1, VGG16, and 

ResNet50V2. 

The rest of the paper is structured as follows: Section 2 

discusses related literature, Section 3 explains the materials 

and methods used, Section 4 details the proposed model, 

Section 5 presents the findings and results, and Section 6 

provides the conclusions.  

 

 

2. RELATED WORKS 
 

In the literature, datasets of human vertebrae have been 

developed for various studies. The characteristics and 

applications of these datasets are as follows: 

Yi et al. [8] collected T2-weighted MRIs from 804 patients 

with lumbar degenerative disease symptoms from three 

hospitals. They proposed a deep learning model integrating 3D 

ResNet18 and transformer architecture to detect lumbar 

degenerative disease, with performance evaluated via free-

response receiver operating characteristic (fROC) curve, 

precision-recall (PR) curve, precision, recall, and F1 score [8]. 

Johnson et al. [9] utilized the COLONOG dataset to identify 

large adenomas and cancer cells, which includes 784 CT 

colonography trials in DICOM format. Bejarano et al. [10] 

used a 16-slice CT scanner to detect squamous cell carcinoma 

in 31 patients, employing the HNSCC-3DCT-RT dataset, 

which includes high-resolution 3D fan-beam CT scans 

collected before, during, and after treatment. Simpson et al. 

[11] focused on segmentation algorithm development and 

evaluation with the MSD T10 dataset, presented at the 10th 

Medical Segmentation Decathlon14, featuring images in 

NIfTI format. 

With the rise of artificial intelligence methods, recent 

studies have employed machine learning to detect vertebral 

disorders from images. For example, Duan et al. [12] divided 

a dataset of 280 patients into training and validation sets, 

creating three models: a deep learning model using CT and 

clinical data, a radiomics model, and a combined model. They 

evaluated these models using receiver operating characteristic 

(ROC) curves, area under the curve (AUC), and accuracy 

(ACC), also examining the correlation between Rad features 

and DCNN features [12]. Harmon et al. [13] created the 

COVID-19 sub-dataset, merging DenseNet and AH-Net 

convolutional neural networks in chest tomography to identify 

COVID-19 pneumonia, utilizing chest CT images from 632 

COVID-19 patients. Pu et al. [14] conducted a retrospective 

study on patients from 2018 to 2020, assessing vertebral bone 

quality scores and CT-based Hounsfield unit values from MRI 

and CT, respectively, and evaluating predictive performance 

with ROC curves. Deng et al. [15] developed the VerSe'19,20 

dataset, segmenting vertebral bones using the U-Net method, 

with over 11,100 labeled vertebral bones and 1,005 CT 

volumes. 

Langerhuizen et al. [16] reviewed the applications of AI in 

orthopedic trauma imaging, systematically examining 

databases like PubMed, Embase, and Cochrane, comparing 

models such as VGG VNN, U-Net, DenseNet, kNN, LDA, and 

ResNet by pre-training. Roth et al. [17] used deep 

convolutional networks to automatically detect posterior 

element fractures in vertebral CT, achieving an AUC of 0.857 

with sensitivity of 71% or 81% at 5 or 10 false positives per 

patient, respectively. Acheson et al. [18] identified cervical 

vertebral fractures in 49 out of 160 patients using high-

resolution, thin-slice CT alongside conventional radiographs, 

highlighting the superior detection rates of CT. Muehlematter 

et al. [19] used tissue analysis and machine learning to identify 

vertebral bones at risk of compression fractures, classifying 

vertebrae as "stable" or "unstable" based on sequential scans. 

Ahammad et al. [20] developed a hybrid CNN-based method 

for segmenting and classifying vertebral injury data, achieving 

96% classification success. Yoo et al. [21] analyzed data from 

Korean postmenopausal women, using SVM, RF, ANN, and 

LR models to predict osteoporosis risk, achieving an AUC of 

0.827 with 76.7% accuracy. Fang et al. [22] used U-Net for 

automatic vertebral segmentation and DenseNet-121 for BMD 

calculation in a dataset of 1449 patients, correlating automatic 

and manual segmentation results. Bar et al. [23] presented an 

automated method for detecting vertebral compression 

fractures on CT, using CNN and RNN networks. Atherya et al. 

[24] developed a method for spinal CT image segmentation, 

demonstrating performance with reference standard 

comparisons and Dice coefficient evaluations. Murata et al. 

[25] tested a dataset of 300 images for vertebral fractures, 

resizing images to reduce complexity and evaluating 

segmentation accuracy. 

From the literature, it is evident that disease detection from 

CT images is often conducted semi-automatically or 

automatically. Semi-automatic methods involve physician 

assistance, whereas automatic methods do not. This study 

employs an automatic method. The proposed method differs 

from existing studies in several ways: 

•To improve image quality, the Wiener transform, 

previously unused for enhancing vertebral CT images, was 

applied to the dataset. An example image post-transformation 

is provided in the study. 

•Segmentation and labeling were performed using CCL 

with the U-Net convolutional neural network model, achieving 

a Dice score of 100%. This high score indicates no data loss 

after enhancement, segmentation, and labeling. 

•The study evaluated fractures in all vertebrae, focusing on 
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non-traumatic fracture types. 

•Radiomics and logarithmic slide methods were used for 

feature extraction and selection, a first in detecting non-

traumatic vertebral bone compression fractures. 

•The CNN classification algorithm was adapted to the 

original dataset, classifying patients as with or without 

traumatic vertebral bone fractures. 

•Performance measurements such as loss score, accuracy, 

and AUC-ROC curve were provided to ensure data analysis 

reliability in healthcare. 

 

 

3. MATERIAL AND METHOD 

 

After obtaining the approval of the ethics committee to 

collect retrospective patient data from Istanbul University-

Cerrahpasa Faculty of Medicine, Department of Radiology, 

studies were initiated for the detection of vertebral fractures. 

In the detection of vertebral bone fractures, the raw data set 

was first preprocessed with the Wavelet transform. It was then 

segmented with the U-Net network and its labels were 

extracted with CCL. The location of the vertebral bone 

fractures in each patient was determined and reported by our 

physicians. Upon this determination, the features of the 

vertebral bone fractures were extracted with the radiomics 

library. The features suitable for the three-dimensional image 

were selected and classified with a special convolutional 

neural network. 

 

3.1 Data set 

 

The data set was created from 6085 vertebral bone images 

with the permission of the ethics committee. Vertebral series 

of patients in 118200 DICOM format were reviewed 

retrospectively. In the raw data set consisting of 197 patient 

data, each patient's report was taken as a reference. These 

reports were given by the physicians working in the Radiology 

Department of Istanbul University-Cerrahpasa Faculty of 

Medicine. In the reports, the severity of the fracture with the 

fractured vertebral region was stated in the vertebrae of 100 

patients. In the reports of the remaining 97 patients, it was 

stated that there were no fractures. Sagittal, axial, and coronary 

images of the patients are displayed with auxiliary software. 

The data set was created under ethical permissions, keeping 

patient information confidential and considering whether the 

patient's spine is fractured or not. Among the cases with 

fractures, 60 were adult females aged between 55 and 96, and 

40 were adult males aged between 30 and 91. Among the 

patients without fractures, 40 were adult males aged between 

25 and 89, and 57 were females aged between 23 and 94. 

Folders consisting of DICOM image series of each patient 

were converted to NIfTI (Neuroimaging Informatics 

Technology Initiative) format. NIfTI files were saved as a file 

format from which the patient's personal information was 

extracted. Thus, it was possible to evaluate patient images 

anonymously. Patients are numbered up to 197 in a series with 

the patient's pre-name. A sequential and regular file structure 

has been created. 

Figure 1 shows examples of sagittal, coronary, and axial 

images of patients 172, 197, and 1 taken from the data set. 

It is seen that it is difficult to make a quantitative 

determination of the fracture from the sagittal vertebra images 

given in Figure 1. Trying to get the best angle in the data 

DICOM series can be considered as a separate challenge. 

Although the applications used for manual analysis of images 

are advanced, capturing the desired angle and examining all 

series reduces the possibility of stable interpretation. 

 

 
       Sagittal                Coroner                      Axial 

 

Figure 1. Patient_172, patient_197, patient_1 sagittal, 

coronary, and axial image examples 

 

3.2 Preprocessing 

 

Preprocessing is one of the important stages of image data 

that affects the classification result. In addition, improved 

images contribute to the diagnosis of diseases by physicians 

who evaluate vertebral disorders in hospitals. At this stage, 

wiener filtering and deconvolution methods were applied to 

the patient images. 

The Wiener method is the optimal fixed linear enhancement 

method for images distorted by additional noise and blur. The 

calculation of the Wiener filter assumes that the signal and 

noise processes are quadratic stationary. For this, only zero-

mean noise processes are based [26]. 

In Eq. (1), when a stationary signal is corrupted by some 

other additional and unrelated signal (referred to as noise), the 

pattern can be expressed as 𝑔; where g is a distorted signal, 𝑓 

is a pristine signal, and 𝑛 is the total noise. The restoration 

filter that finds the optimal linear estimate can be represented 

as: 

 

𝑔 = 𝑓 + 𝑛 𝑅𝑃𝐷𝐶𝑉 =  𝑆𝐷 𝑅𝑀𝑆𝐸𝑐𝑣⁄  (1) 

 

𝑊(𝑢) =
|𝐹(𝑢)|2

|𝐹(𝑢)|2 + |𝑁(𝑢)|2
 (2) 

 

In Eq. (2), |𝐹(𝑢)|2 is the three-dimensional power spectrum 

of the signal or pristine image volume, and |𝑁(𝑢)|2 is the 

three-dimensional power spectrum of the noise, that is, the 

reverberation intensity. In Figure 2, sample 𝑢  and output 

𝑊(𝑢) for a Wiener image are shown. 

𝑊(𝑢) outputs were obtained for each patient by applying 

the Wiener filter to each 𝑢  input. An example obtained by 

applying the Wiener filtering method on patient images is 

given in Figure 2. After image enhancement, the volume of the 

fractured vertebral bone increased, resulting in a better 

fractured vertebral bone for quantitative observation. This 

stage contributed to the semi-automatic evaluation. 
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u                      W(u) 

 

Figure 2. Wiener image input and output examples 

 

3.3 Segmentation and labeling 

 

Segmentation and labeling operations are generally used to 

classify any object or part in an image. In our study, the 

vertebral bones in the patient vertebral images were segmented. 

For this purpose, convolutional U-Net segmentation, and 

labeling method, which can be used effectively from 

segmentation and labeling methods, has been applied.  

 

 
 

Figure 3. U-Net architecture [27] 

 

The primary motivation behind U-Net was to address the 

challenges associated with semantic segmentation, where the 

goal is to classify each pixel in an image into one of several 

predefined classes or categories. Traditional CNN 

architectures for image classification, such as AlexNet or 

VGG, do not directly apply to segmentation tasks because they 

involve downsampling the spatial resolution of the input 

image, which can result in the loss of spatial information 

crucial for precise segmentation. U-Net was designed to 

overcome this limitation by preserving spatial information 

through a symmetric encoder-decoder architecture. U-Net 

architecture used in various applications might consist of 5 

convolutional blocks in both the encoder and decoder, 

resulting in a total network 20 layers. Data for the U-Net model 

is divided into training and validation. In Figure 3, the U-Net 

network architecture with a U view is given [27]. 

The U-Net architecture in Figure 3 shows the jump links 

connecting the encoder feature map to the decoder, in the 

direction of the gray arrows to the right, after the biomedical 

image is input; this helps the inclines flow backward for 

enhanced training. The lilac arrows to the right represent the 

Rectifier (ReLu) function that trains the neural network. 

Downward red arrows indicate max pooling. In this layer, max 

pooling is applied to the feature matrices. Upward green 

arrows denote the up-conv 2×2 operation, which causes image 

pixels to fold using the nearest neighbor. Blue arrows to the 

right, 1×1 conv i.e. 1 to 1-dimensional conv maps an input 

pixel with all its channels to an output pixel, not looking at 

anything around it. After these stages, a segmented predicted 

biomedical image is formed. 

In Figure 4, the output is obtained after applying the 

biomedical image input and the U-Net model. 

 

 
input                                                     output 

 

Figure 4. Wiener image input and output examples   

 

Fractured vertebral bone labels of patient_1 data, whose 

sagittal, axial, and coronal images are shown in Figure 4, were 

created with CCL. Here, the sagittal view of the fractured 

vertebral bone is separated from the coronal and axial view. It 

is possible to use the sagittal image to detect the fracture of the 

vertebral bone in the image. 

In the sagittal input image for patient_1 in Figure 5, the 

fractured vertebral bone was marked by our physicians.   

 

 
 

Figure 5. Sagittal view of the fractured vertebral bone 

 

In Figure 5, it is seen that the vertebra L1 (Lumbar1) 

vertebral bone is fractured, and its structure has changed. In 

retrospective physician reports, fracture detection was made 

by specifying the vertebral bone numbers in this way. In the 

proposed model, the fracture information is known beforehand. 

This indicates that the model will be evaluated in the 

supervised learning group. 

Figure 6 shows the sagittal, coronary, and axial angles of 

the labeled image of the fractured vertebral bone. 

 

 
 

Figure 6. Labeling angles of patient 1's fractured vertebral 

bone 

 

In Figure 6, the fractured vertebral bone label of patient_1 

was evaluated together in 3 aspects. The evaluation was made 

for each patient. It is important that the removed vertebral bone 

labels match the input of the vertebral bone without loss. 
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Removing the labels of the fractured vertebral bone without 

loss has provided successful segmentation and classification 

results. 

In Figure 7, the graph of the U-Net segmentation model 

including the training and validation accuracy and the losses 

in the same period is given. 

In Figure 7, the accuracy of the segmentation model is over 

94% for the validation set and over 90% for the training set. In 

addition, the segmentation model loss value was below 25% 

for the training set and below 20% for the validation set. Thus, 

labels were created with minimum loss, and segmentation was 

carried out. 

 

 
 

 
 

Figure 7. U-Net model accuracy and loss graphs 

 

3.4 Feature extraction and selection 

 

Feature extraction is used to determine the characteristics of 

the target fragment for disease detection in the biomedical 

image. Correct identification of these features contributes 

significantly to the success of disease detection [28]. 

In this study, feature extraction was performed using the 

radiomics method. 593 features of segmented and labeled 

fractures were extracted. Features: First-order statistics can be 

listed as 3-dimensional shape-based, 2-dimensional shape-

based, gray-level co-occurrence matrix. In addition, the 

features of the radiomics method in the back level run length, 

gray level dimension region matrix, adjacent grayscale 

difference matrix, and gray level dependency matrix groups 

were also used. 

In Figure 8, morphological feature extraction options are 

given for use in radiomics method computed tomography 

images [29]. 

In Figure 8, the radimoics method offers 3 options based on 

histogram, shape, and texture for the computed tomography 

image. Labels created with CCL in vertebra CT images and 

features were extracted with the shape-based method. 

The use of logarithmic scale for hyperparameter tuning, 

such as lambda in regularization techniques, is a common 

practice in feature selection and model selection. Logarithmic 

lambda, expressed in logarithmic scale, offers several 

advantages in the context of hyperparameter optimization. 

Hyperparameters like lambda often vary over a wide range of 

values. For instance, lambda values can range from 0.1 to 1000 

[30]. 

In Figure 9, success rates with logarithmic lambda method 

[31] are given for the selection of radiomics properties. Using 

a logarithmic scale ensures that this wide range is represented 

more uniformly, facilitating comparison of regularization 

effects across different values [32]. Logarithmic scale helps in 

achieving numerical stability, especially during optimization 

procedures like gradient descent. Large differences between 

values can lead to numerical instability, which logarithmic 

scale mitigates by compressing large values. Logarithmic 

scale is scale-invariant, meaning that the importance of the 

starting value is diminished. For example, a lambda value of 

0.1 and 10 represent the same level of regularization when 

transformed logarithmically. 

In the graph given in Figure 9, the lambda value of the 

accuracy ratio reached the desired value at -3. In this case, for 

the -3 value, the coefficient (dice score) ratio in Figure 10 was 

summed up at -3 lambda values. There are 537 features with 

the -3-lambda value providing the best success rate. The 

selection of 537 features according to accuracy and their 

intersection with the Dice Coeggicient score gained 

importance. 

Dice Coefficient and lambda value profiles of 593 

radiomics features are given in Figure 10. 

 

 
 

Figure 8. Radiomics image feature extraction options [29] 

 

 
 

Figure 9. Selection and accuracy of radiomics properties by 

logarithmic lambda method [33] 

2127



 

 
 

Figure 10. Selection of radiomics properties by logarithmic 

lambda method and coefficient (dice score) ratio 

 

The features at the intersections of Log(lambda)=-3, 

auc=0.65, and coefficient=1, concentrated from the graphs in 

Figure 9 and Figure 10, were used. Of these features, the 

number of lambda=-3 is selected as 537. Thus, before 

classification, 537 features were selected from 593 features, 

and the feature extraction and selection process was completed. 

Segmentation results were evaluated with the Dice 

evaluation criterion given in Eq. (3). 

 

Dice skoru(P,T) = 
2 ∗ |𝑃 ∩ 𝑇|

|𝑃| +|𝑇| 
 (3) 

 

In Eq. (3), for each vertebral bone region, 𝑃 represents the 

model estimate and 𝑇 represents the baseline truth labels. The 

Dice Coefficient score given in Formula 2 was calculated after 

subtracting the features in Figure 9 and Figure 10. And the 

Dice score is 100%. Performing the segmentation in an error-

free and lossless manner has ensured that there is no loss of 

patient data. 

 

3.5 Classification 

 

Classification is the process of categorizing a disease on 

radiological images according to its characteristics [34]. 

Machine learning methods give effective results in disease 

detection from biomedical images. In this study, a special 

convolutional neural network, one of the classification 

methods, was used. The private convolutional neural network 

is compared with the MobileNetV3, EfficientNetB1, VGG16, 

and ResNet50V2 classification methods. The special 

convolutional neural network was chosen because of the 

success factor. 

In Figure 11, the 3D image input of the custom 

convolutional neural network and the estimation diagram of 

this image are given. 

 

 
 

Figure 11. Custom convolutional neural network diagram 

[32] input and prediction output 

Atrous Conv in Figure 11 enables the segmentation of 

objects at multiple scales. This allows for increased accuracy 

by considering different scales. The model consists of an 

encoder module that reduces feature maps incrementally and 

captures higher semantic information and a decoder that 

recovers spatial information. The overfitting preventive layers 

added to the model are added to the target class by combining 

them in the 3D image with the combination of the features 

after feature extraction. In this way, the images of patient data 

were classified as fractured and non-fractured. 

CustomCNN has an architecture customized for a specific 

medical imaging task. This allows the model to be designed 

and optimized to better suit a particular problem. CustomCNN 

designed for a specific non-traumatic vertebral fracture 

detection task. This allows the model to identify and use the 

most important features from the input data. 

CustomCNN is trained on a specific dataset and equipped 

with features specific to this dataset. This allows the model to 

be trained to better perform the target task. And CustomCNN 

can provide higher accuracy and performance compared to 

other models. This indicates that the model is more effective 

at a particular medical imaging task. 

 

 

4. PROPOSED METHOD  

 

In the proposed model, the folders containing the computed 

tomography DICOM image series of the patients taken from 

the Radiology Department of Istanbul University-Cerrahpaşa 

Faculty of Medicine were converted into NIfTI format. In the 

preprocessing stage, the images were filtered with the wiener 

method. Vertebral bone labeling was performed using CCL. 

Segmentation of the vertebral bones in the images was 

performed with the U-Net network. A special CNN network, 

which is a supervised learning method adapted to the data set, 

was developed and the patients were classified as with and 

without vertebral fracture. Classification performance was 

evaluated with Loss, ROC-AUC, and accuracy criteria. The 

rough code of the proposed model is given in Figure 12. 

 

 
 

Figure 12. Pseudocode of the proposed model main function 

 

In Figure 12, the patients folder is entered as patientFolder. 

With a subconversion method, the patient DICOM series in the 

file were converted to NIfTI format and saved in the 

patientNIfTIFolder folder. Vertebra labels in patient NIfTI 

files from the patientNIfTIFolder folder were created and 
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saved in the CclLabeling folder. U-Net segmentation was 

performed using tags and patient NIfTI files together and 

saved in the UnetSegmentation folder. With the custom 

convolutional neural network (CustomCNN) classification 

method, patients were classified as patient with fractured 

vertebral bone (patientSF) and patient without fractured 

vertebral bone (patientNSF). 

In Figure 13, the diagram containing all the phases of the 

model is given. 

 

 
 

Figure 13. Suggested model diagram 

 

In the first stage of Figure 13, 197 patient files in the data 

set were converted and saved by the transformation method. 

In the second stage, the preprocessing stage, the data images 

were improved by the winer filtering method. In step 3, 

segmentation and labeling were performed using U-Net 

convolutional neural network and associated component 

labeling. In the 4th step, the data set was classified using the 

MobileNetv3, EfficientB1, VGG16, ResnET50v2 methods, 

and the recommended customCNN method. Loss, ROC-AUC, 

and Accuracy performance criteria results of the proposed 

model and other classification methods were obtained in the 

5th step. 

 

 

5. FINDINGS 

 

At the stage of segmentation of the vertebral bones in the 

data set, segmentation of the vertebral bones with a 100% dice 

overlap index score was performed using the U-Net 

segmentation method. An example of a vertebra with 

segmented vertebral bones is given in Figure 14. 

In Figure 14, the color images of the vertebral bone can be 

clearly read because of the segmentation of the vertebral bone 

of a sample patient through Un-Net. The segmentation output 

given with the vertebral bone to the marked fracture, and the 

detection of the fractured T1 vertebral bone without wasting 

time could also be achieved quantitatively. In the segmentation 

performed with U-Net without data loss, the Dice Coefficient 

score was obtained as 100%. All vertebral bones in the 

patients' vertebral images were segmented. 

 

 
 

Figure 14. Fractured vertebral bone image input and U-Net 

segmentation output of the patient 

 

Creating a hold-out test set is used to evaluate whether a 

model performs successfully on training data. Typically, it 

consists of data not previously seen by the model, often 

different from the training set [35]. The initial step involves 

partitioning the available dataset, reserving a portion for 

training and allocating the rest for the extension test set. 

Typically, data is used for training 80%, leaving a smaller 

portion for the extension test set 20%. 

After splitting the data, samples for the extension test set are 

randomly selected. This random selection ensures that the 

extension test set has a different distribution from the training 

set, facilitating better evaluation of the model's generalization 

ability [36]. 

In classification, it's essential to create an extension test set 

containing a balanced number of samples from each class. 

This enables evaluating the performance of the model on each 

class separately, mitigating the impact of class imbalances on 

performance evaluation [37]. 

The segmented fractured vertebral bones were classified by 

a special convolutional neural network, MobileNetV3, 

EfficientNetB1, VGG16 and ResNet50V2 classification 

methods. In Table 1 and Table 2, the results of the vertebral 

fracture classification evaluation criteria with a special 

convolutional neural network, MobileNetV3, EfficientNetB1, 

VGG16, and ResNet50V2 models are given. 

As seen in Table 1, in addition to the low loss value and high 

ROC-AUC value in the EfficientNetB1 model, the accuracy 

value of over 86.7% in the special convolutional neural 

network model stands out. 

The Confidence Interval (CI) values in Table 2 indicate the 

level of precision for a specific metric for each model. The 

lower and upper bounds of the CI show the range of values 

within which the model's performance could lie with 95% 

confidence. These CI values specify how reliable the 

performance of each model is on a particular metric, playing a 

crucial role in evaluating the reliability of the model in the 

decision-making process. 

Figure 15 shows the evaluation criteria graph of the 

classification models. In the chart, sub-graphs are combined. 

Ease of comparison and evaluation is provided. 

 

Table 1. Evaluation results of classification models 

 

Evaluation Type CustomCNN Mobile NetV3 EfficientNetB1 VGG16 ResNet50V2 

Loss 0.409174 0.511587 0.396508 0.431550 0.515297 

ROC-AUC 0.836110 0.765697 0.868855 0.865474 0.836928 

Accuracy 0.867072 0.771503 0.842745 0.826238 0.764553 

Sensitivity 0.894054 0.750346 0.848 0.802532 0.750395 

specificity 0.848235 0.789194 0.842176 0.842634 0.787106 
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Table 2. Confidence intervals (CI) of classification models 

 
Model Metric CI (95%) 

CustomCNN 

Loss (0.396, 0.421) 

ROC-AUC (0.825, 0.847) 

Accuracy (0.840, 0.894) 

Sensitivity (0.883, 0.905) 

Specificity (0.837, 0.859) 

MobileNetV3 

Loss (0.495, 0.527) 

ROC-AUC (0.751, 0.779) 

Accuracy (0.742, 0.801) 

Sensitivity (0.735, 0.765) 

Specificity (0.774, 0.804) 

EfficientNetB1 

Loss (0.382, 0.410) 

ROC-AUC (0.857, 0.879) 

Accuracy (0.815, 0.871) 

Sensitivity (0.833, 0.863) 

Specificity (0.827, 0.857) 

VGG16 

Loss (0.416, 0.446) 

ROC-AUC (0.853, 0.877) 

Accuracy (0.797, 0.855) 

Sensitivity (0.787, 0.817) 

Specificity (0.827, 0.857) 

ResNet50V2 

Loss (0.499, 0.531) 

ROC-AUC (0.825, 0.847) 

Accuracy (0.733, 0.796) 

Sensitivity (0.735, 0.765) 

Specificity (0.772, 0.802) 

 

Figure 15 shows the ROC-AUC, accuracy and loss curves 

of the training set and the test set. When the accuracy rate is 

considered, the custom convolutional neural network 

(CustomCNN) fracture classification method stands out with 

the highest success rate of over 86%. When ROC-AUC 

success evaluation is considered, the EfficientNetB1 

classification model stands out with the highest success rate 

above 86% and the lowest loss rate below 40%. 

Integrating assessment methods into clinical decision 

support systems can provide healthcare professionals with 

more comprehensive information about treatment options [38]. 

For example, an algorithm used for diagnosing or planning 

treatment for a disease can produce more accurate results by 

taking into account data obtained from different assessment 

methods. 

Developing customized Treatment approaches, assessment 

methods can be used to better understand patients' unique 

needs and risk profiles [39]. This information can be used to 

create customized treatment plans, which can have a positive 

impact on the effectiveness of treatment and patient outcomes. 

Utilization in patient tracking and management, it can also 

be used for patient tracking and management [40]. For 

example, assessment methods can be used regularly to monitor 

a patient's response to treatment, and this information can lead 

to the reorganization or improvement of treatment plans. 

 

 
 

Figure 15. Evaluation graph of classification models 
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6. CONCLUSIONS 

 

The use of retrospective CT image data of patients with the 

permission of the ethics committee contributes to patients, the 

health system, and scientific studies. Since it is not possible to 

directly use the first images taken from the CT device, file 

conversion has been applied for processing in the computer 

environment. Care was taken to find the fracture reports of the 

patients who made up the data set. Radiology, orthopedics, 

general surgery etc. To detect vertebral fracture, which is one 

of the leading vertebral disorders inwards, data from both 

patients with and without fractures were needed. For this 

reason, the data set was composed of two types as fractured 

vertebrae and non-fractured vertebrae. 

Better images were presented to physician reviews by using 

the improvement method in the dataset preprocessing phase. 

The vertebral bones in the patient images were segmented by 

processing a raw data set, labeling, and coloring. In feature 

extraction, feature selection, and classification, radiomics was 

applied to a custom model dataset by adapting logarithmic 

lambda and CNN. Thus, it was seen that efficient results were 

obtained in the detection of vertebral fracture of the model by 

using 5 different methods in improvement, segmentation, 

feature selection, feature extraction and classification. 

Future research should investigate how the model performs 

in different geographical regions and in multicenter studies. 

This exploration can provide insights into the generalizability 

of the model. Additionally, enhancing data integrity and 

quality through further preprocessing and scrutiny is essential. 

Moreover, integrating data from diverse sources can enhance 

the model's performance. Further research can delve into the 

clinical applications of the model, particularly its integration 

into clinical decision support systems and its utility for 

healthcare professionals. Furthermore, there is a need for more 

studies examining the impact of the model on patient outcomes 

and conducting cost-effectiveness analyses on its potential 

effects on healthcare systems. 

Take into account these limitations and potential avenues, 

future research presents a significant opportunity to advance 

in this field. Such studies can contribute to a better 

understanding of the role of artificial intelligence-based 

models in clinical practice and help improve access to 

treatment and outcomes for patients. 

Considering classification and segmentation criteria results, 

our physicians will be able to benefit from segmentation 

images and provide decision support for estimation. In the 

datasets to be created in future studies, osteoporosis disease 

evaluation can be made by adding the osteoporosis values of 

the patients. The data set can be expanded with data 

enlargement methods. The proposed data set and vertebral 

fracture detection model will lead to new studies in this field. 
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