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These days, many dreadful diseases are caused by mosquitoes, along with other types of 
infections. Mosquitoes are also called silent feeders. Due to this ability, mosquitoes take 
advantage of increasing their capacity to spread diseases. Many life-threatening diseases 
such as malaria, dengue, Zika, yellow fever, and chikungunya are caused by these 
mosquitoes. These diseases are caused by viruses, parasites, and bacterial pathogens through 
various vectors like Aedes aegypti and Culex. Due to the rapid increase in cases worldwide, 
there is a necessity to deploy an intelligent machine-automated model to decrease the spread 
of infections. The method used in this study detects different types of mosquitoes 
responsible for spreading these diseases. The key to controlling the spread of infection is to 
detect the type of mosquito based on the beat of its wings. The sound recordings related to 
mosquito wing beats, collected from different sources, are used in this study. These 
recordings are divided based on the mosquito species through max pooling and convolution 
models. The entire work is framed under three segments: identifying the recorded sound 
audio file to get a Mel spectrogram image, extracting features using pooling and convolution 
methods, and identifying the mosquito type through an ensemble method using classifiers 
like Random Forest, Support Vector Machine (SVM), and Decision Tree. The frequency 
waves are used to transform the audio recordings into spectrograms in the preprocessing 
phase. The spectrogram filter is used to eliminate noise from the spectrogram images. Vector 
values are obtained using pooling and convolution methods. The values from the classifiers 
used in this work are then fed into the ensemble method to identify the mosquito type based 
on its wing beats. Based on the final results and observations, the SVM classifier achieved 
the highest accuracy, with 95.05% for the type Aedes albopictus, compared to the other 
classifiers. 
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1. INTRODUCTION

Nowadays, fever is a common disease spreading globally.
The main root cause of fever spread is mosquitoes [1]. Various 
kinds of fevers are spreading and infecting people through 
different types of mosquitoes. According to a 2019 report by 
the World Health Organization (WHO), almost 400,000 deaths 
were caused by malarial fever alone [2]. Particularly in India, 
deaths due to dengue fever are 17,546 per 100,000 people. 
Fevers, when they turn into serious infections, may lead to 
different life-threatening complications such as chikungunya, 
dengue, Zika, and yellow fever [3]. 

The main aim is to detect mosquito wing beat sounds during 
flight in an acoustic time series. The key scientific modules 
that support this work provide the necessary data for the 
development of machine learning models to identify and 
classify occurrences in the dataset. The outcomes obtained 
from this audio detection are generated, examined, and applied 
to the audio information gathered in the field [4]. 

Traditional examination approaches for malaria, such as 

recording mosquitoes landing on human surfaces, consume 
more time, space, and money. The research also addresses the 
complications of disease contraction, which are critical for 
elimination efforts [5]. Due to these challenges, many vector 
methods representing the geographical spread of these insects 
rely on sparse, unevenly divided bi-directional data [6]. 

However, the models used in this work are concerned with 
one such processing region, which faces typical risks such as 
data imbalance, inadequate information, low transmission 
rates, selection bias, and varying labels. Therefore, this study 
considers other contexts and broader detection conditions, 
such as acoustic time series information [7]. 

The aim of this work is to develop a proper mechanism to 
detect the type of mosquito based on the breed that spreads 
malaria, using their wing beat features [8]. By doing so, we 
can implement the necessary structure to aid malaria-infected 
areas where it is needed the most. Additionally, these models 
can enhance audio machine learning algorithms. These 
enhancements are crucial in the study of feature extraction, 
using deep learning methods to work with widely available yet 
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imperfectly labelled data [9, 10]. 
This work necessitates an essential automatic information 

system for detecting and classifying various mosquito species 
to aid in targeting the crucial areas affected by disease spread 
[11, 12]. With the help of these technologies, health 
organizations and other stakeholder groups can effectively 
identify disease-spreading mosquitoes and focus on infection 
hotspots [13, 14]. By understanding the dangerous threats and 
the increase in infections, the implemented techniques 
successfully help epidemiologists enhance scientific 
conclusions and methodologies [15]. Officials can be notified 
to take preventive measures in controlling the spread of 
infections by following specific steps in the infected regions 
[16, 17]. In this research, a hybrid machine learning algorithm 
is proposed for classifying mosquito species based on their 
wing beat sounds. 

To detect the stream of audio, the algorithm, with the help 
of machine learning, is implemented in a three-step succession. 
The components are used to extract the audio signal data for a 
required time period. This data is then converted into 
necessary frequency components such as frequency and 
amplitude [18]. The spectral form is generally used as input to 
the network for noise identification. The type of spectroscopic 
format utilized significantly affects the efficiency of the 
network methods. Classifiers trained through this method 
represent human perception due to the Mel Frequency Cepstral 
Coefficient (MFCC), which gathers data at shorter 
wavelengths that are recognizable to humans [19, 20]. 
Consequently, the MFCC is widely used in this study as a 
primary spatial frequency factor. The workflow through 
machine learning to classify mosquito types based on the wing 
beat audio file is represented in Figure 1. 

Figure 1. Work flow of ML for classification 

In this research, we also considered the functioning of 
MFCC to feed data into the classifier. The extraction of 
features converts the MFCC data into a feature format for the 
audio signal to detect the signalling class. Obtaining the 
average vector values of spectral information is a standard 
phase in characteristic selection models. 

The main objectives of this work are divided into following 
stages: 

a) Firstly, the sound of a wingbeats is transformed into wave 
forms through black and white channels (binary) from the raw 
audio data. 

b) The Mel spectrogram is used to remove the embedded
noise which is required in maintaining the frequency formats 
of RGB image. 

c) This modified image is now sent to CNN architecture for
retrieving the embedded features with the help of convolutions. 

d) Through fully connected layer, the final vector values are
obtained and are given to ML classifiers for classifying the 
intensity of wingbeats of mosquitoes depending upon their 
range of frequencies. 

The remaining sections of this is framed as: Section-2 
discusses about ‘Related Works’, Section-3 discusses about 
‘Methodology’, section-4 for describing ‘Results and its 
discussions and section-5 for ‘Conclusion with link to Future 
Scope’. 

2. RELATED WORKS

The connection uses max-pooling to determine if a
particular factor is present in the image. Once the image is 
loaded, the required location of data is erased, indicating that 
a signal has been detected. The exact placement of the detected 
factor is less likely to be determined relative to its initial origin 
concerning other factors. This is primarily because there are 
fewer cumulative attributes, which reduces the number of 
required features in the hidden region—an added advantage. 
For instance, in the case of pictures and different forms of 
information, pooling is used to make the method compatible 
with minor transformations of the given input [21]. 

The derived factors in the framework show an increase in 
the exceptional determination of information through the 
alternating use of convolution layers and pooling methods. 
Since each metric utilizes a large portion of the data, the 
layering arrangement is more effective when compared to 
larger instances. These methods are widely used in audio 
evaluation and various other technical studies, providing high 
accuracy for maintaining higher resolution division, as 
demonstrated by the results [22]. 

Considering the expertise in mosquito identification, 
computer vision relies on structural factors to assign a specific 
binomial nomenclature. Machine learning uses this phase as a 
systematic method for accurate insect identification. Park et al. 
demonstrated an outstanding presentation using convolutions, 
achieving a 97% accurate result from eight gathered samples, 
which included two specific species from different regions. 
Additionally, species that shared common features were 
divided and grouped together. By considering all varieties of 
species through annotations, the same species were accurately 
identified [23]. 

Using Convolutional Neural Networks (CNNs), were able 
to compare 17 classes with an efficient accuracy rate of 
96.96%. The division of closely connected morphological 
features in the species is challenging to extract into their 
respective classes. The study made extensive use of colony 
observations to address the grouping of mosquito samples for 
procuring image-based information. The inbreeding 
headquarters often lose or terminate certain features that are 
not present in the initial samples. The data is particularly clean, 
especially when compared to the flawed measurements 
collected through suction complexities in the field of study 
[24]. 

The process of considering the outcomes from CNN input 
and classifiers is a method to identify the species. By taking 
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the result as a prior probability, the performance rate is 80.8%. 
The model with VGG-13 and a 2D-ConvFilter of dimension 
3x3 is used to identify the type of mosquitoes. Additionally, 
an average improvement of 5.5% is observed when cyclical 
cycle information is incorporated into the network. With the 
addition of cyclical data, the VGG-13 architecture with a 1D-
ConvFilter achieved a higher performance rate of 85.7% [25]. 

The CNN model, previously implemented on VGG-16 [26], 
to differentiate various types of mosquitoes. Aedes and other 
types of mosquitoes were used as samples in their study. A 
wide range of epoch times was utilized in the research. This 
model achieved a maximum accuracy of 97% based on the 
initial restricted features. Consequently, vector detection and 
efficient disinfection were effectively implemented in the 
study. 

A section of work [27] involved the visual recording of six 
species of mosquitoes. This study evaluated the characteristic 
features and identified the sound of the insects based on their 
wing beats. The research considered 279,566 acoustic 
recordings of flying mosquitoes. The model demonstrated an 
accuracy of 96% using advanced deep learning techniques. 

Using CNN, Schreiber et al. divided the vector values of 
mosquito species based on the sound of their wing beats 
recorded with electrical devices. With the help of a spectrum 
analyzer, the velocity of the wing beat sound was estimated 
based on category, multiclass, and a certain group of classifiers. 
The efficiency of the classifiers used in the study was 
examined under extremely noisy conditions. The noise could 
be reduced since the audio recordings were arranged in a 
setting with minimal background noise. The method used in 
the study is very expensive, as the sensors used in groups are 
difficult to manage, and obtaining high-quality audio 
recordings is a challenging task [28]. 

Images of mosquitoes, the researches [29, 30] developed 
larva-based CNN classification models. With a limited dataset 
and after careful tuning, they observed good classification 
performance with previously trained CNNs. This technique is 
used to attain a vector from the sound of mosquito wing beats. 
Based on these methodologies, healthcare providers and 
taxonomists have not yet evaluated the study due to the 
collected information and research performed during 
experimentation. 

The wing beat sound from the remaining audio clip. The 
sound waveform was converted into a spectrum using 
Continuous Wavelet Transformation. The amplitude spectrum 
of the wing beat sound was processed using a Gaussian 
function, and then the weights and splits were evaluated. 
Additionally, the frequency of the sound was analysed through 
a multivariate sampling distribution developed from the 
spectrum. To evaluate the probability of various mosquito 
audio flying sounds, different methods were utilized. The 
research, which analysed the wing beat sounds of six mosquito 
species, achieved an accuracy of 95.23% [31]. 

The existing studies [21-31] demonstrate that automatic 
classification of mosquito types can be achieved through the 
audio sound of their wing beats and sensitivity models. The 
methodologies used involve elevating the wavelength of wing 
beats through pseudo acoustic sensor devices. Acoustic-based 
models, such as wavelet transform or spectrum analysers, are 
used to extract audio files or produce noise-removed modified 
signals of the wing beats. This process contrasts with using 
mosquito images. 

Each audio file has a duration of 0.01 to 0.03 seconds, which 
is very difficult for the human ear to detect the mosquito 

species. Considering this limitation, a preprocessing 
methodology is used in this study to process such short-
duration audio file formats. The audio files are converted into 
waveforms to obtain frequencies. These frequencies are then 
transformed into Mel spectrograms, converting the audio files 
into image formats. 

3. METHODOLOGY

3.1 Dataset 

In this study, data is used from the Kaggle repository [32]. 
This dataset contains information related to different varieties 
of mosquitoes along with their wing beat sounds. It includes 
279,566 recordings of wing beats pertaining to six mosquito 
species: Aedes aegypti, Aedes albopictus, Anopheles 
arabiensis, Anopheles gambiae, Culex pipiens, and Culex. 

The proposed model used in this work employs a group of 
informational techniques to ensure that the evaluated results 
meet a high standard of accuracy. Additionally, it is designed 
to identify different methods to process audio format data with 
minimal computational effort. The feature extraction model 
developed in this study plays a crucial role in classification, 
selecting the required and necessary traits. A sample summary 
of the information used in this research work is shown in Table 
1. 

Table 1. Summary of mosquito wing beat recordings [31] 

S. No Mosquito 
Type File Size 

Audio 
Duration 

with Noise 

Audio 
Duration After 
Preprocessing 

1 Aegypti 9.8 KB 0:05 sec 0:02 sec 
2 Albopictus 9.8 KB 0:10 sec 0:02 sec 
3 Arabiensis 9.8 KB 0:12 sec 0:02 sec 
4 Gambiae 9.8 KB 0:04 sec 0:02 sec 
5 Pipiens 9.8 KB 0:06 sec 0:02 sec 
6 Culex 9.8 KB 0:11 sec 0:02 sec 

3.2 Analysis of audio data 

Audio signals are represented through sound waves, which 
can propagate through various transmission media such as gas, 
liquid, or as ultrasonic waves. In terms of magnitude and time, 
these signals typically remain constant. They can be quantized 
in two dimensions to be arranged digitally as time-series data. 

A time series is defined as a sequence of data points labeled 
by time, making it a group of random values. The theoretical 
approach involves a constant alignment of information with 
exponential factors such as mean and variance, which may 
vary depending on the time interval. The samples are 
quantized to their nearest values within the group of digital 
ranges. This process of digital transmission speed is 
commonly grouped as periodic and associated. The accurate 
conversion of spectrum signals at a certain sampling frequency 
is twice the resonance value of relevance, referred to as 
sampling. During the encoding process, the calculation of 
amplitude generates intermittent values. 

The final outcomes of raw frequencies are extracted and 
transformed into a waveform in WAV format, as shown in 
Figure 2. Ranging from 440 Hz to 5.1 KHz, the sound wave in 
WAV format of a mosquito over 5 seconds is represented in 
Figure 3. The image factors in the audio and every change in 
the waveform are explained in the sections below with the help 
of the mentioned figures. 
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Figure 2. Wave form in WAV of mosquito wing beats 
 

 
 

Figure 3. Mel spectrograms of mosquito wing beats 
 
Intermediate methods are commonly deployed through 

electronic sound waves. These methods are utilized as data in 
the evaluation of acoustic factors. Generally, these 
representations accurately record how humans recognize 
audio signals by altering the division of frequencies over time. 
They rely on both low- and high-level acoustic estimations, as 
well as musical presentations, and thus mid-level features have 
their specific term. 

The intermediate concepts broadly used in the study are 
frequency and time. These constitute the amplitude and energy 
required for transmission at different frequencies. Frequencies 
vary over time along a wider timeline, and they perform 
transmission as the magnitude also changes. These predictions, 
in reality, act as a substitute for frequency in terms of accuracy 
with time resolution. 

The commonly used time-frequency forms are developed 
using a spectrum analyser. The execution of a Short Time 
Wavelet Transformation (STWT) with initial frames attempts 
to stabilize and generate a waveform using Fourier Transform 
(FT). The energy in various bandwidths among the 
transformed frames is initiated through electric spectra, which 
are combined to develop a single frame. The derived 
characteristics are produced by converting the resulting image 
into a vector form. Generally, a Fourier Transform is 
considered the exceptional transformation from which most 
intermediate forms are derived. This is shown in Eq. (1) to 
brief the STFT along with some perceptions. 

 

𝐹𝐹𝐹𝐹{𝑥𝑥(𝑡𝑡)} = � 𝑥𝑥(𝑡𝑡) 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  𝑑𝑑𝑡𝑡
+∞

−∞
 (1) 

 

The functioning of a frame that is positive for a particular 
period of time consists of a variable that needs to be 
transformed, x(t). Considering the Fourier Transform of the 
complete signal under a single frame, it is progressed with a 
time vector to produce a two-dimensional representation of the 
data. For enhancing the characteristic features during the post- 
processing phase, the spectrograms are significantly modified. 
To show the corresponding volumes at different frequencies, 
the wavelengths present in the spectrum analyser are 
converted to a logarithmic scale. 

Generally, a randomly selected variable is chosen for time-
series data. This is done among samples that are close in time, 
making them more likely to be connected, compared to those 
that are farther apart. Additionally, time-series methods are 
utilized in chronological pairing, where the allotted time value 
has some connection with previous data, rather than with 
isolated values. 

A signal is defined as data that represent compulsive 
phenomena. The audio channel utilized in the study is 
represented as a sample of metadata. The main aim of the study 
is to extract signals from audio data, which typically contain a 
significant amount of noise. Since noise is present in almost 
all real-world fields, it is important for machine learning to 
have the capability to recognize and address this concept. 

Noise is referred to as any unreliable or unconnected data 
present in the evaluation. Noise is typically produced due to 
obstructions during the recording process. In simple terms, 
noise is a factor that introduces irregularity in the digital signal. 
It does not contain any information regarding the crucial 
variables used in the study. The correlation function value 
𝑅𝑅𝑠𝑠(𝐹𝐹)  is the power of a signal 𝑠𝑠(𝑡𝑡)  when it in imaginary 
process that is constant is defined in Eq. (2): 

 
𝑅𝑅𝑠𝑠(𝐹𝐹) = 𝐸𝐸𝑥𝑥𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑒𝑒𝑑𝑑 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 (𝑠𝑠(𝑡𝑡) ∗ 𝑠𝑠(𝑡𝑡 + 𝐹𝐹)) (2) 

 
Related connections are managed between its correlation 

function and the power of noise 𝑃𝑃𝑛𝑛 is represented in Eq. (3): 
 

𝑃𝑃𝑛𝑛 = 𝐸𝐸𝑥𝑥𝐸𝐸𝑒𝑒𝐸𝐸𝑡𝑡𝑒𝑒𝑑𝑑 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 (𝑛𝑛2(𝑡𝑡)) (3) 
 

3.3 Proposed model 
 
Our proposed model is illustrated in the workflow by 

organizing different kinds of mosquitoes based on the sound 
of their wing beats, as shown in Figure 4. The methodology is 
divided into three sections: Firstly, the pre-processing phase 
where the raw audio is processed; and finally, with the help of 
classifiers like RF (Random Forest), SVM (Support Vector 
Machine), DF (Decision Forest), and CNN (Convolutional 
Neural Network), the spectrogram images are processed. 

During the pre-processing phase, the raw audio data is given 
as input to identify the intensity of the mosquito wing beat 
audio. All the intensities obtained from different audio files are 
grouped to develop a waveform in WAV format. There may 
be a chance of missing frequencies due to background noise. 
To eliminate this noise, Mel spectrogram filters are utilized to 
maintain the quality of the audio data. After this, the smooth 
waveform obtained is converted to spectrograms by producing 
a re-sampled frequency with a range of 440 Hz to 5.1 KHz. 

In the second phase, the raw image format file is given as 
input to the CNN technique for feature extraction. 
Convolutions are developed during the encoding process. 
They are utilized in the CNN methodology to reduce the 
spectrogram image size. To minimize the number of shift 

2096



values in a hidden layer, a batch normalization layer is added 
for each pooling and convolutional pair. This helps to increase 
the learning speed and reduce overfitting. Once the pooling 
process is completed, a layer called the flatten layer is 
produced. To further reduce overfitting, the flatten layer 
maintains a dropout rate of 50%. The final layer, called the 
fully connected layer, integrates an activation process, making 
it robust. 

In the final phase, the established features from the CNN 
architecture are given to classifiers as input. The classifiers 
SVM, DT, and RF are used in the methodology to classify the 
sound of the mosquito. An ensemble model is used in this 
phase along with the classifiers. Based on the outcome of each 
classifier, the accuracy is detected and the recorded sound of 
the mosquito wing beat is identified. 

Figure 4. Proposed methodology 

3.4 Decision tree (DT) 

In a decision tree (DT), the non-leaf nodes represent quality 
checks on the applied factors, each branch shows the outcome 
of the given input, and every terminal node includes a 
classifier. The main root of the decision tree is the node located 
at the top of the tree structure. The decision tree is formed by 
dividing the dataset, which acts as the structure of the tree. The 
primary reason for this division is the collection of various 
feature nodes based on classification features. For every 
developed subset in the tree, recursive partitioning is 
performed. The Gini Index can be calculated, by considering 
the probability Pi of the chosen node having the label i along 
with the classification error for that node ‘∑ 𝑃𝑃𝑘𝑘𝑘𝑘≠𝑖𝑖 ’. This 
becomes zero when every sample in the node support within a 
single region. Let us suppose Pi is proportion of the nodes in a 
given group of k items in the same class with i label which is 
given by Eq. (4): 

𝐺𝐺𝐺𝐺𝑛𝑛𝐺𝐺 𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 = �𝑃𝑃𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 �𝑃𝑃𝑘𝑘
𝐾𝐾≠𝑖𝑖

 (4) 

A disadvantage of conventional methods in implementing 
decision trees is that when the branches of the tree have deep 
roots, they may extend to overfitting the corresponding 
training data, resulting in limited bias but increased variance. 
To diminish this variation, the Random Forest algorithm 
groups multiple hierarchical decision trees constructed on 
different portions of the same dataset. This technique helps 
enhance the accuracy of our developed model. However, the 

total cost of the model sees a slight rise in bias and also 
experiences a slight decrease in accuracy. 

3.5 Random Forest (RF) 

The commonly used model of resampling, also known as 
bootstrapping, is employed in the Random Forest model for 
identification. This prediction method in the classifier is used 
to build the decision trees. Bootstrapping constantly among the 
randomly selected by restoring the test phase through a 
training dataset set 𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, …𝑋𝑋𝑛𝑛} with solutions 𝑌𝑌 =
{𝑌𝑌1,𝑌𝑌2,𝑌𝑌3, …𝑌𝑌𝑛𝑛}  develop a tree for all the selection. The 
training variables ‘Xb’ and ‘Yb’ are relied on a classification 
tree. Gathering the highest count of votes from every 
individual classification method on sampling after training, 
identification for unknown data X can is evolved. 

The bootstrapping model decreases the variance without 
affecting the bias. If the bias remains unchanged, the model 
works efficiently. Consequently, single tree detection is 
accurate in the training dataset. The mean of various other 
trees is calculated when the trees are irrelevant. By using 
different training datasets for trees, the random sampling 
model interlinks the nodes, which results from training a 
number of trees in a single phase of training. 

3.6 Support vector machine (SVM) 

The SVM, also known as a quadratic classifier, shows an 
ideal representation by having a higher dimensional space 
among the subclasses. The basic functions represent the 
maximum distance between the regions and the hyperplane. 
Tolerance is allowed for a few misclassifications that are out 
of range, evaluated under the border range of the SVM 
classifier. The SVM classifier is related to kernel models that 
encompass a wide class of methodologies, which use kernel 
methods to transform features into a high-dimensional training 
dataset. Consequently, a hyperplane is plotted along the entire 
process of the training dataset. The classifier has unpredictable 
division rules. Considering the binary classification problem 
under the construction of linear methods is represented in Eq. 
(5). 

𝑦𝑦(𝑥𝑥) = 𝑊𝑊𝑇𝑇∅(𝑋𝑋) + 𝑏𝑏 (5) 

We have the final biased parameter ‘𝑏𝑏 ’ and represented 
‘∅(𝑋𝑋)’ as a translation of feature extractor. Keen observation 
has to be done so that the dual method eliminates working in 
feature set directly and is outlined in terms of basic functions. 

The input vectors 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑛𝑛  with matching detected 
values 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, … 𝑡𝑡𝑛𝑛  build the initial sample, and new data 
points 𝑥𝑥 are detected relying on the indication of 𝑦𝑦(𝑥𝑥). Since 
the trained model is differentiable in higher dimensional space, 
there must have at least one combination of the specifications 
w and b that allows a component of Eq. (6) to satisfy 𝑦𝑦(𝑥𝑥𝑛𝑛) >
0  for observations with 𝑡𝑡𝑛𝑛 =  +1  and 𝑦𝑦(𝑥𝑥𝑛𝑛)  < 0 for points 
with 𝑡𝑡𝑛𝑛 =  −1 , resulting in 𝑡𝑡𝑛𝑛𝑦𝑦(𝑥𝑥𝑛𝑛) > 0  for all training 
samples. 

The border range is calculated as the shortest distance 
between the decision function and each observation. This is 
how the SVM addresses this problem. In SVMs, the margin-
maximized decision function is chosen as the classifier, as 
given by Eq. (6). 

𝑡𝑡𝑛𝑛(𝑊𝑊𝑇𝑇∅(𝑋𝑋𝑛𝑛) + 𝑏𝑏 ≥ 1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1, … . ,𝑁𝑁 (6) 
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3.7 Convolutional neural network (CNN) 
 
Every phase in a feed-forward deep network comprises a set 

of neurons. These neurons evaluate a non-linear element. This 
evaluation of the input layer is done after finding the linear 
combination of weights, 𝑧𝑧 =  𝑊𝑊𝑇𝑇  𝑋𝑋 + 𝑏𝑏. Thus, the parameters 
of the deep network method, using weights and biases, are 
developed. The group of sigmoid functions that contain the 
logistic function is a common choice for the activation 
function, as represented in Eq. (7). 

 

𝜎𝜎(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
 (7) 

 
A fully connected network with at least one convolutional 

layer is defined as a Convolutional Neural Network (CNN). 
CNNs use convolutions instead of ordinary complex numbers 
during the process. They are primarily used to represent 
hierarchical methods, such as the grid organization of pixel 
intensities or commonly processed streams of audio. CNNs are 
useful in combining neighbouring spatial data in every 
medium. They contain convolution and pooling layers with 
fixed interconnections. The process of convolution generates 
a stack of extracted characteristic mappings. The input layers 
of the characteristic space are grouped together using 
convolution filters. To achieve efficiency, the number is 
substituted in the group of these convolutional layers using a 
complex number 𝑊𝑊𝑙𝑙𝑉𝑉(𝑙𝑙−1). The output of the signal, having at 
least one feature map 𝑉𝑉𝑙𝑙 is shown mathematically in Eq. (8) as 
a set, where the convolution filters are denoted by W and the 
feature map is denoted by 𝑉𝑉(𝑙𝑙−1). 

 
𝑉𝑉𝑙𝑙 = 𝜎𝜎(𝑏𝑏 + 𝑊𝑊𝑙𝑙  𝑉𝑉𝑙𝑙−1) (8) 

 
The execution of a neural network through convolution is 

represented in Figure 5. It is parameterized to detect two 
classes from a three-channel image (RGB) with a size of 
32×32. The outcome of the convolution having filtering 
process denoted by W is shown in Eq. (9) for every j and 𝑘𝑘𝑖𝑖ℎ 
neurons located in the hidden layer of the classifier. 

 

𝜎𝜎(𝑏𝑏 + ��𝑤𝑤𝑙𝑙,𝑚𝑚𝑉𝑉𝑗𝑗 + 𝑉𝑉, 𝑘𝑘 + 𝑚𝑚)
𝑛𝑛

𝑚𝑚=1

𝑛𝑛

𝑙𝑙=1

 (9) 

 
where, 𝑉𝑉𝑥𝑥,𝑦𝑦 represents the input activator at certain point, 𝑤𝑤𝑙𝑙,𝑚𝑚 
is a 𝑛𝑛x𝑛𝑛 array of fully convolutional, and b is the core value 
for the bias (𝑥𝑥,𝑦𝑦). 

 

 
 

Figure 5. An RGB of three-channel with 32×32 image 
 
To gain an advantage through the input configuration and 

reduce the number of attributes, the connection gradient is 

modified by changing the product vector values in the fully 
connected convolution layer. Each module is duplicated across 
the entire input, with a specific sample of the module used in 
the back portions of the layer. The learning capability of the 
proposed model to handle greater input dimensionality is 
significantly improved by reducing the features. 

The convolutions regularly include pooling layers 
interspersed among them to reduce the complexity of the 
derived features. Since the fully connected layer is only 
evaluated through local connections given as input, an increase 
in the layers inversely affects the precision. This shows a 
connection among a larger section of the input. To reduce the 
complexity of a classifier, a max pooling technique achieves 
data gain over random local input regions. 

The feature parameters, filter sizes and drop out layer details 
are given in Table 2. The total parameters of our proposed 
model are 3,17,706 and all these parameters found trainable. 

 
Table 2. Sequential model summary 

 
Layer Output Shape Parameters 

Conv2D (26,26,64) 640 
Conv2D (26,26,64) 36928 

Max_pooling_1 (12,12,64) 0 
Conv2D (10,10,128) 73856 
Conv2D (8,8,64) 73792 

Max_pooling_2 (4,4,64) 0 
Dropout (4,4,64) 0 
Flatten 1024 0 
Dense 128 131200 

Dense_1 10 1290 
 
 

4. RESULTS AND DISCUSSIONS 
 
4.1 Classification metrics in machine learning 
 
4.1.1 Accuracy 

The easiest and most effective metric for classification is 
accuracy. This is calculated as the ratio of the number of 
accurate predictions to the total number of predictions, as 
shown in Eq. (10). 

 

𝐴𝐴𝐸𝐸𝐸𝐸𝑉𝑉𝑒𝑒𝑉𝑉𝐸𝐸𝑦𝑦 =
𝑁𝑁𝑉𝑉𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝐸𝐸𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑡𝑡𝑒𝑒𝑑𝑑 𝐸𝐸𝑒𝑒𝑒𝑒𝑑𝑑𝐺𝐺𝐸𝐸𝑡𝑡𝐺𝐺𝑜𝑜𝑛𝑛𝑠𝑠
𝐹𝐹𝑜𝑜𝑡𝑡𝑉𝑉𝑉𝑉 𝑛𝑛𝑉𝑉𝑚𝑚𝑏𝑏𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝐸𝐸𝑒𝑒𝑒𝑒𝑑𝑑𝐺𝐺𝐸𝐸𝑡𝑡𝐺𝐺𝑜𝑜𝑛𝑛𝑠𝑠

 (10) 

 
4.1.2 Precision 

Precision is defined as the fraction of positive predictions 
that are accurate. It is calculated as the ratio of true positives 
to the sum of true positives and false positives, as determined 
in Eq. (11). 

 

𝑃𝑃𝑒𝑒𝑒𝑒𝐸𝐸𝐺𝐺𝑠𝑠𝐺𝐺𝑜𝑜𝑛𝑛 =
𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠

𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠 + 𝐹𝐹𝑉𝑉𝑉𝑉𝑠𝑠𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠
 (11) 

 
4.1.3 Sensitivity 

It represents the percentage of actual positive samples that 
are incorrectly identified. True Positives are calculated as the 
total number of positive samples that are correctly identified 
as positive or inaccurately identified as negative. These are 
factually correct in relation to the total number of predictions 
identified as positive, as given by Eq. (12). 

 

𝑆𝑆𝑒𝑒𝑛𝑛𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝐺𝐺𝑡𝑡𝑦𝑦 =
𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠

𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠 + 𝐹𝐹𝑉𝑉𝑉𝑉𝑠𝑠𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝑉𝑉𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠
 (12) 

2098



4.1.4 Specificity 
Specificity refers to the score that measures the model's 

ability to correctly identify true negatives for each 
classification. It is calculated using Eq. (13). 

 

𝑆𝑆𝐸𝐸𝑒𝑒𝐸𝐸𝐺𝐺𝑜𝑜𝐺𝐺𝐸𝐸𝐺𝐺𝑡𝑡𝑦𝑦 =
𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝑉𝑉𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠

𝐹𝐹𝑒𝑒𝑉𝑉𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝑉𝑉𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠 + 𝐹𝐹𝑉𝑉𝑉𝑉𝑠𝑠𝑒𝑒 𝐸𝐸𝑜𝑜𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺𝑝𝑝𝑒𝑒𝑠𝑠
 (13) 

 

4.2 Performance of proposed model 
 
The implemented model uses a distinct approach to identify 

classified outcomes. The classification results for identifying 
mosquitoes through wing beat sound using CNN are described 
in Table 3. Tables 4, 5, and 6 present the results of mosquito 
identification through wing beat sound using CNN with the 
classifiers RF, SVM, and DT, respectively. 

 
Table 3. Classification outcome of CNN 

 
Model Mosquito Type Accuracy Precision Sensitivity Specificity 

CNN 

Aegypti 92.19 90.29 95.12 45.21 
Albopictus 91.05 89.15 93.95 45.71 
Arabiensis 91.32 89.46 94.13 46.76 
Gambiae 89.17 89.16 93.74 44.42 
Pipiens 90.53 88.66 93.49 44.39 
Culex 90.69 88.88 93.71 45.21 

 
Table 4. Classification outcome of CNN+DT 

 
Model Mosquito Type Accuracy Precision Sensitivity Specificity 

CNN+DT 

Aegypti 91.69 90.1 94.59 63.21 
Albopictus 92.19 90.6 95.06 63.71 
Arabiensis 91.46 89.91 94.24 64.76 
Gambiae 89.01 89.31 93.55 62.42 
Pipiens 90.84 89.28 93.77 62.39 
Culex 91.6 90.1 94.59 63.21 

 
Table 5. Classification outcome of CNN+RF 

 
Model Mosquito Type Accuracy Precision Sensitivity Specificity 

CNN+RF 

Aegypti 94.46 92.52 97.35 44.61 
Albopictus 94.96 93.02 97.82 45.11 
Arabiensis 94.23 92.33 97.10 46.16 
Gambiae 91.78 91.73 96.31 43.82 
Pipiens 93.61 91.7 96.53 43.79 
Culex 94.37 92.52 97.35 44.61 

 

 
 

Figure 6. Graphical representation of classification outcomes 
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Table 6. Classification outcome of CNN+SVM 

Model Mosquito Type Accuracy Precision Sensitivity Specificity 

CNN+SVM 

Aegypti 94.6 92.84 97.77 52.42 
Albopictus 95.05 93.29 98.19 52.87 
Arabiensis 94.46 92.74 97.51 54.06 
Gambiae 91.9 92.03 96.71 51.61 
Pipiens 93.96 92.23 97.16 51.81 
Culex 94.24 92.57 97.5 52.15 

In this work, six different types of mosquito wing beat audio 
recordings are considered for classification to achieve quality 
outcomes beneficial for the research. These classification 
results are presented visually and shown in Figure 6. 

From this analysis, it can be concluded that the CNN 
architecture requires substantial GPU processing power to 
extract features embedded in the spectrograms. Consequently, 
classification with this architecture takes more time to identify 
mosquitoes based on wing beat sounds. Based on this 
observation, classification in the fully connected layers can be 
performed using machine learning classifiers. This approach 
overcomes the limitations of heavy models and introduces 
greater classification accuracy. 

5. CONCLUSION AND FUTURE SCOPE

This work aims to identify mosquito types using a CNN
combined with machine learning classifier methods. Initially, 
the data obtained from the preprocessing phase is converted 
into waveform format. These waveforms are then transformed 
into spectrogram images using normalized frequency. The 
spectrogram images are fed into the CNN architecture, which 
extracts the required features through pooling and convolution 
operations. These features are then passed to various 
classifiers used in the study to detect mosquito types based on 
their wing beats. 

Observations show that SVM achieved higher accuracy, 
whereas RF showed lower negative predictions. The sound 
recordings used have a short duration, ranging from 0:01 to 
0:03 seconds. To handle such short-duration audio files, 
memory-based frameworks are required to detect and identify 
different mosquito species globally. The basic CNN 
architecture demonstrated accurate results with the limited 
classified data available. To include mosquito types from 
various regions around the world, memory-based methods 
need to be developed. Future work will involve implementing 
a storage-based automated memory method to save vector data 
of different mosquito wing beats under all required conditions. 
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