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The aim of this study is to develop an automatic detection of brain tumors from magnetic 

resonance images based on artificial intelligence. The developed approach comprises three 

steps: pre-processing, feature extraction, and classification. The pre-processing consists of 

applying image processing techniques to improve contrast and reduce noise in magnetic 

resonance images. The feature extraction consists of transforming magnetic resonance 

images into numerical vectors that represent the discriminating attributes for tumor 

detection. Then the classification consists of using a machine-learning algorithm to separate 

magnetic resonance images into two classes: tumoral and non-tumoral. The performance 

evaluation of the proposed approach is tested under dataset of 3000 magnetic resonance 

images, where 1500 magnetic resonance images are with tumors and 1500 magnetic 

resonance images are without tumors. In the feature extraction step, two techniques have 

been used the bag of features and the ResNet50 convolution neural network then a 

comparison between them was performed. In the last step, the obtained images have been 

compared with the three different kernels function for the support vector machine classifier: 

Linear, Quadratic, and Cubic. The proposed magnetic resonance images classification 

approach was tested using confusion matrices and receiver operating characteristic curves, 

which revealed satisfactory performance in terms of Sensitivity, Precision, Specificity and 

Accuracy. The obtained results show that the BoF-SVMs combination achieves the best 

classification accuracy, with a recognition rate of 100%. 
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1. INTRODUCTION

Brain tumors are abnormal cell growths that form in the 

brain and can be benign or malignant, primary or secondary in 

origin. They can lead to serious complications for the health 

and well-being of patients [1]. It is therefore vital to detect 

them as early and accurately as possible, in order to make a 

correct diagnosis and apply the appropriate treatment. The 

magnetic resonance images (MRI) is a medical imaging 

technique that provides detailed images of the human brain 

[2]. These images can be used to diagnose brain pathologies, 

such as tumors that affect brain structures and functions. Once 

a tumor is identified, a biopsy can be performed to determine 

its nature, whether it is benign or malignant. The choice of 

treatment for brain tumors depends on various factors, such as 

the type and size of the tumor, as well as the overall health 

status of the patient. Therapeutic options include surgery, 

radiotherapy, and chemotherapy, among other possibilities 

depending on the specific situation of each patient [3]. It is 

therefore necessary to develop automated methods for 

classifying MRI images of the brain, enabling healthy tissue to 

be distinguished from tumor tissue. 

The MRI brain analysis is essential for assessing, 

predicting, and monitoring the evolution of various 

neurological conditions, such as stroke, cancer, degenerative 

diseases, or congenital malformations. This analysis involves 

recognizing and marking areas of interest in MRI, according 

to clinical or biological criteria [4, 5]. The MRI brain analysis 

can be facilitated and optimized by the use of artificial 

intelligence (AI) and image processing. These tools can 

improve diagnostic accuracy by more effectively 

distinguishing neoplastic lesions from non-neoplastic lesions, 

thereby reducing diagnostic errors. Moreover, they can 

facilitate the tumor monitoring evolution over time by 

quantitatively analyzing radiographic images, which can be 

crucial for adjusting treatments and predicting treatment 

response. By identifying biomarkers associated with treatment 

resistance or sensitivity, AI can also help to personalize 

therapies, optimizing therapeutic interventions for each 

patient. Finally, AI contributes to better management of 

medical imaging data by facilitating storage, analysis, and 

interpretation of data, providing clinicians with valuable tools 

for informed decision-making in the fight against cancer [6]. 

These tools enable images to be manipulated, for example by 

filtering, segmenting, or applying mathematical operations, to 

extract useful information [7-9]. AI also makes it possible to 

learn from labeled or unlabeled data, to identify patterns, 

classify elements, or make predictions [10]. 
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AI has several tools at its disposal, including machine-

learning (ML) techniques, which are widely used to identify 

and classify brain MRI [11]. These techniques involve training 

a mathematical model from a set of examples so that it can 

then perform tasks on new data. Automatic segmentation 

techniques of MRI images are crucial in diagnosing brain 

conditions. MRI allows us to refine tumor tissues 

segmentation to be able to distinguish necrotic cores, active 

cells, and edema, compared to healthy brain tissues. This high-

precision segmentation is made possible by the soft tissue 

contrasts provided by MRI, which is not possible in standard 

radiographic images such as conventional X-rays. These 

advanced technologies offer promising prospects for 

significantly improving for early detection, therapeutic 

planning, and monitoring of brain tumors, thus enabling more 

precise and individualized interventions for patients [12, 13]. 

For example, supervised learning uses data with labels to learn 

and associate an input with an output. Unsupervised learning 

uses unlabeled data to learn how to group or represent data 

[14]. Reinforcement learning uses a system of agents that 

interact with their environment and receive rewards or 

penalties to learn how to optimize their behavior [15, 16]. 

Support vector machine (SVMs) and convolution neural 

network (CNN) are two types of ML models frequently used 

to analyze and classify brain MRI [17]. SVMs are models that 

attempt to find a boundary between two categories of 

examples, by increasing the distance between them. SVMs can 

perform binary or multiclass classification, using kernel 

functions to transform data into a richer feature space [18]. In-

depth analysis of the structural learning components of SVMs, 

hyper parameter optimization, and model parameter selection 

improve the performance of SVMs [19]. This holistic 

approach enhances understanding of SVMs and paves the way 

for significant improvements in their use for supervised 

classification [20, 21]. CNNs are models that use successive 

layers of artificial neurons that perform local operations on 

images, such as convolution, subsampling, or activation. 

CNNs can perform classification, segmentation, or object 

detection in images, learning to extract hierarchical and 

invariant features [22]. 

This article aims to present an innovative approach for 

automatically detecting brain tumors from MRI images. Early 

detection is critical for improving chances of recovery and 

reducing sequelae. However, manual classification of MRI 

images for tumor detection is complex, time-consuming, and 

prone to errors. The introduction of ML techniques opens new 

perspectives for improving the accuracy, speed, and reliability 

of this detection. Despite these advancements, challenges 

persist in making this detection more precise and effective, 

particularly due to the variability of tumor characteristics, the 

complexity of surrounding brain structures, and the need to 

develop models capable of generalizing to different tumor 

types and imaging conditions. Our research focuses on 

leveraging CNN for the automatic extraction of features from 

MRI images, as well as using SVMs for image classification. 

The proposed approach is based on three steps: pre-processing, 

feature extraction, and classification. The pre-processing aims 

to improve MRI quality and reduce noise. The feature 

extraction consists of representing MRI by numerical vectors 

that capture information relevant to tumor detection. The 

classification consists of using a ML algorithm to distinguish 

MRI images containing tumors from those that do not. The 

performance evaluation of the proposed approach is tested 

under dataset of 3000 MRI images, where half of MRI are with 

tumors and the other half of MRI are without tumors. In the 

feature extraction step, two techniques have been used, the bag 

of features (BoF) and the ReseNet50 then a comparison 

between them has been performed. In the last step, the 

obtained images were compared with the three different 

kernels for the SVM classifier: Linear, Quadratic, and Cubic. 

The obtained results show that the BoF-SVMs combination 

achieves the best classification accuracy, with a recognition 

rate of 100%. The advances and outstanding performances of 

this study in these areas are detailed below. 

-When features extracted by Resnet50 are classified by 

SVM with a quadratic kernel, their classification performance 

is improves significantly compared to softmax classifier. This 

method stands out to increase its ability to discriminate 

features and improve the overall accuracy of the brain tumor 

detection system. 

-The features extracted by the BoF method outperform 

previous methods and ResNet50 in terms of classification. 

This method provides a robust representation of the 

characteristics of brain MRI images, resulting in improved 

discriminative ability and generalization of the SVM model. 

-The hybrid system between the BoF automatic extractor 

and the SVM classifier demonstrates its ability to classify 

brain MRI images with high precision, without requiring prior 

segmentation or data augmentation. This approach 

significantly simplifies the brain tumor detection process 

while maintaining high performance. 

-The features extracted by ResNet50 and BoF are well 

classified by SVM without requiring data augmentation. This 

approach results in simpler and faster models, which are 

crucial for effective clinical application in terms of processing 

time and required computational resources. 

The rest of this paper is organized as follows: section II, 

presents the background theory of the BoF, SVM, k-folds, 

CNN and ResNet50 methods. In section III, we present the 

methodologies of Database, MRI pre-processing, Feature 

extraction from MRI and Classification of MRI. In section IV 

we present the obtained results, discussions and conclusion 

with perspectives.  

 

 

2. BACK GROUND THEORIES OF THE USED 

APPROACHES  

 

2.1 Bag of features  

 

The feature bag produces the output object from the input 

image samples. Speeded-Up Robust Features (SURF), which 

are obtained from the image samples, form the default visual 

vocabulary given in Figure 1. The BoF technique is adapted to 

computer vision based on natural language processing. As the 

images do not contain distinct features, we first use the "extract 

features" function specific to each image category [23]. 

To extract features from images, simply call the "BoF" 

function, which: 

-Extract SURF from images. 

-Create feature vectors by reducing feature volume by 

quantifying feature space using K-means clustering. 

The feature bag is created as follows: 

Grid method: This is a procedure that selects the location of 

important objects in an image by cutting it into a grid of cells 

and samples points in each cell. This procedure reduces the 

number of features to be taken into account and distributes 

them more evenly [24]. To change the grid straight lines into 
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a grid curve we use Eq. (1) and Eq. (2). 

 

 
 

Figure 1. Illustration of feature extraction using the BoF 

technique 
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where, x and y are the grid curve coordinates, x′ and y′ are the 

straight grid coordinates, 𝑢𝑖 ,𝑗 , 𝑣𝑖 ,𝑗  are the control points of 

the Bézier surface, d is the Bézier surface degree and 𝑏𝑖 are the 

Bernstein polynomials. 

SURF: properties consisting of two parts: detector and 

decryptor. The detector finds the object positions to identify 

the salient features of the analyzed image, the decryptor uses 

the Hessian matrix. The decryptor then produces a vector 

describing the texture and orientation of pixels close to the 

points of interest [24, 25]. These vectors can be studied for 

comparison to determine similarities between different 

images, using Haar wavelet responses to describe the local 

neighborhood of each point (Eq. (3)). 

 

𝐻(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
] (3) 

 

where, 𝐿𝑥𝑥(𝑥, 𝜎) , 𝐿𝑥𝑦(𝑥, 𝜎) , 𝐿𝑦𝑦(𝑥, 𝜎)  are the second-order 

Gaussian partial derivatives at point x, and the scale σ. 

The Haar wavelet response is acquired by Eq. (4): 
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where, 𝑤(𝑖, 𝑗) is the wavelet filter, and 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)is the 

image intensity at point (𝑥 + 𝑖, 𝑦 + 𝑗). 

k-means: Group features into set of common words. 

Clustering is the process of dividing data set into 

homogeneous groups, called clusters. The k-means algorithm 

aims to minimize the sum of the squared distances between 

each data point and the center of the cluster to which it belongs 

[26]. The mathematical formula for this sum is given by Eq. 

(5). 

 

∑ min( ‖𝑥𝑖 − 𝜇𝑗‖
2

)

𝑛

𝑖=1

 (5) 

where, n is the number of data items, 𝑥𝑖 is the i-th data item 

and 𝜇𝑗is the center of the j-th cluster. 

Creating a histogram of visual words to describe the image 

as a vector is given by Eq. (6). 

 

𝑡𝑖𝑑 =
𝑛𝑖𝑑

𝑛𝑑

𝑙𝑜𝑔
𝑁

𝑛𝑖

 (6) 

 

where, 𝑡𝑖𝑑 : histogram bin of word i for image d, 𝑛𝑖𝑑 : 

occurances of word i in image d, 𝑛𝑑 : number of word 

occurances in image d, 𝑛𝑖: number of images that contain word 

i, N: number of images. 

 

2.2 Support vector machine  

 

The SVM is an automatic algorithm used for classification, 

regression and data quality control. It does this by designing 

the best hyperplane that separates information into several 

classes or estimates the way they are output [27] (Figure 2). 

The mathematical formula for linear SVM is given by Eq. (7). 

 

𝑓(𝑥) = 𝑤𝑥 + 𝑏 (7) 

 

For each training sample 𝑥𝑖 , the function gives f(xi) ≥ 0, 

for yi = +1 and 𝑓(𝑥𝑖) ≤ 0  for 𝑦𝑖 = −1 . where w is the 

weight vector, b is the bias and 𝑥𝑖 is the data. 

 

 
 

Figure 2. Data classification using SVM 

  

In nonlinear SVM, the kernel function is used to transform 

the input data into a higher-dimensional. The kernel can 

capture complex relations between data features, enabling 

classes to be separated into higher-dimensional spaces [28]. 

 

2.3 K- folds cross validation  

 

The k-fold method is a cross-validation procedure used to 

measure the performance of a ML model. It involves 

separating the data into k folds of equal size. The following 

operation is then performed k times: one fold is selected as the 

test set, and the other k folds are used as the training set (Figure 

3). The model is adjusted on the learning set, and its error on 

the test set is evaluated. This gives us k errors, one per fold. 

The mean and standard deviation of the errors (Eq. (8) and Eq. 

(9)) can then be calculated to estimate the model's bias and 

variance. The k-fold method reduces the risk of over- or under-

learning, by using all available data for training and testing, 

and avoiding dependence on a single random distribution of 

data. It also makes a possibility to compare different models 

or different parameters using the same validation protocol. The 

choice of k value depends on the amount of data available and 

the computation time required. In general, values between 5 

and 10 are commonly used [29]. 
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Figure 3. Data classification using SVM 

 

N is the total number of data, k the number of folds, and n 

the size of each fold. The relation between these three 

quantities is N= kn. 

The mathematical formula for calculating the average error 

is: 

 

𝐸 =
1

𝑘
∑ 𝐸𝑖

𝑘

𝑖=1

 (8) 

 

The standard deviation errors are: 

 

𝜎𝐸 = √
1

𝑘
∑(𝐸𝑖 − 𝐸)2

𝑘

𝑖=1

 (9) 

 

E is the average model error on k folds. k is the number of 

folds used for cross-validation. 𝐸𝑖  is the model error on the i-

th fold, calculated as the difference between the real value and 

the value predicted by the model. 𝜎𝐸 is the standard deviation 

of the model errors on the k folds. 

 

2.4 Resnet50 

 

The ResNet-50 is a CNN 50 layers deep with residual 

connections, making it easier to learn deep patterns. It can 

classify images into 1000 object categories (Figure 4). 

 

 
 

Figure 4. Architecture of ResNet50 model 

 

ResNet-50 consists of five stages containing a variable 

number of residual blocks. The first stage has a convolution 

layer and a max-pooling layer. The second stage has three 

residual blocks with three convolution layers each. The third 

stage has four residual blocks with three convolution layers 

each. The fourth stage has six residual blocks with three 

convolution layers each [30]. The fifth stage has three residual 

blocks with three convolution layers each. The final layer is an 

average-pooling layer followed by a fully-connected (fc) layer 

[31]. ResNet50 contains the following elements: 

-Convolution with the Kernel size of 7*7 and 64 different 

Kernels, all of them are with step size 2, giving us 1 layer. 

-Then we obtain the maximum pooling with stride size 2. 

-In the next convolution, we get Kernel size of 1*1,64, then 

Kernel size of 3*3,64, and finally Kernel size of 1*1,256. 

These three layers are repeated 3 times totalizing 9 layers. 

-Similarly, we do for Kernel size of 1*1,128, then for Kernel 

size of 3*3,128 and finally for Kernel size of 1*1,512. These 

three layers are repeated 4 times totalizing 12 layers. 

-In the same manner we do for Kernel size of 1*1,256, then 

for Kernel size of 3*3,256 and finally for Kernel size of 

1*1,1024. These three layers are 6 times totalizing 18 layers. 

-We continue for Kernel size of 1*1,512, then for Kernel 

size of 3*3,512 and finally for Kernel size of 1*1,2048. These 

three layers are repeated 3 times totalizing 9 layers. 

Finally, we estimate the average pool to end up with a fc 

layer containing 1000 nodes. Finally, the Softmax function 

provides us 1 layer [32, 33]. 

 

 

3. METHODOLOGY 

 

Figure 5 shows the steps of the process to identify brain 

tumors from MRI of the brain. To achieve this, we considered 

a set of 3000 MRI images, half with tumors and half without. 

We first improved image quality by eliminating noise through 

a pre-processing step. Then, we extracted features from the 

images using two different techniques: BoF and ResNet50 

neural network techniques. We evaluated the performance of 

both techniques using K-fold cross-validation and the SVM 

classifier with three different kernels: linear, cubic, and 

quadratic. 

 

 
 

Figure 5. Automatic detection of brain tumors from MRI: 

Comparison between BoF and ResNet50 network techniques 

 

3.1 Data base  

 

In this article, an open-source dataset available on Kaggle is 

used for the classification of brain MRI images [34]. This 

dataset comprises three distinct folders: the first containing 

1500 MRI images with tumor, the second containing 1500 

MRI images without tumor, and the third containing 60 

unlabeled MRI images (Figure 6). We chose to use only the 

first two folders, totaling 3000 images. The images were 

provided in sagittal, axial, and coronal planes and were in JPG 

format with RGB color and varying dimensions.  
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Figure 6. Examples of MRI: a) No tumor b) Tumor brain 

 

3.2 MRI pre-processing  

 

The aim of pre-processing MRI is to sharpen them and 

reduce the noise that can interfere with classification [35]. 

When preparing the brain MRI images for classification, we 

resized the images to a uniform size of 224×224 pixels. This 

resizing ensures consistency in image dimensions, which is 

essential for effective processing by the classification model. 

Additionally, the images were converted to grayscale to 

simplify processing and reduce data dimensionality. This 

conversion allows us to focus on pixel intensity variations, 

which are crucial for detecting structures and important 

features in MRI images. 

 

3.3 Feature extraction from MRI 

 

In this step, feature extraction from MRI images is used with 

two distinct methods, namely BoF and ResNet50. 

BoF: used to build a dictionary of visual words from a set 

of images shown in Figure 7. A visual word is an image chunk 

that corresponds to an area of interest. This dictionary is 

created using a clustering algorithm, such as K-means, on the 

image chunks extracted from the images. Each image is then 

described by a frequency histogram of the visual words it 

contains. This histogram forms the image feature vector, 

which contains 500 numerical values [36, 37]. As we used a 

set of 3000 MRI images, we obtained a matrix of size [3000 

500], where 3000 is the number of images and 500 is the 

number of features in each image. This matrix is then used as 

input for the SVM classifier. 

 

 
 

Figure 7. Used configuration of BoF for feature extraction 

from MRI 

 

The SURF local feature extraction procedure is used to 

extract interest points and descriptors from an image. Here's 

how it works with the parameters we used: 

Vocabulary size: We specified 'Vocabulary Size' = 500, 

which means that the clustering algorithm (k-means) used to 

group the extracted features will create a set of 500 visual 

words for each image. 

Strongest Features = 0.8: The algorithm will select the top 

80% of the strongest features from each image to form the 

visual vocabulary. 

Grid: A grid is used to divide the image into regions before 

extracting features. This can help capture local information at 

different scales. With a GridStep of [8 8], the image is divided 

into regions of 8×8 pixels. 

Block width parameter is used for feature description in the 

SURF method. By specifying a multi-scale approach of size 

[32, 64, 96, 128] to extract features at different resolutions: 

-A block of size 32×32 pixels is used to extract features at a 

finer scale, capturing smaller details in the image. 

-A block of size 64×64 pixels is used to extract features at a 

slightly larger scale, allowing to capture details slightly larger 

than the previous block. 

-A block of size 96×96 pixels is used to extract features at 

an even larger scale, capturing larger details in the image. 

-A block of size 128×128 pixels is used to extract features 

at the largest scale among those specified, capturing the largest 

details in the image. 

ResNet50: we use a deep neural network that has been 

trained on a large collection of images, such as ImageNet. This 

network has 50 layers and can identify over 1000 object types. 

We use this network to extract features from the image. The 

output is the fc1000 layer, which is the last fc layer and 

contains 1000 numbers [38]. This vector corresponds to the 

high-level features of the image. Since we used a set of 3000 

MRI images, we obtained a matrix of dimension [3000 1000], 

where 3000 is the number of images and 1000 is the number 

of features for each image shown in Figure 8. This matrix is 

then used as input for the SVM classifier. 

 

 
 

Figure 8. Used configuration of ResNet50 for feature 

extraction from MRI 

 

The initial layer uses 7×7 filters with 64 filters to reduce the 

image size. Then, a max pooling operation with a 3×3 window 

and a stride of 2 is applied to further reduce dimensionality. 

The following convolutional layers use 1x×1, 3×3, and 1×1 

filters with 64, 64, and 256 filters respectively for each kernel 

size. These layers are repeated several times (3 times for the 

first set, 4 times for the second set, 6 times for the third set and 

3 times for the fourth set) to gradually increase the complexity 

of the extracted features. The final layer of the network is a fc 

layer with 1000 nodes. ReLU activation is used after each 

convolution operation, and batch normalization layers are 

included. The ‘MiniBatchSize’ parameter controls the number 

of images processed simultaneously during feature extraction. 

In our case, a ‘MiniBatchSize’ of 32 means that 32 images are 

processed together at each iteration. The ‘OutputAs’ 

parameter determines the output format of the extracted 

features. It is set to 'rows', which means that the extracted 

features are returned as rows in the matrix. Each row of this 

matrix represents the extracted features from a single image. 

 

3.4 MRI classification 

 

This step consists of classifying the MRI into two 

categories: healthy or tumoral. For this, we used the SVM 

classifier with three different kernels: linear, cubic, and 

quadratic [39, 40]. The K-fold cross-validation technique is 
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also used to evaluate model performance, as shown in Figure 

9. We choose to divide the 3000 MRI images (1500 healthy 

and 1500 tumor) into 5 folds of 600 images (300 healthy and 

300 tumor) each, to create the 600-image fold, the stratified k-

fold cross-validation technique will randomly distribute the 

300 healthy images and 300 tumor images. In this way, each 

fold will have a diversity of images representative of the data. 

Using the cross-validation technique with K = 5. Next, the 

SVM model with three different kernel types is applied to each 

group, based on features obtained from BoF and ResNet50. 

 

 
 

Figure 9. Diagram of the K-fold cross-validation technique 

(creates a random partition for stratified k-fold cross-

validation. Each fold has the same number of MRI and 

contains the same type of class, health and tumor categories) 

 

The function that defines the hyperplane that best separates 

the data into two classes can have different forms depending 

on the degree of the polynomial that represents it. We mean 

cubic, quadratic or linear function, depending on whether the 

degree is three, two or one [39].  

Depending on the nature of the data to be classified, the 

function defining the hyperplane varies. A linear function is 

used if the data are linearly separable, that is a straight line can 

divide them without error. A non-linear function, such as a 

quadratic or cubic function, is used if the data are non-linearly 

separable, that is no straight line can divide them without error 

[40]. 

The following parameters are used to configure the SVM 

models: 

Preset: Defines the type of SVM used, such as linear, cubic, 

or quadratic. This determines the shape of the decision 

function used to separate classes in the feature space. 

Kernel function: Specifies the kernel function used to 

transform the feature space to make class separation easier in 

a higher-dimensional space. 

Kernel scale: Controls the scaling of the kernel, which can 

affect the model's flexibility. Automatic scaling can be used to 

optimize model performance. 

Box constraint level: Determines the model's 

regularization by specifying the constraint on the support 

vectors. A higher value indicates stronger regularization. 

Multiclass method: Defines the method used to handle 

multi-class classification problems. The One-vs-One method 

trains a binary classifier for each pair of classes, while the One-

vs-All method trains a classifier for each class against all other 

classes. 

Standardize data: Indicates whether the data should be 

standardized before training the model. 

The types of SVM models used share similarities in their 

parameters, except for the 'Preset' and 'Kernel function' 

parameters, which vary depending on the type of SVM. 

For the linear SVM, the 'Preset' parameter is set to Linear 

SVM, and the kernel function is linear. The 'Box constraint 

level' parameter is set to 1, indicating moderate constraint on 

the support vectors. The model uses the One-vs-One method 

to handle multiple classes, which involves training a binary 

classifier for each pair of classes. Finally, the data were 

standardized before model training, with features scaled to 

have zero mean and unit variance. 

For the cubic SVM, the 'Preset' parameter is set to cubic 

SVM, and the kernel function is cubic. The other parameters, 

such as Kernel scale, Box constraint level, Multiclass method, 

and Standardize data, are the same as for the linear SVM. 

Finally, for the quadratic SVM, the 'Preset' parameter is set 

to quadratic SVM, and the kernel function is quadratic. The 

other parameters, such as Kernel scale, Box constraint level, 

Multiclass method, and Standardize data, are the same as for 

the linear SVM. 

To assess the performance of each model, we calculated the 

CM and plotted the corresponding ROC curves. The obtained 

results are given in section V. 

 

 

4. PERFORMANCE EVALUATION  

 

4.1 Confusion matrix 

 

The accuracy of a classification algorithm, such as SVMs, 

can be evaluated using the confusion matrix (CM). This tool 

compares the classes predicted by the algorithm with the real 

classes in the data. Figure 10 shows the CM for a two-class 

problem. 

 

 
 

Figure 10. CM for a two-class problem 

 

The diagonal contains the elements that correspond to a 

correct prediction by the algorithm: true positives (TP) and 

true negatives (TN). On the other hand, Elements that are not 

on the main diagonal are erroneous predictions, that's to say 

elements that have been classified to a class that does not 

correspond to their real class. These are known as false 

positives (FP) and false negatives (FN). 

The performance of a classification model can be evaluated 

using the CM, which can be used to calculate different 

indicators, such as: 

Accuracy: Percentage of data that is correctly classified in 

relation to the total number of data. It indicates the success rate 

of classifications. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Sensitivity is the ratio of the number of correctly identified 

positives and the total number of positive cases. It indicates 

performance in recognizing all positives. 
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Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Precision: The proportion between the number of correct 

results (TP) and the total number of affirmative results (the 

predicted positive). It represents the validity of positive 

predictions. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Specificity: The model's ability to correctly identify non-

positive examples is measured by specificity. It measures a 

model's ability to avoid false positives. 

 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

4.2 Receiver operating characteristic curves  

 

A graphical tool for measuring the performance of a binary 

classifier is an algorithm that assigns each piece of data 

positive or negative label according to a criterion. For 

example, in our case, the SVM classifier can separate MRI into 

two categories: normal or abnormal. 

The receiver operating characteristic (ROC) graph shows 

the relationship between the true positive rate (TPR) and the 

false positive rate (FPR) for different classifier threshold 

levels. TPR is the fraction of positive data that are correctly 

identified and FPR is the fraction of negative data that are 

falsely attributed as positive. The classifier performs best 

when the TPR is close to 1 and the FPR is close to 0. 

The following formulas are used to calculate TPR and FPR: 

 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= Sensitivity 

 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − Specificity 

 

Classifier performance can be measured by the area under 

the curve (AUC), which indicates the probability that the 

classifier will give a higher score to positive data than to 

negative data, drawn at random. The classifier performs best 

when the AUC is close to 1. 

 

 

5. RESULTS AND DISCUSSION  

 

The measured performance of the six different models, 

using two feature extraction techniques (BoF and ResNet50) 

and three SVM kernels (linear, cubic, and quadratic) is 

studied. We employed K-fold cross-validation with K = 5 to 

estimate the accuracy of each model. The obtained results are 

given in the form of CM and ROC curves. Finally, a 

comparison study of the six developed models is presented. 

The three SVM models using features extracted with the 

ResNet50: 

ResNet50 features - Linear SVM: Figure 11 shows that 

the model's CM correctly classified 1444 healthy images and 

1442 tumor images, but produced 56 FP errors (healthy images 

classified as tumors) and 58 FN errors (tumor images 

classified as healthy). Consequently, the accuracy of the model 

is (1441 + 1444) / 3000 = 0.962 = 96.2%. 

Table 1 shows the performance of classification using 

ResNet50 features - Linear SVM. 

Figure 12 shows the ROC curve evaluating the model's 

performance in classifying MRI into two categories. The 

orange point on the curve represents the model's current 

threshold, which has an FPR of 0.04 and a TPR of 0.96. This 

implies that the model correctly identifies 96% of images with 

a tumor, but also confuses 4% of tumor-free images with 

tumor images. The AUC is an indicator that summarizes the 

overall performance of the model, irrespective of the threshold 

chosen. The closer the AUC is to 1, the more efficient is the 

model. For the proposed approach, the obtained AUC is 0.99, 

which means that the model has a good ability to distinguish 

between the two classes. 

ResNet50 features -Quadratic SVM: Figure 13 shows that 

the model's CM correctly classified 1480 healthy images and 

1479 tumor images, but produced 20 FP errors (healthy images 

classified as tumors) and 21 FN errors (tumor images 

classified as healthy). The accuracy of the model is therefore 

(1480 + 1479) / 3000 = 0.986 = 98.6%. 

 

 
 

Figure 11. CM of ResNet50 features - Linear SVM for 

automatic brain tumor detection from MRI 

 

 
 

Figure 12. ROC curve for ResNet50 features - Linear SVM 

for automatic brain tumor detection from MRI 

 

Table 1. Results of MRI classification using ResNet50 features - Linear SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1444 56 1442 58 96.26 96.06 96.26 96.2 
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Table 2. Results of MRI classification using ResNet50 Features-Quadratic SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1480 20 1479 21 98.6 98.66 98.66 98.6 

 

Table 3. Results of MRI classification using ResNet50 features- Cubic SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1474 26 1479 21 98.6 98.46 98.27 98.5 

 

 
 

Figure 13. CM of ResNet50 features - Cubic SVM for 

automatic brain tumor detection from MRI 

 

 
 

Figure 14. ROC curve for ResNet50 features - Cubic SVM 

for automatic brain tumor detection from MRI 

 

Figure 14 illustrates the performance of the ResNet50 

features-quadratic SVM model for binary classification of 

MRI. The red dot indicates the current threshold, which has an 

FPR of 0.01 and a TPR of 0.99. This implies that the model 

correctly identifies 99% of images with a tumor, but also 

makes an error on 1% of images without a tumor. The AUC is 

1, which is the optimal value and indicates a good 

distinguishability between the two classes. 

Table 2 resumes the performance of classification using 

ResNet50 Features-Quadratic SVM. 

Table 3 resumes the performance of classification using 

ResNet50 features- Cubic SVM. 

ResNet50 features- Cubic SVM: this model succeeded in 

identifying 1474 healthy images and 1479 tumoral images, as 

shown in Figure 15, which presents its CM. However, it made 

26 FP errors (healthy images labeled as tumoral) and 21 FN 

errors (tumoral images labeled as healthy). This model 

therefore has an accuracy of (1477 + 1479) / 3000 = 0.985 = 

98.5%. Its performance is comparable to that of the ResNet50 

features - SVM quadratic model, which has an accuracy of 

0.986. This indicates that both cubic and quadratic kernels are 

appropriate for the data, and that they allow us to define 

efficient separating hyperplanes. 

Figure 16 illustrates the performance of the ResNet50 

features - SVM model in the form of an ROC curve. The 

orange dot on the curve indicates the model's current 

threshold, which has an FPR of 0.01 and a TPR of 0.98. This 

means that the model correctly identifies 98% of images with 

tumors, but also confuses 1% of non-tumor images with tumor 

images. The AUC is 1, which is the optimal value and shows 

the ability of the model to distinguish between the two classes. 

 

 
 

Figure 15. CM of ResNet50 features - Quadratic SVM for 

automatic brain tumor detection from MRI 

 

 
 

Figure 16. ROC curve for ResNet50 Features - Quadratic 

SVM for automatic brain tumor detection from MRI 

 

 
 

Figure 17. CM of BoF - Linear SVM for automatic brain 

tumor detection from MRI 
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Table 4. Results of MRI classification using BoF - Linear SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1500 0 1500 0 100 100 100 100 

 

The three SVM models using features extracted BoF: 

BoF - Linear SVM: this model succeeded in correctly 

classifying all the images in the dataset, without making any 

false predictions. Figure 17 shows the CM for this model, 

which displays 1500 healthy images and 1500 tumor images 

on the main diagonal. The accuracy of this model is therefore 

100% (1500 + 1500) / 3000 = 1 = 100%), indicating that it 

performs optimally and that there is no overlap between the 

two classes. 

Table 4 shows the performance of classification using BoF 

- Linear SVM. 

The ROC curve in Figure 18 shows the model's 

performance. The model uses the current threshold indicated 

by the orange dot on the curve, which has an FPR of 0.00 and 

a TPR of 1.00. This means that the model correctly identifies 

all tumor images and that there is no FP among healthy 

images. The AUC is 1, which is the best possible score and 

indicates that the model has the ability to distinguish between 

the two classes perfectly. 

BoF - Quadratic SVM and BoF - Cubic SVM: The BoF - 

Linear SVM model delivered optimal results, correctly 

classifying all images, whether healthy or tumoral. It achieved 

100% accuracy. Neither of the other two models were able to 

distinguish it, and both achieved the same results. Figures 19 

and 20 show the CM and ROC curves of BoF - Quadratic SVM 

technique respectively. Figures 21 and 22 show the CM and 

ROC curves, respectively, for the BoF - Cubic SVM 

technique. 

 

 
 

Figure 18. ROC curve for BoF - Linear SVM for automatic 

brain tumor detection from MRI 

 

 
 

Figure 19. CM of BoF - Quadratic SVM for automatic brain 

tumor detection from MRI 

 
 

Figure 20. ROC curve for BoF - Quadratic SVM for 

automatic brain tumor detection from MRI 

 

 
 

Figure 21. CM of BoF - Cubic SVM for automatic brain 

tumor detection from MRI 
 

 
 

Figure 22. ROC curve for BoF - Cubic SVM for automatic 

brain tumor detection from MRI 

 

Table 5 shows the performance of classification using BoF 

- Quadratic SVM. Table 6 shows the performance of 

classification using BoF - Cubic SVM. 

Figure 23 presents the results of the comparative analysis of 

all models applied to the dataset. The performances of these 

six models for classifying brain MRI images are presented in 

Table 7. BoF models achieve perfect sensitivity, specificity, 

precision, and accuracy, indicating the absence of errors. 

ResNet50 models also performe well, with high values for all 

metrics. The high values of specificity and precision suggest 

that the models are reliable for correctly classifying positive 

cases. 
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Table 5. Results of MRI classification using BoF - Quadratic SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1500 0 1500 0 100 100 100 100 

 

Table 6. Results of MRI classification using BoF - Cubic SVM 

 
Database TP FP TN FN Sensitivity% Precision% Specificity% Accuracy% 

3000 MRI 1500 0 1500 0 100 100 100 100 

 

Table 7. Performance of the six models for the classification of brain MRI images 

 
Model Sensitiviy % Specificiy % Precision % Accuracy % 

ResNet50 - Linear SVM 96.26 96.26 96.06 96.2 

ResNet50 - Quadratic SVM 98.6 98.66 98.66 98.6 

ResNet50 - Cubic SVM 98.6 98.27 98.46 98.5 

BoF - Linear SVM 100 100 100 100 

BoF - Quadratic SVM 100 100 100 100 

BoF - Cubic SVM 100 100 100 100 

 

 
 

Figure 23. Comparative performance of the six models for 

brain MRI image classification 

 

Table 8. Performance comparison of different techniques for 

automatic detection of brain tumors from MRI 

 
Reference Model Accuracy (%) 

Proposed 

BoF - Linear SVM 100 

BoF - Quadratic SVM 100 

BoF - Cubic SVM 100 

ResNet50 - Linear SVM 96.2 

ResNet50 - Quadratic SVM 98.6 

ResNet50 - Cubic SVM 98.4 

[41] CNN Model 96 

[42] CNN 93 

[43] ResNet50_SVM 98.28 

 

BoF models extract local features but ignore spatial 

relationships between features. They treat each feature 

independently, which may be crucial for accurate 

classification. Furthermore, deep learning models such as 

ResNet50 and BoF models are relatively simple, which can 

sometimes lead to better accuracy, especially when the dataset 

is not very large, as in our approach. Deep learning models 

often require larger datasets to learn complex representations. 

Table 8 illustrates the comparison between the six methods 

used in this study and prior approaches. 

From study [41], a CNN model is proposed for the 

segmentation of brain tumor MRI images into two classes: 

with tumors and without tumors. This architecture was trained 

and validated on a dataset of 3000 high-resolution MRI 

images. These medical images underwent preprocessing and 

resizing before being processed by the CNN. The CNN 

architecture used in this study includes several layers, 

including convolutional layers for feature extraction, pooling 

layers for dimensionality reduction, fc layers for classification, 

and dropout layers to reduce overfitting. The overall accuracy 

of the model is 96%. Our hybrid method first extracts feature 

from the images using ResNet50, then uses these features for 

classification by quadratic SVM, which can capture more 

complex relationships between features and classes, leading to 

better class separation in feature space. This approach 

achieved an overall accuracy of 98.6%. 

Another study [42] demonstrated that CNNs are effective in 

diagnosing brain tumors on MRI images, achieving an 

accuracy of 93%. Before training the CNN model, significant 

steps were taken to prepare the images. The first step was data 

augmentation, where each image with a tumor was 

transformed into 6 images, and each image without a tumor 

was transformed into 9 images, totaling 2065 images. Then, 

image preprocessing was performed to normalize the sizes and 

contrasts of the images, resize them to a standard size of (240, 

240, 3), and normalize them to facilitate learning. The CNN 

model used in the study includes several layers, including 

convolutional, pooling, flattening, dropout, and dense layers, 

using convolutional layers with 3x3 kernels and 32 filters. 

After convolution and pooling operations, the results are 

passed to fc layers for the final classification of the images. 

Our method, combining a CNN model followed by quadratic 

SVM classification, achieved an overall accuracy of 98.6%, 

surpassing the results obtained by the data augmentation 

approach. This approach has the advantage of reducing 

computational complexity and training time while maintaining 

exceptional classification performance. 

Kuraparthi et al. [43] proposed an effective transfer learning 

process applied to three pretrained models - AlexNet, ResNet-

50, and VGG-16 - for classifying brain tumors. The 

performances of the three models are evaluated based on 

performance criteria. Simulation results show that ResNet50 

outperforms the other two networks in classifying brain 

tumors. The proposed model, combining the Kaggle and 

BRATS datasets, achieved the best classification accuracy, 

reaching an accuracy of 98.28%, with reduced computation 

time after training the framework with data augmentation and 

the SVM classifier. In our study, the ResNet50 architecture 

used is the same as in the reference article, but three types of 

SVM models with different kernels are used. The quadratic 
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SVM model yielded better results, achieving an accuracy of 

98.6%, surpassing the reference article. 

 

 

6. CONCLUSION  

 

In this study we presented two automatic brain tumor 

detection techniques from MRI, comparing the use of the BoF 

method with linear, cubic, and quadratic SVM kernels and the 

use of the ResNet50 network followed by linear SVM 

classification. The obtained results show that the BoF 

technique with linear, cubic, and quadratic SVM kernels 

achieved a classification accuracy of 100%, while the 

ResNet50-linear SVM approach showed slightly lower 

performance. The key contributions lie in demonstrating the 

effectiveness of the BoF technique in combination with SVMs 

for brain tumor classification. This approach proved to be 

simpler and faster than using the ResNet50 network, while still 

offering exceptional classification performance. The practical 

implications of our study lie in the clinical practice field, 

where a simpler and faster method of brain tumor detection 

can be extremely beneficial for patients. It can also have an 

impact on the industry by reducing the costs and resources 

required for MRI analysis. 

However, our proposed approach has some limitations, 

especially regarding sample size and data diversity. These 

factors may have influenced our results and should be 

considered in interpreting the conclusions. Compared to other 

previous studies, the power of our approach is its accuracy 

classification (98%) surpassing the results obtained by other 

existing methods. In particular, our hybrid method combining 

feature extraction by ResNet50 followed by quadratic SVM 

classification outperformed the CNN models used in other 

studies, achieving an overall accuracy of 98.6%. These results 

suggest that our approach may be more effective for automatic 

brain tumor detection from MRI. 

For future research, it would be interesting to extend this 

study for a larger number of clinical cases and compare more 

classification techniques. 
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