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Skin cancer is a common, potentially fatal condition that requires early detection for 

successful treatment. Many cancerous cases are diagnosed in the advanced stages, which 

makes the chances of recovery very small, resulting in the inability to provide appropriate 

treatment promptly. This includes skin cancer, which causes complete damage to the 

affected area until it reaches the deepest layers. Previous studies have developed systems 

based on the diagnosis of this disease with the help of deep learning (DL), which can detect 

cancer in its early stages. In this study, using the Kaggle Melanoma Skin Cancer Dataset of 

10000 Images dataset, which consists of over 10,000 high-quality skin lesion images, we 

present a novel DL method for skin cancer detection based on the DensNet121 model. 

Several alternative models, including DensNet121 + XGBoost Classifier, a dedicated 

Convolutional Neural Network (CNN) model, an ensemble model based on 

DensNet121, the Enhancing CNN model, and ResNet50, were also designed, implemented, 

and tested in addition to our main model, DensNet121. With regard to accuracy, precision, 

recall, F1 score, and Matthews Correlation Coefficient (MCC), our proposed model showed 

promising results after undergoing thorough evaluation and comparison with other 

recognized models.  The DensNet121-based model demonstrated astounding 98% training 

accuracy, demonstrating its effectiveness in learning from training data. It kept up an 

admirable 82% validation accuracy, demonstrating its capability to handle new cases. The 

test's 78% accuracy rate proved that it worked well in practical situations. All three 

metrics—recall, precision, and F1 score—met exceptional benchmarks of 98%, 

demonstrating the model's prowess at identifying true positive cases and reducing false 

positives. Furthermore, there was 97% of the MCC indicating the high degree of accuracy 

between the forecast and the outcome. In the comparison analysis our model was better than 

ensemble model and conventional convolutional neural networks, indicating the importance 

of high training accuracy and generalization. 
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1. INTRODUCTION

Skin cancer, a consequence of DNA mutations induced by 

repeated exposure to ultraviolet radiation, poses a significant 

threat to public health [1]. Skin cancer diagnosis remains 

difficult despite improvements in medical imaging. The fact 

that a significant portion of cancer diagnoses worldwide 

involve skin malignancies emphasizes the importance of early 

detection. Melanoma, a particularly aggressive kind of skin 

cancer, needs special attention because it is common in young 

people and has the potential to spread. However, despite 

growing with experience, dermatologists' diagnostic accuracy 

still has room for improvement. According to the International 

Agency for Research on Cancer (IARC) report, 325,000 new 

cases of melanoma diagnosed in 2020 worldwide, and 57,000 

people pass away due to this [2]. Melanoma has a mortality 

rate of 1.7 deaths per 100,000 people and an incidence rate of 

3.4 cases per 100,000 people [3]. As shown in Figure 1, there 

is a discernible trend of more men developing melanoma than 

women across the majority of world regions. In some areas, 

this distinction is more obvious than in others. For instance, 

with rates of 42 in men and 31 in women, Australia and New 

Zealand have the highest incidence rates per 100,000 people. 

Similar rates of 19 are seen in Western Europe for both sexes. 

The incidence rate is 18 for men and 14 for women in Northern 

America. Following North Europe are rates of 17 for men and 

18 for women. Contrarily, melanoma continues to be relatively 

uncommon in many nations throughout Asia and Africa, 

where incidence rates typically fall below 1 per 100,000 

people [4]. 

Melanocytes protect the deep layers of the skin from sun 

exposure by generating a brown pigment called melanin [5]. 

Frequent exposure to the sun's UV radiation, and harmful rays 

can induce DNA mutations, affecting the growth of skin cells 

and forming cancer. Therefore, cancer develops when the 

body's normal cells change, causing them to grow and multiply 

violently without control into undifferentiated cells, forming a 

tumor-like mass. These malignant tumors penetrate the nearby 

tissues and severely damage them by depriving them of 

nutrition and oxygen. As a result, the attacked cells either kill 
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or develop into cancerous cells that support the tumor and aid 

in its spread throughout the body.  

 

 
 

Figure 1. Melanoma incidence rates per 100,000 populations 

by world region and gender in 2020 

 

Skin cancer is generally separated into two categories: 

melanoma and non-melanoma skin cancer, which is further 

separated into two more categories: basal cell and squamous 

cell carcinoma. Although each subtype mentioned earlier has 

unique traits, the present study will concentrate on melanoma 

skin cancer. Skin cancer from melanoma can be sporadic or 

spread to other areas throughout the body [6]. These 

malignancies are prevalent in young individuals [7]. They may 

be fatal if prompt treatment is not given. According to the 

World Health Organization, one-third of all cancer diagnoses 

worldwide are skin malignancies [8]. Every year, the United 

States records about 4.5 million cases of skin cancer, where 

nearly three-quarters of all skin cancer-related deaths—which 

total more than 10,000 every year in the United States alone—

are caused by melanomas [9]. 

Dermatologists struggle to diagnose skin cancer accurately 

because dermatoscopic images can reveal many forms. Due to 

the similarity of many skin cancers' outward appearances, 

they are only exposed to a portion of all skin cancers' potential 

lifetime manifestations during their studies and clinical 

practice. Dermatologists can diagnose melanoma with an 

average accuracy of 62% to 80% [10, 11], but the diagnostic 

accuracy for those with three to five years of experience is 

reported to be 62%. The accuracy rate can reach up to 80% for 

dermatologists with more than ten years of experience 

Dermatologists with less experience performed worse.7 

Additionally, dermoscopy may be less accurate in detecting 

melanoma when performed by dermatologists who lack 

experience [10, 12, 13]. 

Recently, numerous past researchers utilized artificial 

intelligence (AI) methods to diagnose cancer precisely [14-19]. 

Systems called computer-aided detection (CADe) or 

computer-aided diagnostics (CADx) help doctors decipher and 

translate diagnostic medical images of patients [20]. To give 

the professional (radiologist) information on which to base 

their judgment, CAD systems process typical-looking digital 

images and highlight important areas that may be prospective 

diseases or tumors. AI, digital image processing, and 

radioactive image processing are all combined in the relatively 

new technique known as CAD. As a result, this research 

suggests a unique CAD system for cancer diagnosis built on a 

deep-learning methodology. 

This research is a response to significant problems with skin 

cancer diagnosis. Effective treatment and the general 

wellbeing of patients depend on the early recognition of skin 

cancer, especially melanoma. However, dermatologists' 

diagnoses may not always be accurate, which could lead to 

inaccurate or delayed assessments. Additionally, access to 

diagnostic expertise is frequently limited, especially in 

underserved areas. A user-friendly web application powered 

by deep learning techniques is urgently needed to address 

these limitations and offer accessible and reliable diagnostic 

support. 

The major contributions of this study can be summarized as 

follows: 

• The main contribution of this study lies in the 

development of a comprehensive end-to-end DL model 

for skin cancer diagnosis. The proposed model, 

DenseNet121, gives a reliable solution for classifying 

skin lesions into various categories like seborrheic 

keratosis, melanoma, and nevus. 

• The current study introduces new approaches of 

enhancing the model. To improve the classification 

results, a combined technique of utilizing a neural 

network (DenseNet121) and a machine learning 

algorithm (XGBClassifier) is shown. 

• In this study, the Ensemble Model-Based DensNet121 

reveals an innovative strategy for using more than one 

model to achieve better outcomes. 

• Thus, the study makes a very good observation with 

regard to accuracy. The proposed deep learning model 

surpassed the other deep learning models that are 

commonly employed for skin cancer recognition with a 

great accuracy rate of 98%. 

Moreover, the study showcases the promise of data-driven 

innovation in healthcare, highlighting the transformative 

potential of DL in dermatology and cancer diagnosis. By 

offering a technology-driven solution, the research addresses 

resource constraints and provides essential diagnostic support 

even in areas with limited healthcare resources. In essence, the 

study's deep learning approach, coupled with a user-friendly 

web application, not only enhances skin cancer detection 

accuracy but also holds broader implications for healthcare 

accessibility and the application of artificial intelligence. 

 

 

2. LITERATURE REVIEW 

 

Deep learning methods [21-27] and traditional machine 

learning [28-31] are the main approaches currently used for 

cancer detection. Traditional machine learning techniques 

create cancer detection algorithms after image features are 

retrieved in a two-stage procedure. The authors have 

comprised only deep learning-based methods in the context of 

the work that has been presented. The feature extraction phase, 

which commonly uses image operators and filters to extract 

picture features, is where the shortcomings of traditional 

processes are most readily apparent. In contrast to the DL 

algorithm, old-fashioned feature extraction techniques do not 

include a learning approach; therefore, features cannot be 

enhanced.  

Because deep learning techniques are so prevalent, some 

ground-breaking studies have used CNN to accurately 

diagnose cancer using microscopic medical images. A DL 

model for the sorting of cancer diagnosis was described by Pan 

et al. [32]. The method that is being given is an end-to-end 

trainable that uses CNN to carry out its categorization. A large 

dataset was used to test this approach, which yielded an F1 

score of 94.8%. Deep learning was applied by Fakoor et al. [33] 

to improve the classification of cancer diagnoses. This 
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technique is used to identify cancer with the help of gene 

expression data. The overall accuracy of this approach in 

detecting cancer was 97.50%. Based on CNN, Rezaeilouyeh 

et al. [21] proposed a framework for diagnosing various cancer 

kinds. A phase of shearlet coefficients served as the 

classification's primary feature. The accuracy of the method 

was equal to 86%, and F1 score was equal to 89%. Danaee et 

al. [22] proposed a DL strategy for cancer detection by using 

the Stacked Denoising Autoencoder. The accuracy achieved 

by the authors where they used SVM as a separate classifier 

was 98.26%.  

Among them, the comprehensive review by Dildar et al. [34] 

that investigate DL strategies for skin cancer diagnosis 

deserves a special mention. Thus, this review aims to enlighten 

the constantly shifting nature of this vital medical application 

by outlining the progress made and the challenges that still 

exist. Other fascinating work of interest is real-time THz 

imaging for skin cancer detection discussed by Lindley-

Hatcher et al. [35]. Their work gives an outlook of what more 

can be expected out of THz imaging from having the ability to 

identify opportunities but also challenges.  

Nahata and Singh [36] have come up with a detailed 

analysis of the deep learning solutions that are specifically 

used in the healthcare field for the detection and diagnosis of 

skin cancer. Their work has a big impact on how machine 

learning and healthcare are combined. Toğaçar et al. [37] 

explore the field of intelligent skin cancer detection as we shift 

our focus to novel methods. Their research demonstrates the 

enormous potential of these technologies in the field of 

dermatology by using autoencoders, MobileNetV2, and 

spiking neural networks. 

For those drawn to novel approaches, Kumar et al. [38] 

present a fuzzy c-means clustering–inspired skin cancer 

detection method. This novel methodology explores novel 

methods that are expected to enhance the accuracy of 

diagnosis. Ashraf et al. [39] propose a new approach in 

transfer learning problem. In this situation, they provide an 

effective approach to leverage the capabilities of the pre-

trained models using their region-of-interest based transfer 

learning for skin cancer detection. Al-Dmour et al. [40] present 

an intelligent skin cancer detection system using IoT and 

Fuzzy Expert System as they step into the realm of internet of 

things IoT. This innovative amalgamation demonstrates the 

possibilities of changing healthcare application with IoT 

technologies. Verstockt et al. [41] have also contributed in a 

study on the applicability of infrared thermography for skin 

cancer screening. This study also provides detailed and 

comprehensive descriptions on how the setup, process, and the 

tools work in this revolutionary imaging method. 

Jones et al. [42] conduct a systematic review of AI and 

machine learning algorithms for early skin cancer detection to 

provide a broader perspective on AI's role in healthcare. Their 

research examines how AI is used in community and primary 

care settings, providing understanding into the game-changing 

potential of these tools. Nawaz et al.'s [43] research adds to the 

body of dermatology knowledge. Their study explores the use 

of DL and fuzzy k-means clustering for skin cancer 

recognition from dermoscopic images, illuminating the field's 

ongoing improvements in image-based diagnostics. 

Hammad et al. [44] proposed a unique method for the 

detection of cancer. This method uses end-to-end deep 

learning, feeding the input photos straight into the deep model 

so that it can make the ultimate choice. The accuracy of deep 

CNN for cancer diagnosis is investigated in this study. The 

microscopic medical images from the cancer database, which 

were classified as normal and abnormal, were utilized to assess 

our research. With respect to other deep learning models, the 

accuracy of the model that was given was the greatest at 

99.99%." 

The previous deep approaches, however, function on 

similar and widespread data. They also employ laborious 

techniques and flaws in the interpretation and application of 

their models in user interface-friendly applications. Therefore, 

our present study proposes a straightforward end-to-end DL 

model that reaches excellent accuracy on a short dataset, 

solving most of the previous issues. To advance the 

responsible use of artificial intelligence, it is crucial to address 

the current research gaps in the areas of skin cancer detection 

and medical applications. These gaps cover a range of crucial 

areas, such as dataset diversity, class imbalance reduction, the 

development of interpretable AI, and clinical validation via 

large-scale trials. The adoption of thorough evaluation metrics, 

ethical considerations, and seamless integration into clinical 

workflows are crucial areas of investigation. To ensure that 

everyone has access to AI tools, research should also look into 

multimodal approaches, longitudinal monitoring, usability, 

and accessibility. Investigation is necessary into the models' 

adaptability to various conditions as well as their robustness. 

Regulatory compliance and substantive patient involvement 

are essential for the creation of patient-centric solutions, which 

collectively contribute to the advancement of AI in 

dermatology and skin cancer detection, ultimately benefiting 

both patients and healthcare systems. 

 

 

3. MATERIALS AND METHODS 

 

 
 

Figure 2. The proposed approach 

 

A typical machine learning or deep learning model's 

structured evolution of stages is shown in Figure 2. It starts out 

by gathering the dataset from the Kaggle website [45]. Data 

preparation addresses problems like standardization and 

missing data. Model selection matches the selected algorithm 

with the objectives of the project, and model training fine-

tunes the parameters to reduce error. A different dataset is used 

in performance evaluation to evaluate generalization. Testing 

demonstrates the model's accuracy in making predictions, and 

different models can be compared. A successful model can 
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then be used in practical applications. These sequential actions 

make sure that machine learning initiatives are approached 

methodically and successfully. 

 

3.1 Dataset 

 

The Kaggle Melanoma Skin Cancer Dataset [45] is used in 

this study. In order to train ML models for melanoma detection, 

the Kaggle dataset is a collection of skin lesion images. This 

dataset was developed by the International Skin Imaging 

Collaboration (ISIC) and was launched on Kaggle in 2017. 

The Melanoma Skin Cancer Dataset is a large database of 

dermatoscopic images of skin lesions that is made up of more 

than 10,000 images, where it covers both benign and 

melanoma. It indicates the type of lesion on the images so that 

supervised machine learning models can be trained from the 

images. Also, the images are of good quality and the 

dermoscopy is done by experts in the field. 

 

3.1.1 Dataset description 

The Melanoma Skin Cancer dataset is extensive and 

systematic which gives skin lesion images that are detailed and 

well arranged. The dataset is in the CSV format, and each 

record in the dataset corresponds to a skin lesion image. The 

CSV file includes distinct columns that outline crucial 

characteristics: 

1. Image name: This column includes the name of the 

image file in order to help in correct identification and 

further referencing. 

2. Diagnosis: One of the crucial elements, this column 

specifies the nature of the lesion, allowing the 

differentiation of malignant melanoma and other benign 

conditions. 

3. Clinical features: Within this column resides an array 

of pivotal clinical features intrinsic to the lesion. These 

encompass pertinent aspects such as size, shape, and 

color, enhancing the diagnostic insights gleaned from 

the dataset.  

4. Dermoscopic features: This is a critical dimension 

where a list of dermoscopic features related to the lesion 

is provided. These features include fundamental 

characteristics such as the existence of atypical vascular 

patterns or atypical pigment network, which further 

enrich the diagnostic approach. 

 

All the images of the Melanoma Skin Cancer Dataset are of 

the same size; 256×256 pixels; which is common size of 

images as it does not affect the image when reduced to this 

size. Surprisingly, it is also visible that the mark of quality and 

accuracy is also reflected in the dataset because the data base 

contains high-resolution images of skin lesions that have been 

dermoscopically evaluated by experienced people. This 

careful selection makes the dataset to get to a level of accuracy 

and reliability that makes it possible to develop skin lesion 

analysis and diagnosis. 

The proposed method was tested on 2750 images, 

distributed into three files: training = 2000, validation = 150, 

and test = 600. The images were taken from a database related 

to skin cancer. and they were divided into three categories of 

skin diseases, including seborrheic keratosis, nevus, and 

melanoma. An example of one of these diseases is displayed 

in Figure 3. 

Although nevus and seborrheic keratosis are not malignant, 

they carry a cancer risk. There are 374 clinical dermoscopic 

pictures for melanoma, 1374 for nevus, and 254 for seborrheic 

keratosis in the train folder. Melanoma class photos total 117, 

nevus class images total 393, and seborrheic keratosis class 

images total 90 in the test folder. There are 30 photographs in 

the melanoma classes, 78 images in the nevus, and 42 images 

for seborrheic keratosis. There are 2,750 photographs in all, 

some of which are fuzzy and some of which have hair in them. 

There are a total of three important steps. Lesion segmentation 

comes first, then feature extraction, then lesion categorization. 

Sensitivity is a measure that is crucial for clinical application. 

 

 
 

Figure 3. Example of some images from the used database 

1784



These varieties are reviewed by specialists and are among 

those that have been proven to impact human skin. These 

images are reliable evidence since they are colored and come 

in various sizes. Since efforts were made to get the patient's 

consent for their usage, concerns about privacy violations were 

eliminated. The data in this study had several issues, including 

unequal distribution of the types and diseases in each of the 

mentioned files. For example, in the training data, the type 

nevus was the most prevalent in the images, with nevus = 1372, 

melanoma = 374, and seborrheic keratosis = 254, respectively. 

This was causing rise to issues, especially when the model was 

fed images. The number of photos increased to 4116, which 

helped to address the issue considerably and enhance the 

outcome in the suggested model. This was done to fix the 

problem. The detailed description of the pre-processing of the 

images is presented in the subsequent section. 

 

3.2 Dataset pre-processing 

 

Data pre-processing is essential to modify the raw dataset in 

a way that is suitable for training and evaluating the model. 

This section just provides the way on how the dataset is 

prepared for the subsequent analysis. It includes various steps 

that guarantee the consistency, standardization, and integrity 

of the data. 

 

3.2.1 Data transformation and label encoding 

The main steps of the data pre-processing pipeline are the 

following: data transformation, and label encoding. This step 

involves a rigorous process of converting the categorical labels 

and raw skin lesion images into formats that are compatible 

with the next deep learning model. The first process in the 

system was image capturing and formatting of the raw skin 

lesion images which were usually obtained in several formats 

and resolutions. This fundamental conversion entails 

converting every image into a matrix of pixel values where it 

is possible to identify the intensity and colour of the pixel. 

Images are in matrices, which provides the data with a 

structure that is easily manageable by the model architecture. 

The categorical data labels which included the possible 

lesion category such as melanoma, seborrheic keratosis, and 

nevus also underwent a label encoding process at the same 

time. They are in this tactical manner transformed into 

numerical forms that are from the said categorical labels. 

Seborrheic keratosis was assigned the code of “1,” melanoma 

was assigned the code of “0,”; nevus was assigned the code of 

“2.” In the training phase, such an encoding enables the model 

to understand differences between different classes of inputs 

and accordingly classify them. This means adopting label 

encoding is advantageous in several ways. It offers a very well 

defined and standardized format of input to the model, which 

in turn helps in defining a sound and systematic approach 

towards data interpretation. Besides, it also solves a potential 

integration problem by ensuring that categorical labels as 

inputs are converted to the numerical form of the mathematical 

processing in the model. Label encoding also benefits in terms 

of memory usage and computational performance because 

numbers are more easily processed. 

 

3.2.2 Standardization of image dimensions 

Another important process was to standardize the width and 

height of the images as it was necessary to compare the images 

in the dataset. This eliminated possible differences that may 

arise due to differences in the size of the images by 

standardizing them to a size of (224, 224, 3). The smooth 

integration into the ensuing model architecture which results 

from this harmonization ensures that reliable and accurate 

analysis is attained. 

 

3.2.3 Data augmentation 

A significant improvement of the dataset’s reliability and 

flexibility can be attributed to the incorporation of the 

ImageDataGenerator tool for data augmentation. To 

summarize, augmentation enhances the actual environment by 

deliberately introducing variations into the current dataset, 

which leads to the model’s ability to predict outcomes for new 

cases more effectively. 

The ImageDataGenerator tool is used to implement a wide 

range of augmentation methods, each of which has been 

painstakingly created to simulate plausible variations that skin 

lesion images might exhibit in real-world settings. The 

transformations included in this repertoire of augmentations 

include rotations, shifts, flips, zooms, and brightness 

adjustments. These small but significant changes add a bit of 

variability to the dataset, allowing the model to understand the 

subtleties of various viewpoints and angles that skin lesions 

can take. Data augmentation plays a main role in reducing the 

risk of overfitting, a phenomenon where a model becomes 

overly tuned to the details of the training data and becomes 

less capable of generalizing to new, unseen data. The output 

after performing the augmentation in dataset is presented in 

Figure 4. 

 

 
 

Figure 4. Output after performing data augmentation 

 

3.2.4 Addressing class imbalances 

The modality of corrections used in class imbalances within 

the dataset was varied in a manner that would eliminate class 

representation imbalance during training. This comprised of 

sole sampling of the minority classes, majority classes under 

sampling or making use of class weights during training in 

order to discourage the misclassification of the minority 

classes more heavily. To reduce the risk of biases in model 

predictions, careful scrutiny was done on the methods used 

and they were adjusted according to the results got. By being 
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elaborate on the training process, hyperparameter settings, 

model architectures and the way to handle class imbalances, 

your research paper will be able to provide the readers an 

insightful knowledge of the methodology used to design and 

fine tune the proposed models for skin lesion classification. 

 

3.3 Proposed deep learning models 

 

Our research used a comprehensive deep-learning model to 

identify skin cancer through images taken directly from the 

skin's surface. Dens121 was proposed, which was modified to 

suit data from input to output layers. Then, several models of 

neural networks were used, such as DensNet121 + XGBoost 

Classifier, and the CNN network was built from scratch. 

Ensemble Model-Based DensNet121 worked on enhancing 

CNN and ResNet50. Each model was tested and compared 

with the proposed DensNet121 model.  

 

3.3.1 Proposed DensNet121 model 

We started by building a sequential model and gradually 

adding layers. The variable containing the model and its batch 

was utilized as the first layer, and it served as a representation 

of the model itself. In the second layer, grouping was applied 

to the results of the first layer, and in a real sense, a filter with 

dimensions of 2×2 was created. Thus, we will have four 

squares, and the grouping type is max, so the four values in the 

filter will be replaced by the maximum value out of the four 

values. In the third layer, BatchNormalization was applied to 

the results of the second layer, which means that this layer will 

make the input to the next layer with a normal distribution 

because the layer brings the output standard deviation close to 

the value of 1 while the mean of the output approaches 0, 

which makes the input normal. In the fourth layer, a 50% 

sealant was applied to the results of the third layer. Then, in 

the fifth layer, flatten was applied to convert the outcomes of 

the fourth layer into a Vector so that it is easy to apply Dense 

since the Dense layer works at the Vector level. This vector is 

passed on to the next layer, the sixth layer, a type of Dense, 

which in turn includes 512 processing units with their biases 

and weights. With an activation equation of objective type, the 

results are passed on to the seventh layer, which is of the 50% 

dropout type, after which the results are finally passed to the 

last layer, which is the results layer and includes 3 Arithmetic 

units, one for each of the three data categories, with SoftMax 

equation as the activation equation.   

Table 1 details the parameters in a proposed deep learning 

model that utilizes Densenet121 as its core feature extractor. 

The Densenet121 layer outputs a shape of (None, 7, 7, 1024) 

and includes 7,037,504 parameters, indicating its significant 

role in capturing complex patterns from the input data. This is 

followed by a MaxPooling2D layer that reduces the spatial 

dimensions to (None, 3, 3, 1024) without adding parameters. 

A BatchNormalization layer, keeping the same shape, 

introduces 4,096 parameters to stabilize and accelerate 

training. A Dropout layer, which helps prevent overfitting by 

randomly dropping units, follows with no additional 

parameters. The output is then flattened to a vector of 9,216 

units by a Flatten layer, again without adding parameters. This 

vector is processed by a Dense layer, which reduces the 

dimension to 512 and adds 4,719,104 parameters, indicating a 

high-capacity fully connected layer. Another Dropout layer is 

used at this stage to further regularize the model. The final 

Dense layer outputs 3 units for classification, with an 

additional 1,539 parameters. 

Table 1. The parameters used in the proposed model 

 

Layer (Type) O/P Shape 
Number of 

Parameters 

Densenet121 (Functional) 
(None, 7, 7, 

1024) 
7037504 

Max_plooling2d 

(MaxPooling2D) 

(None, 3, 3, 

1024) 
0 

BatchNormalization 

(BatchNo) 

(None, 3, 3, 

1024) 
4096 

Dense_1 (Dense) (None, 3) 1539 

Flatten (Flatten) 
(None, 

9216) 
0 

Dropout (Dropout) 
(None, 3, 3, 

1024) 
0 

Dropout_1 (Dropout) (None, 512) 0 

Dense (Dense) (None, 512) 4719104 

 

 
 

Figure 5. DenseNet121 architecture 

 

As shown in Figure 5, Convolution sets of 3×3 and 1×1 are 

seen in dense blocks. Within the four dense blocks, the 3×3 

and 1×1 convolutions are repeated 6, 12, 24, and 16 times, 

respectively. Between two thick layers lies a transition layer 

that is embedded. Every convolution layer within a dense 

block is coupled to additional convolution layers in a feed-

forward fashion. 'Growth rate' is a hyperparameter used by 

DenseNet. Information from the prior layer is tracked by the 

growth rate. Between the layers, the dense connections operate 

via a feed-forward process. Batch normalization, one-to-one 

convolution, and two-to-two average pooling with a stride 

value of two make up the transition layer. 

 

3.3.2 DensNet121 + XGBoost classifier 

The combination of DensNet121 and the XGBoost 

Classifier was a multi-stage process that successfully detected 

skin cancer by combining the strengths of DL and machine 

learning paradigms. This complex strategy developed in two 

distinct phases, each of which contributed in its own special 

way to the success of the final model.  

In the first step, we employed the DenseNet 121 which is a 

powerful pre-trained neural network. This neural network was 

selected because of its great ability to differentiate the features 

of skin images and encode the data related to cutaneous 

melanoma and its trends. This was done by feeding skin image 

data as input to DenseNet121 which served as the feature 

extractor. The network then captured and transmitted all these 

aspects to the higher level for analysis. 

A smart switch was experienced when the model 

transitioned to the second phase; from deep learning to the 

XGBoost Classifier machine learning. As a result, feeding all 

the features extracted from the first stage into the XGBoost 

Classifier was easy in a structured format. This classifier, 

which is classified as an ensemble-based machine learning 

algorithm, then took control due to its high prediction 

capability. Its main function was to properly sort and divide 

the features which were extracted, in order to assign tags 

which would signify the possible presence of melanoma. 

We were able to manipulate and carry out a variety of 

complex machine learning operations thanks to this paradigm-
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shifting switch from deep learning to machine learning within 

a single model. The second stage opened up a wide range of 

opportunities for feature manipulation, fine-tuning, and 

optimization, improving the model's capacity for making 

decisions.  

 

3.3.3 CNN model 

The CNN is frequently used in image categorization 

because of its fascinating features, including automatic feature 

selection and end-to-end training [46]. Along with the 

convolution layer, CNN also heavily relies on the pooling, 

dropout, and dense layers. By automatically selecting features 

with its convolution layer, feature reduction with its pooling 

layer, and classification with dense layers, CNN can analyze 

images effectively. Figure 6 shows the CNN network's 

organizational structure. 

 

 
 

Figure 6. The CNN architecture 

 

The relevance of each layer of CNN is different. The 

number of kernels and kernel size determine how many 

characteristics may be retrieved from each layer. The random 

weights that are trained during model training are used to 

initialize the kernel weights. The ReLU layer receives its input 

from the convolution layer's output. Function of nonlinear 

activation ReLU maintains a certain range for the convolution 

layer's value. Due to its simplicity, irreconcilability, and non-

negativity in nature, the ReLU activation function is the most 

well-liked in CNN. In order to prevent the model from 

overfitting, the dropout layer is applied after the ReLU layer. 

After that, the pooling layer is used to do a down sampling on 

the feature map. It would be useful to make the representation 

resistant to even minute changes related to the input. An 

operation that is performed on each feature map independently 

is what a pooling layer does in order to generate a new set of 

pooled features. Max pooling, which makes the most of each 

patch of the feature maps, is the pooling strategy that we 

choose to use out of the many that are available, such as 

average pooling, max pooling, and so on. Extraction of the 

image's point and edge, in addition to other minor 

characteristics, is made easier with its assistance. The upper 

level layers of the CNN are generally layers that are totally 

connected to one another. The output of the pooling layer is 

used in these thick layers in order to arrive at a classification 

decision. 

The softmax activation function is employed in the CNN 

model's last layer to provide a probability distribution for 

multiclass classification. In the CNN model, regularization 

may be used to address overfitting. By incorporating a penalty 

into the loss function, regularization lowers overfitting. 

Dropout reduces interdependent learning as a means of dealing 

with overfitting in CNN. After a CNN's internal weights are 

established, back propagation is used to adjust them to the 

target issue. 

 

3.3.4 Ensemble model based DensNet121 

This model used three pre-trained algorithms of the type 

DenseNet121 that work in parallel with each other to improve 

the results. Each network of the type of DenseNet121 works 

on extracting its features and starts with different weights from 

the other network that works in parallel with it, after which the 

results are collected. Only the best results are passed on to the 

rest of the network for classification and obtaining the final 

results.  

 

3.3.5 Enhancing CNN 

This model consists of two neural networks connected 

excellently to serve the purpose. The first part of the network 

is the processing and image enhancement part. The goal of this 

part is to eliminate any noise in the image and lighten the 

image a little because, with processing and viewing the images 

in training and testing, we noticed a similarity. A large 

percentage exists between the images despite the different 

categories to which the images belong. Therefore, the task of 

this part is to try to reduce this similarity and thus increase the 

effectiveness of feature extraction.  

In the second part, it is a neural network that works on 

multiple classification or multi-class classification. It is 

specially designed to deal with data and separate similar 

features that invade the network and are obtained from the first 

part of the network. The network ends with the last layer, and 

it is responsible for producing the final results.  

 

3.3.6 ResNet50  

A pre-trained neural network, ResNet50 [47], performed the 

three-class classification process. The ResNet50 is a runaway 

network; the results that come out of it are inputs to the next 

layer in the overall network. Residual Network is referred to 

as ResNet. In order to prevent accuracy from becoming 

saturated and rapidly deteriorating, ResNet-50 is a network 

that handles the problem of accuracy deterioration as network 

depth grows. It has 50 layers and is more durable, and it can 

recognize 1000 items in a single iteration. This network does 

not experience the vanishing gradient problem that other deep 

networks do, which makes the related features and 

classification problem challenging to optimize. ResNet-50's 

strength lies in the deployment of skip-net connections, where 

input is often applied to the results of the network's 

convolutional blocks [39]. ResNet-50's intricate architecture is 

seen in Figure 7. 

 

 
 

Figure 7. The ResNet-50 architecture 

 

The ResNet-50 architecture is a type of CNN that is 50 

layers deep. It’s designed for image classification tasks and is 

known for its use of residual connections, which aid in training 

deeper networks by addressing the vanishing gradient issue. 

Here’s a detailed breakdown of its structure:  
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Input layer: Accepts an image of size 224×224 pixels.  

Initial convolution and pooling: Starts with a 7×7 

convolutional layer with 64 filters and a stride of 2, followed 

by a 3×3 max pooling layer with a stride of 2.  

Bottleneck blocks: Contains a series of bottleneck blocks, 

each with three layers:  

• A 1×1 convolutional layer that reduces the dimension.  

• A 3×3 convolutional layer that processes feature.  

• Another 1×1 convolutional layer that restores the 

dimension.  

 

Residual connections: Each block has a shortcut link that 

bypasses one or more layers. Ending Layers: Concludes with 

a global average pooling layer and a fully linked layer with 

1000 units for the final classification.  

The architecture uses batch normalization and ReLU 

activation after every convolutional layer. The residual 

connections, or shortcuts, are key to enabling the training of 

such deep networks by allowing gradients to flow through the 

network without diminishing. ResNet-50 is part of the ResNet 

family, which includes other variants with different depths. 

 

3.4 K-fold cross validation 

 

To get a better grasp of skin cancer screening methods for 

early detection and therapy we used a k-fold cross validation 

approach on the Kaggle Melanoma Skin Cancer Dataset that 

was based on a skin lesion images database that was 

thoroughly selected and comprised of more than 10 000 

images.  

Here, we used k-fold cross-validation as a key method for 

the performance of our machine learning models to ensure that. 

In this way, the communication cycle includes several key 

constituents. Firstly, we utilized an approach that was based 

on a smart use of loading of features and labels alongside 

preprocessing tasks such as handling missing values and 

encoding of categorical variables. As a follow up, the data was 

split into k fold folds, usually amounting to 5 to 10 which 

accommodated for the validation process. Statistically 

splitting the datasets to 6 folds, each one comprised of a 

validation set and the other folds trained our models, so we 

could evaluate the performance on different metrics, such as 

accuracy and precision. We also hyper parameter tuning in 

each fold to get a good performance out of the model. 

Outcomes produced by every fold were mixed together to 

represent a global score, which generally included the average 

performance metrics and measures of dispersion. After 

obtaining best responding cross-validation of the model, we 

have done another refinement by training them on the entire 

data set using optimal hyperparameters followed by 

performance assessment on a separate test set. By means of the 

targeted analysis of the cross-validation results, we reached to 

the understanding of the nature of our models which 

eventually helped us in making careful and informed decisions. 

Also, we do not forget the fact that in order to have robust 

findings we can use another random splitting algorithm. 

 

3.5 Training process 

 

The training of the models has been designed to maximize 

efficiency in terms of improving the model performance and 

generalization capacity. The process consisted of several 

critical actions, each of which was aimed towards improving 

reliability and efficacy of the models. At the beginning of the 

process, we spent a lot of time on data preparation where the 

data was cleaned and divided in training, validation and test 

subsets. The division was done with due attention to the 

classes of people and equal distribution of the people within 

different strata. What was more, the stratified sampling 

methods were applied to assure the class distribution within 

each data set, reducing the bias chance during the training and 

evaluation processes. In order to add more items to the training 

dataset to make the model more robust, an array of data 

augmentation methods was used.  

Which were the random rotations, translations, flips and 

zooms as well as light levels and contrast provided. Data 

augmentation not only increased the diversity of the training 

dataset, but it as well allowed the models to become generalists 

by feeding them variations in the input data, which in turn 

improved their learning performance. The models were 

implemented with Adam and SGD techniques that were 

considered state-of-the-art optimization algorithms at the time.  

Hyperparameters like the learning rate, momentum, and 

weight decay were carefully tuned by accessing the validation 

set after many experiments and validation. Learning rate 

schedules like the exponential decay or step decay were used 

to change the original learning rate in a dynamic way during 

training so that the model could easily converge to the best 

solution. Regularization was the way to handle overfitting and 

increase the generalization performance. The regularization 

techniques were, therefore, incorporated into the training 

process. Dropout layers were utilized between fully connected 

layers to randomly peel off neurons from the network during 

the training phase, this in turn reduced the model's dependency 

on specific features and terminated the co-adaption of neurons. 

Furthermore, the L2 regularization of the model's weight was 

done to penalize the large weight magnitudes and promote the 

models to become simpler. 

The performance of the model is always checked on both 

the training set and the validation set during the training 

process. Performance measurements for instance, accuracy, 

recall, precision, and F1-score were calculated to ascertain the 

models' classification capability and areas for improvement. 

The early stopping criteria were employed according to the 

validation performance to ensure that overfitting was not 

taking place and terminating the training when it was doubtful 

that any further improvement would take place. While being 

trained, the final model is tested on the held-out test set to get 

a fair and unbiased estimation of the model itself. To ensure 

impartial assessment the test set was kept different from the 

training and validation sets. Model predictions on the test set 

were contrasted with the ground truth labels to establish and 

confirm the final performance metrics, thereby confirming the 

models’ effectiveness in real-world situations. The models 

were systematically programmed to go through every stage of 

the training, which entailed data processing and augmentation, 

model training and testing, among others, which in turn 

enabled them to achieve optimal performance and robustness 

in image classification tasks. 

 

 

4. RESULTS 

 

We performed a thorough examination and compared our 

suggested DensNet121 model with other developed models to 

see how well it performed. Using Python and the potent 

libraries of Keras, Scikit-learn, and Opencv, all tests were 

conducted. These tests were conducted on a powerful 
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computing platform with an Intel Xeon CPU and a generous 

128 GB of RAM. Additionally, we used a specialized NVIDIA 

GeForce GTX 2080 Ti GPU card's computing power to 

maximize the benefits of DL and speed up the training process, 

assuring effective and high-performance execution of the tests.   

In this work, machine learning models for melanoma 

detection were trained using the Kaggle Melanoma Skin 

Cancer Dataset. The ISIC assembled this collection of skin 

lesion images, which was then made available on Kaggle in 

2017. It contains over 10,000 high-quality photos that have 

been painstakingly annotated for supervised machine learning, 

covering both benign and malignant instances. 

Table 2 covered an extensive description of the 

experimental setup and hardware details employed during the 

study. Deep learning frameworks used for these are 

TensorFlow version v2.15.0. post1 and Keras version 2.16, 

chosen as the primary ones for model development and 

training. A powerful NVIDIA GeForce RTX 2080 Ti GPU 

was utilized in this experiment, featuring a memory of 11 GB 

of GDDR6, 4352 CUDA cores, and 544 Tensor cores to 

deliver fast computation of complex tasks undergone in deep 

learning. In terms of CPU and memory specifications, the Intel 

Xeon Gold 6248R Processor with 24 cores and 48 threads 

running at a 3.00 GHz base clock and a max turbo frequency 

of 4.00 GHz, combined with 128 GB of DDR4 RAM clocked 

at 2933 MHz, allowed for efficient training of deep I 

performed these experiments on Ubuntu 20.04 LTS operating 

system, and installed other tools like Python (version 3.11.2), 

NumPy (version 1.26.0), Pandas (version 2.2.1), and 

Matplotlib (version 3.9.0) for dealing with data, analysis, and 

visualization. With such hardware and software setup, the 

experimental environment is more robust and efficient, 

thereby creating the optimal working environment for the 

successful execution of deep learning experiments and 

outcomes. 

 

Table 2. Experimental setup and hardware details 

 
Component Specification 

Deep Learning Frameworks 

TensorFlow Version v2.15.0.post1 

Keras Version 2.16 

GPU Specifications 

GPU Model NVIDIA GeForce RTX 2080 Ti 

CUDA Cores 4352 

GPU Memory 11 GB GDDR6 

Tensor Cores 544 

CPU and Memory 

CPU Model Intel Xeon Gold 6248R Processor 

CPU Cores/Threads 24 Cores / 48 Threads 

Memory 128 GB DDR4 RAM 

Base Clock 3.00 GHz 

Max Turbo Frequency 4.00 GHz 

Memory Speed 2933 MHz 

Operating System 

OS Ubuntu 20.04 LTS 

Additional Software 

Python Version 3.11.2 

Matplotlib Version 3.9.0 

NumPy Version 1.26.0 

Pandas Version 2.2.1 

 

4.1 Performance metrics 
 

Performance metrics are essential instruments for 

evaluating the efficacy of classification models, particularly in 

disciplines like machine learning and diagnostics. Accuracy, 

recall, precision, and F1 score are the four crucial metrics that 

were used in this study. 

 

4.1.1 Accuracy 

A classification model's overall correctness is gauged by 

accuracy. Both True Positives and True Negatives are 

computed as a percentage of all the instances in the data set. 

Eq. (1) shows and calculates it as a percentage. A high 

accuracy score means that the model can classify most 

instances correctly, but it may not be the best metric when 

dealing with an unbalanced dataset. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

TP = True Positives 

TN = True Negatives 

FP = False Positives 

FN = False Negatives 

 

4.1.2 Precision 

Precision is about the accuracy of conclusive predictions. 

The proportion of actual positives to the total amount of 

positive forecasts including True Positives and False Positives 

is then determined. Precision is used to determine the model’s 

capacity not to generate false positive results. If the model 

indicates positive results in medical diagnostics, high levels of 

precision give high confidence in the accuracy of the model’s 

results. Eq. (2) serves as its representation. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

4.1.3 Recall 

The model's capacity to correctly identify all pertinent 

instances in the dataset is measured by recall, also referred to 

as sensitivity or True Positive Rate (TPR). The ratio of True 

Positives to all instances of actual positive data (True Positives 

Plus False Negatives) is calculated. Recall is another way of 

measuring the ability of a model to detect the true positive 

cases, which is vital in medical diagnosis not to overlook 

actual cases of certain diseases. Eq. (3) serves as its 

representation [29]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

4.1.4 F1 score 

The F1 Score measures the precision and the recall in the 

same proportion. It offers a single measure to evaluate the 

performance of a model and gives consideration both to FP 

and FN. According to Eq. (4) It is the harmonic mean of 

precision and recall. The F1 Score is useful when it is crucial 

to achieve a perfect recall of all the relevant cases as well as 

minimize false positives. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (4) 

 

4.1.5 Matthews correlation coefficient (MCC) 

In classification tasks, the MCC is a performance metric. 

False Negatives (FN), False Positives (FP), True Positives 

(TP), and True Negatives (TN) are all taken into account to 

provide a balanced measure of classification performance, 
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especially when working with unbalanced datasets. The 

following is the MCC formula: 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (5) 

 

The MCC has a range of -1 to 1, where 1 denotes perfect 

classification, 0 denotes arbitrary classification, and -1 denotes 

utter discrepancy between forecasts and actual results. In real-

world applications, MCC values close to 1 indicate excellent 

classification performance, while values close to 0 suggest 

performance no better than random, and values close to -1 

indicate classification that is completely incorrect. In 

situations where class imbalance is a concern or when the cost 

of FP and FN differs significantly, the MCC is a useful metric 

for evaluating binary classification models. 

These performance indicators are crucial when assessing 

classification models, particularly for medical uses like skin 

cancer detection. 

 

4.2 Performance of DensNet121 model 

 

The results of model testing are displayed in Table 3. These 

outcomes show the parameters of the suggested model, 

demonstrating that the specificity, accuracy, and sensitivity 

were the highest. The confusion matrix of the suggested model 

on the test images is displayed in Figure 8. Here, it displays 

that the error rates are few. Figure 9 shows the training and 

validation accuracy and loss of DensNet121 model, for both 

the raining and validated data. 

 

 
 

Figure 8. Confusion matrix of the proposed ensemble model 

 

The test results for the proposed DensNet121-based DL 

model intended for skin cancer detection are summarized in 

Table 3. The performance of the model is promising across a 

number of important metrics. The model showed impressive 

accuracy during the training phase, achieving an impressive 

98%, demonstrating its capacity to efficiently learn from the 

training data supplied. The model achieved a respectable 82% 

when the generalization to unseen data through validation 

accuracy was assessed, demonstrating its competency in 

handling new cases. A commendable 78% was obtained for 

the test accuracy, which assesses the model's applicability in 

the real world, indicating that it continues to perform 

reasonably on new data points. The model does a good job of 

matching predictions with actual labels, as evidenced by the 

low test loss of 0.047 and slightly higher validation loss of 0.79. 

Notably, recall, precision, and the F1 score all have 

exceptional values of 98%, demonstrating the model's efficacy 

in capturing true positive cases and accuracy in positive 

forecasts. The model's strong performance is further 

highlighted by the MCC score of 97%, which shows a strong 

agreement between predictions and actual results. 

The proposed DensNet121-based model performs well 

across a range of metrics, especially when it comes to the vital 

medical diagnostic metrics of precision, F1 score, recall, and 

MCC. The model's overall performance suggests its potential 

utility in aiding with the detection of skin cancer, even though 

test accuracy and validation loss could be improved. 

 

 
(a) Accuracy of DensNet121 model 

 

 
(b) Loss of DensNet121 model 

 

Figure 9. Training and validation 

 

Table 3. Proposed ensemble model test results 

 
Model DensNet121 

Validation Accuracy 82% 

Test Accuracy 78% 

Train Accuracy 98% 

Loss 0.047 

Validation Loss 0.79 

Recall 98% 

F1 Score 98% 

Precision 98% 

Matthews Correlation Coefficient (MCC) 97% 
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4.3 Comparative analysis 

 

The proposed DensNet121-based model for skin cancer 

recognition is displayed in Table 4 and Figure 10 along with 

the test results of several other models, providing helpful 

insights into their performance. This model combines the 

machine learning-based XGBoost classifier with the deep 

learning architecture DenseNet121. Although it tested with a 

perfect accuracy of 100%, its test accuracy is only 70%. This 

decline in accuracy raises the possibility of overfitting, where 

the model performed admirably on the training data but had 

trouble extrapolating to novel, untested cases. An impressive 

99.5% training accuracy was attained by a straightforward 

CNN model, demonstrating its capacity to learn from the 

training data. However, its test accuracy significantly 

decreased to 57%, indicating a significant difficulty in 

extrapolating to new data. This decrease points to the need for 

additional model optimization and refinement. 

The training accuracy of this ensemble model, which uses 

several DenseNet121 instances with various weights, was 

83%. However, when used with hidden data, its test accuracy 

of 66.0% shows a decline in performance. This suggests that 

although ensemble methods can be efficient, this particular 

configuration might call for changes. The training accuracy of 

the enhancing CNN layer with classification part model, which 

consists of two neural network parts, was 68%. Its test 

accuracy was 65.5%, which indicates that it maintained its 

performance level but found it difficult to raise it. It might 

require more adjusting to improve performance. The training 

accuracy of a pre-trained ResNet50 neural network was 68%, 

matching its test accuracy of 65.5%. This consistency shows 

that when used to analyze new data, the model consistently 

outperformed its training accuracy without significantly 

outperforming it. 

 

 
 

Figure 10. Train and Test results of the developed models 

 

Table 4. Test results of the other models  

 

Model Name 
Train 

Accuracy 

Test 

Accuracy 

DenseNet121+XGBClassifier  100%  70%  

CNN model  99.5%  57%  

Ensemble model based on 

DenseNet121  
83%  66.0%  

Enhancing CNN layer with 

classification part  
68%  65.5%  

ResNet50  68%  65.5%  

 

These findings demonstrate the various performance levels 

of various models. Even though some models had high 

training accuracy, they had trouble extrapolating to fresh, 

untested data, as shown by their lower test accuracy. This 

demonstrates how important it is for medical diagnostics to 

have strong generalization in addition to high training 

accuracy. 

The DenseNet121+XGBClassifier model employs a merge 

of DenseNet121 CNN architecture with a XGBoost classifier 

on the top. With the DenseNet121 composed of 121 layers 

where XGBoost got trained with parameters like maximum 

depth, learning rate, and number of estimators the model 

finally shows the complexity in its architecture and parameters. 

On the other hand, given this complexity, computational cost 

also comes into play; the depth of DenseNet121 adds to its 

computational cost, while XGBoost’s ensemble method can be 

resource-heavy if used with big datasets. While the OpenCV 

Model requires OpenCV to be imported and integrated, the 

CNN Model functions as an independent standalone CNN 

architecture, with parameters like the number of layers, filter 

sizes, and learning rate considerably affecting its performance. 

The computational power of this model is determined by its 

architecture’s complexity, which is often the bottleneck for 

utilizing large computational resources, especially in deep 

models.  

In the Ensemble Model on DenseNet121 method, Ensemble 

approach is adopted, wherein multiple models of 

DenseNet121 may be combined. Although the ensemble 

model is under the same category as DenseNet121, the 

additional ensemble parameters is a new set of parameters 

introduced by the ensemble techniques. Despite the fact that 

the ensemble model is computationally expensive, it may 

actually need fewer resources in comparison with the task of 

training separate networks with multiple different 

architectures. The other model, Enhancing CNN Layer with 

Classification Part, brings a slight load on the computational 

side of things compared to training a complete CNN from the 

first line of code. It adds a classification layer to the basic CNN, 

making it a little more complex than the original. At last, the 

designed model utilizes the architecture of ResNet50 in its 50 

layers that have skip connections. Concerning the 

computational requirements of the network, it is moderate 

since the depth is deep, but it still remains below the 

computational level of DenseNet121. In the end the 

DenseNet121+XGBClassifier, which has the highest test 

accuracy rate, the ensemble model based on DenseNet121, 

which is already very complex and resource-intensive, comes 

in close. While CNN and ResNet50 models are possessing 

relatively simpler structures and demanding less computation 

resource, standalone CNN and ResNet50 are the case of such 

models. 
 

 

5. DISCUSSION  
 

Table 4 shows the recorded results for all the models. The 

models employed in Table 3, which have five models and 

include the tile that was trained on unbalanced data, recorded 

a precision level of 78% when compared to the test data. We 

also noted that the first and most well-known model is the 

Densnet121+XGBCLASSIFIER since its accuracy level 

reached 100% in the training data but only 70% in the test data. 

The CNN Model, the second model, recorded an accuracy 

level of 99.5% in the training data while recording an accuracy 

level of 70% in the test data. The accuracy of the test data has 

risen to 57%.  

The third model, entail model based on Densnet121, 

recorded an accuracy level of 83% in training data and 66% in 

test data. The "Enhancing CNN Layer with Classification 
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Part" model, the fourth model, achieved an accuracy level of 

68% in the training data, while the accuracy level reached 

65.5% in the test data. The final model, known as the 

RSNET50, achieved an accuracy level of 68% in the training 

data and an accuracy level of 65.5% in the test data. Thus, 

through the observation of those results recorded in Table 1 

and Table 2, we note that the model known as the Densnet121 

has the highest accuracy level in training and test data and was 

trained in balanced data.  

When considering the current methods used for skin cancer 

detection, it is noted that the methods used are all traditional. 

These traditional methods are usually divided into two stages: 

first, the techniques are used to extract the features of the 

images, and then a unique algorithm is created to detect these 

features, as the authors are thought to have focused solely on 

that point. Our study differs from all the previous ones since 

here, we not only try to extract the features of the images but 

also work to classify them from one another. Ultimately, this 

is put in a web application to function effectively and aid in 

disease identification. 

Jayabharathy and Vijayalakshmi [48] attempted to develop 

a diagnostic system for multi-category skin, and that system 

utilized the ResNetXt101 neural network for the MCS cancer 

classification, yielding results of 93.83%, 88% precision, 88% 

recall, and F1-score of 88. The proportions here are not very 

large, and more progress can be made than this. Chaturvedi et 

al. [49] worked on creating a mechanism for diagnosing skin 

cancer. Based on neural networks, deep learning was based on 

many models, including VGG16, VGG19, and Deep CNN. 

The obtained results were remarkable in terms of the network, 

scoring 98% accuracy for VGG16, 96% for VGG19, and 99% 

for the proposed DCNN. 

Aburaed et al. [50] developed a method called 

Lesionclassifier, and the proposed system achieved 95% 

accuracy on the biomedical data type (ISBI) (2017) and also 

93% accuracy on the ISIC (2017) data. However, this accuracy 

is not enough to achieve the purpose of this system. Adegun et 

al employed Ham10000 Dataset, CNNs, and Four Ensemble 

Models as the follow-up techniques. This method had an 

ensemble model accuracy of 92.83%. One of the strategies put 

up by Chaturvedi et al. [51] to deal with this issue was transfer 

learning using binary melanoma categorization data from the 

ISIC archive data and the neural network known as 

"VGGNET." With this method, accuracy was 81.3%, 

precision was 79.74%, and recall was 78.66%. In this study, 

we attentive on employing deep science technology, briefly 

touching on convolutional neural networks and the SVM 

algorithm. For this, we created a structure that we worked on 

throughout until we reached results that were not significant 

(85%), and the accuracy was insufficient to be used in a 

product. 

 

5.1 Limitations 

 

Although the study introduces a novel deep learning method 

for skin cancer detection, it has a number of drawbacks. It uses 

a small dataset from Kaggle that might be deficient in diversity 

when compared to skin conditions and populations found in 

the real world. Model performance may be affected by class 

imbalance and data quality problems, such as fuzzy or hair-

contaminated images. Regarding the use of patient data, 

privacy concerns persist. When evaluating models, accuracy is 

the main metric considered, leaving out important metrics like 

sensitivity and specificity. The fact that generalization and 

practical applications are in doubt when clinical trials and 

outside endorsement are lacking. It lacks real-world 

deployment due to complex ensemble models and 

interpretability problems; the feature of a web-based tool is not 

discussed. Despite claiming high accuracy, the study does not 

provide sufficient evidence of real-world generalizability or 

adequately address ethical issues. These limitations portray the 

need for further validation, beyond testing, and model 

transparency in the case of Medical AI, so as to determine the 

model’s reliability, transferability, and socially responsible 

applicability in the clinical context. 

 

5.2 Practical implications 

 

The method of deep learning that was used in the study for 

the identification of skin cancer holds significant practical 

implications. For instance, in the case of melanoma, it has the 

potential of identifying early stages of the disease and 

consequently coming up with a timely treatment hence 

improving the patient’s results. It enhances the provision of 

skin cancer diagnosis especially for those in the low-income 

bracket by developing an online diagnostic system. Moreover, 

the strategy of providing doctors with easily accessible tools 

for making accurate diagnosis contributes to reduction of the 

disparities in the healthcare field. It also supports medical AI 

research, patient self-management, and emphasizes the 

importance of data protection and ethical issues. Clinical 

integration and the requirement for additional research and 

validation are obstacles. In conclusion, the study's conclusions 

are encouraging but their successful application in clinical 

practice requires careful consideration of both the ethical 

issues and the practical difficulties. 

 

5.3 Interpretability analysis 

 

Interpretability analysis, among them methods like Grad-

CAM (Gradient-weighted Class Activation Mapping), can 

bring about several positive outcomes related to the field of 

medical imaging and clinical decision-making. Interpretability 

analysis, by emphasizing the parts of images on which the 

model bases its predictions, sheds light onto the mechanisms 

of the model making decisions and allows the clinicians to 

review the decision-making process of model. The 

interpretability analysis usher in a number of advantages such 

as the improved trust and understanding of the AI-powered 

tools among healthcare professionals. Alongside their 

education and experience, clinicians usually trust their 

expertise and intuition during the process of diagnostic making. 

In this context, although AI has been a great addition in clinical 

practice in the recent times, the lack of clarity of AI models in 

their conclusions is a main problem. The interpretability 

analysis assists in filling this gap by supplying the clinicians 

with a clear graphic images reflecting those specific features 

that the model identifies as being related to the certain 

conditions. This way openness gives clinicians more 

confidence in the AI output and aids in more effective 

integration of AI in diagnostic workflows. Besides that, such 

analysis can serve as a guard against misinterpretation of the 

model's predictions or the model's failure. Through 

visualization of the specific image regions where the model 

concentrates, clinicians can judge whether the model is 

employing clinically pertinent attributes or not and whether or 

not there are some deviated patterns influencing its decisions. 

Such vetting can lead to the enhancement of the resilience of 
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AI models in medical diagnosis by referring the areas that 

needs to be adjusted or further training. 

Integrating AI models, like those modeled on 

interpretability which is a key technique, into clinical 

procedures can help speed up the diagnostic processes and lead 

to better and more accurate diagnoses. As an example, this 

kind of AI-powered diagnostic tools can help clinicians by 

give them preliminary appraisals as well as triage the cases 

based on the urgency. With the ability to automatically 

perform routine operations, including image analysis and 

initial screening, AI models can relieve clinicians of taking 

care of the complex cases or patient care activities and focus 

on them. In addition to this, AI models can be incorporated 

into the clinical workflow flows which would help in 

implementing a standardized and consistent diagnostic 

practice across the healthcare settings. The learning process 

for AI algorithms can be based on a big-data approach, which 

involves large databases covering a variety of patient 

categories and clinical cases that contribute to the 

development of reliable diagnostics. Such harmonization can 

contribute to diminishing variability in diagnosing and 

addition to better outcomes in general. In general, 

interpretability analysis and medical model usage in clinical 

workflows can be expected to yield optimistic outcomes in the 

area of diagnostic processes in medicine. Via equipping 

doctors with AI model decision-making understanding and 

facilitating diagnostic workflow improvement, these 

approaches have the ability to enhance efficiency, accuracy, 

and consistency of medical diagnosis with the ultimate goal of 

better patient outcomes. 

 

 

6. DEPLOYMENT OF THE PROPOSED MODEL   

  

This section defines the work done to create the website that 

will implement the suggested model. Flask was used to create 

the website and also to organize and modify the website using 

HTML and CSS. There are two pages on the website. The first 

is a user request to download the affected image and post it. 

The website then directs you to the second page, which is the 

classification page, after you upload an image from your 

computer or attach a link to one you already have, titled 'What 

kind of disease did you classify your picture? Figure 11 shows 

the first and second pages of the website. 
 

 
(a) First page 

 
(b) Second page 

 

Figure 11. Pages of the website 

 

With regard to simplicity and effectiveness in terms of time, 

the proposed system offers a significant advantage. Patients 

can easily use it for the early detection of melanoma thanks to 

its user-friendly design, which prevents any needless 

complexity. This system has the potential to significantly 

improve patients' lives by enabling early diagnosis. There are 

numerous computer-aided diagnosis systems available for 

melanoma detection. The complexity of many of these systems, 

however, makes it difficult for the average person to use and 

navigate them effectively. These current systems frequently 

remain inaccessible to the general public without the direction 

of knowledgeable and trained individuals. 

Accuracy is a defining characteristic of any successful 

system, and ours does not fall short in this regard. It 

demonstrates its ability to successfully distinguish between 

melanoma and non-melanoma cases with a satisfactory level 

of accuracy. The system's increasing accuracy creates new 

opportunities for useful medical applications, such as the 

recognition of lesions and expanded use in clinical settings. 

The results from our system are shown in Figure 12, which 

shows how well it can distinguish between melanoma and non-

melanoma conditions like nevus and seborrheic keratosis. This 

visual illustration highlights how the system has the potential 

to greatly improve melanoma diagnosis and treatment, 

eventually helping both patients and healthcare specialists. 

 

  
(a) melanoma (b) nevus 

 
(c) seborrheic keratosis 

 

Figure 12. Accurately classified images 
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7. CONCLUSION  

 

This study suggests a fresh approach to deep learning for 

skin cancer detection. Our study's primary objective is to 

develop a comprehensive method that is successful without 

utilizing any stages of automatic learning to achieve the 

highest levels. To detect skin cancer, accuracy is compared to 

other earlier algorithms. Seborrheic Keratosis, Nevus, and 

Melanoma were the three categories of the 2750 shamble 

pictures we worked on, and the proposed approach produced 

98% resolution and 98% precision.  The outcomes of our 

DensNet121 model's performance examination demonstrated 

some of its potential qualities. The model successfully learned 

from the supplied data during training, achieving an 

outstanding accuracy of 98%. Its capability to generalize to 

novel unseen data was evidenced by the validation accuracy of 

82 percent. The model retained an accuracy of 78% in the real 

test scenario which showed the effectiveness of the model. The 

model also showed high accuracy, recall, and F1 scores of 

98%, which indicates the efficiency of the model in correctly 

identifying positive cases. With a score of 97% the MCC 

significantly enhanced the performance of the model. Thus, 

the outcomes presented show that our proposed model based 

on the DensNet121 architecture can aid in the timely diagnosis 

of skin cancer, including melanoma. It is worth emphasizing 

here that there is still some room for improvement, with an eye 

on improving test accuracy and reducing validation loss. The 

effectiveness and inefficiency of the different strategies were 

described by comparing it with other models. Even while some 

models showed great training accuracy, their capacity to 

generalize to new data was constrained as seen by reduced test 

accuracy. This demonstrates the importance of good 

generalization and the excellent training accuracy in medical 

diagnostics.  

Future research could further improve diagnostic precision 

and model generalization by investigating advanced ensemble 

models and addressing class imbalance issues in skin cancer 

detection. 
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