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In recent years, substantial progress has been made in developing new descriptors to enhance 

content-based image retrieval (CBIR) systems. These advancements often focus on 

leveraging the relationship between low-level features such as color and texture. This study 

introduces the Correlated Microstructures Elements Descriptor (CMED), a novel descriptor 

that integrates three low-level features to improve image retrieval performance. Our 

experiments on three distinct natural image datasets reveal that CMED significantly 

outperforms both classical and state-of-the-art descriptors. The proposed algorithm 

demonstrates superior indexing and retrieval capabilities, achieving up to 26.41% 

improvement compared to the MPEG-7 standard and 10.75% compared to contemporary 

state-of-the-art descriptors. The findings underscore CMED's potential to advance the field 

of CBIR, offering robust solutions for accurately retrieving images based on semantic 

content. 
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1. INTRODUCTION

With the high increase in Internet technology and digital 

devices, it has become easier to obtain images of any object, 

animals, place, or any content that interests us. Consequently, 

we can generate a vast number of images in our daily lives. 

These images are widely utilized across various fields of 

knowledge. Similarly, these images require filtering, 

searching, or identification to solve or enhance different 

processes. Content-based image retrieval (CBIR) systems help 

address this issue and offer advantages over text-based 

systems by reducing human workload and the complexities of 

natural language processing. CBIR systems are currently 

utilized in a variety of fields such as face retrieval [1], 

shopping [2], building retrieval [3], clothe retrieval [4], 

medical image retrieval [5], and others [6-14]. 

Over the years, ideas for standardizing multimedia content 

have emerged to facilitate the processes of search, filtering, 

and retrieval. One such standard is the MPEG-7 standard 

proposed by the Moving Picture Experts Group (MPEG) [15], 

which comprises eight parts oriented towards describing 

multimedia content, including audio, images, and video. 

However, the problems present in retrieval systems have not 

yet been fully solved. Recent research has focused on various 

issues such as user interaction, segmentation, dimensionality 

reduction, feature indexing, geotag-based image retrieval, 

high-level image features, content-based image retrieval for 

privacy preservation, and content-based video retrieval [15]. 

Specifically, the challenges related to high-level image 

features revolve around reducing the semantic gap, which 

refers to the disparity between what a user seeks in an image 

and what the retrieval system provides [16, 17]. 

The semantic gap can be associated with the representation 

of descriptors. Achieving a robust descriptor representation 

entails it being invariant to certain transformations, including 

scale, rotation, and translation. Additionally, CBIR systems 

predominantly utilize low-level features to represent images, 

such as color, shape, texture, and spatial position. Since low-

level descriptors are unlikely to be directly linked to high-level 

features [18], such as activities, places, objects, emotions, 

among others [15]. 

To establish a direct relationship or achieve a better 

representation of high-level features, some research has 

introduced improvements based on visual theories or the 

utilization of various techniques to establish a connection 

between two or more low-level features. Many proposals 

primarily focus on texture and color, owing to their effective 

discrimination and close correlation. Recently introduced 

descriptors mainly rely on "Textons," which are founded on 

Julesz's Textons theory [19]. Although different types of 

descriptors use more than one low-level feature, some 

descriptors are based on feature integration theory [20], or 

related descriptors in the similarity measure [21]. 

This paper presents a novel descriptor to improve the 

representation of the descriptors present in the state-of-the-art 

that use Microstructures and elements structures, the proposal 

descriptors aim to reduce the semantic gap by developing a 

descriptor that represents high-level image features. 

Specifically, it utilizes the relationship between low-level 

features of the image to enhance evaluation on sets of images 

necessitating level three retrieval, as per the levels outlined by 

Eakins. As well as, to get better geometry transformation 

tolerance, present a new methodology to classify the type of 

structures based on elements instead of shape of structures. 

According to the metrics, the descriptor gets results above the 

state-of-the-art even when transformations are applied to 
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images. 

The rest of the paper is organized as follows. Section 2 

shows related works in the state-of-the-art, Section 3 presents 

the proposal model, Section 4 the experiments and results 

performed by the descriptor and finally, Section 4 reports the 

conclusions. 

 

 

2. RELATED WORKS 

 

Various algorithms have been designed to extract color and 

texture features for image retrieval [22]. Color is widely used 

due to its invariance to rotation and scale, which makes it 

powerful in image classification. On the other hand, texture 

features provide important information about the smoothness, 

coarseness, and regularity of many real-world objects [23]. 

Some classical low-level color descriptors used in CBIR 

systems are proposed by the MPEG-7 standard, such as the 

dominant color descriptor (DCD), color layout descriptor 

(CLD), and scalable color descriptor (SCD) [24]. Similarly, in 

texture-based algorithms, the MPEG-7 standard adopts three 

texture descriptors: homogeneous texture descriptor (HTD), 

texture browsing descriptor (TBD), and the edge histogram 

descriptor (EHD) [24]. Although low-level features yield good 

results, single low-level visual features are not sufficient to 

represent high-level semantics due to highly complex visual 

content [25] To reduce the semantic gap and improve the 

results of CBIR systems, many methodologies have been 

proposed in the state-of-the-art. 

Considering the powerful discrimination and the close 

relation between texture and color, CBIR systems such as 

those presented in the previous studies [26-28] propose a 

methodology using both color and texture to represent image 

content and present techniques to combine them for better 

retrieval results. On the other hand, to represent high-level 

features, recent descriptor proposals use the Texton theory, as 

exemplified by the Microstructure descriptor (MSD) by Liu et 

al. [22], which leverages the relationship between color and 

texture, utilizing what they term "microstructures". The 

authors consider microstructures an evolution of Textons as 

they incorporate both color and texture. In subsequent years, 

Dawood et al. [25] proposed improvements to the MSD 

descriptor, such as the Correlated MicroStructure Descriptor 

(CMSD), which, unlike MSD, identifies microstructures by 

establishing correlations between texture orientation, color, 

and intensity features. CMSD also incorporates edge direction 

differently from MSD by adding 45° and 135° diagonal edges. 

Similarly, the Structure Elements' Descriptor (SED) proposed 

by Wang and Wang [29], is another example of descriptors 

utilizing both color and texture. SED, a scaled invariant 

descriptor, is based on structures detected in a quantized image, 

using five different structure elements: 0°, 45°, 90°, 135°, and 

no direction. Additionally, Chu and Lei [30] present the Multi 

Integration Features Histogram descriptor (MIFH). Inspired 

by the feature integration theory, present a model that uses the 

color and edge features for image representation. 

 

 

3. CORRELATED MICROSTRUCTURES ELEMENTS 

DESCRIPTOR 

 

Although the CMSD descriptor provides good results in 

image retrieval, it has been observed that it only covers small 

structures because it uses a 3×3 window size, which could 

affect its retrieval performance. In addition, the CMSD 

descriptor only considers the correlation of microstructures 

and not the types of structures present in the images. On the 

other hand, the descriptor could be limited by the techniques 

used to generate the feature maps. 

Considering microstructure detection based on the Texton 

theory, the correlated microstructures processed by CMSD, 

and the methodology of structure element detection as in SED, 

the proposed descriptor named CMED can be considered an 

improvement over the CMSD descriptor and SED. The key 

difference between both descriptors and CMED lies in the 

utilization of two methodologies and the process employed to 

generate the elements' histogram. Rather than relying on 

classical types of structures based on shape like SED, the 

proposed descriptor adopts a novel methodology based on the 

number of elements, which remains invariant to geometric 

transformations. 

The feature extraction methodology follows the CMSD and 

MSD processes and is described in the following six steps: (1) 

Extraction of low-level features; (2) Generation of 

microstructure maps using the extracted features; (3) 

Detection of structure using the microstructure maps obtained 

in the previous step; (4) Calculation of correlations between 

the microstructures using the three feature maps, resulting in 

three correlation maps; (5) Generation of histograms for the 

detected structure elements in each feature; (6) Concatenation 

of the histograms to obtain a single histogram of structures. 

Similarly, the histogram of each microstructure correlation 

map is obtained and concatenated into a single correlation 

histogram. Finally, both histograms are used to produce the 

CMED descriptor vector. Figure 1 illustrates the descriptor 

process graphically. Detailed descriptions of these steps are 

provided in the following sections. 

 

3.1 Low level feature extraction 

 

The initial step involves extracting the feature maps and 

quantizing them to generalize and reduce the required 

resources. The image is then transformed from the RGB to the 

HSV color space. This transformation is chosen because the 

HSV color space is widely reported in the literature as being 

more akin to human perception [25]. 

 

3.1.1 Color map 

The quantization of the image in HSV involves uniformly 

quantizing the H, S, and V values [25]. With 𝐵ℎ = 8, 𝐵𝑠 = 3 

and 𝐵𝑣 = 3, as depicted in Eqs. (1)-(3), this results in the color 

map 𝐶𝑀(𝑥, 𝑦) having the same number of rows and columns 

as the original image with 8 ∗ 3 ∗ 3 = 72  distinct values. 

Consequently, this yields a 𝑚𝑎𝑡𝑟𝑖𝑥(𝑥, 𝑦) with values ranging 

from 0 to 71, as shown in the Eq. (4). 

 

𝑄ℎ(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) × (𝐵ℎ/𝑚𝑎𝑥ℎ) (1) 

 

𝑄𝑠(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) × (𝐵𝑠/𝑚𝑎𝑥𝑠) (2) 

 

𝑄𝑣(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) × (𝐵𝑣/𝑚𝑎𝑥𝑣) (3) 

 

𝐶𝑀(𝑥, 𝑦) = 𝑄ℎ(𝑥, 𝑦) × (𝐵𝑠 × 𝐵𝑣) + 𝑄𝑠(𝑥, 𝑦) × 𝐵𝑣

+ 𝑄𝑣(𝑥, 𝑦) 
(4) 
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Figure 1. Proposed Correlated Microstructures Elements Descriptor (CMED) 

3.1.2 Intensity map 

The intensity map 𝐼𝑀(𝑥, 𝑦) is obtained by quantizing the 

intensity channel 𝑉 of the image in 𝐻𝑆𝑉 into 10 bins. Since 

the value in channel 𝑉 range from zero to one, the quantized 

intensity map is expressed as shown in Eq. (5), where 𝐵𝐼  is set

to ten, and 𝑉(𝑥, 𝑦) represents the value in channel 𝑉  at the 

coordinates (𝑥, 𝑦), in the 𝐻𝑆𝑉 image. This results in a matrix 

with values ranging from 0 to 9. 

𝐼𝑀(𝑥, 𝑦) = 𝑉(𝑥, 𝑦) × 𝐵𝐼 (5) 

3.1.3 Edge map 

Finally, the edge map is obtained with the methodology 

proposed in the previous study [25], known as Multi-

Dimensional Texture Orientation Detection (MD-TOD) 

method. The edge detection employs Sobel filters in four edge 

directions, 0°, 45°, 90°, and 135°. Since CMSD utilizes the 

𝐻𝑆𝑉 color space, the descriptor transforms from cylindrical to 

Cartesian coordinates after applying the Sobel filters, as 

demonstrated in Eqs. (6)-(8). Here, 𝐻𝑐 , 𝑆𝑐 and 𝑉𝑐 represent the

new values of the HSV space in Cartesian coordinates. 

𝐻𝑐(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) × cos(𝐻(𝑥, 𝑦)) (6) 

𝑆𝑐(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) × sin(𝐻(𝑥, 𝑦)) (7) 

𝑉𝑐(𝑥, 𝑦) = 𝑉(𝑥, 𝑦) (8) 

With Cartesian coordinates in HSV, the MD-TOD 

methodology detects diagonal edge vectors denoted by 𝑑45∘̂

and 𝑑135∘̂. The diagonal edge orientation map 𝑂𝑟𝑖𝑚𝑎𝑝𝐷𝑖𝑎𝑔 is

obtained using Eqs. (9-13). Here 𝐻45∘ , 𝑆45∘ and 𝑉45∘ represent

edges extracted with the Sobel 45∘ operator for each channel,

while 𝐻135∘,  𝑆135∘ and 𝑉135∘ represent edges detected with the

Sobel 135∘ operator.

cos(𝑑45∘̂ , 𝑑135∘̂) =
𝑑45∘̂ ⋅ 𝑑135∘̂

|𝑑45∘̂ | ⋅ |𝑑135∘̂|
(9) 

𝑑45∘̂ ⋅ 𝑑135∘̂ = 𝐻45∘ ⋅ 𝐻135∘ + 𝑆45∘ ⋅ 𝑆135∘ + 𝑉45∘ ⋅ 𝑉135∘ (10) 

|𝑑45∘̂ | = (𝐻45∘
2 + 𝑆45∘

2 + 𝑉45∘
2 )

1
2 (11) 

|𝑑135∘̂| = (𝐻135∘
2 + 𝑆135∘

2 + 𝑉135∘
2 )

1
2 (12) 

𝑂𝑟𝑖𝑚𝑎𝑝𝑑𝑖𝑎𝑔 = arccos(cos(𝑑45∘̂ , 𝑑135∘̂)) (13) 

The edge orientation map 𝑂𝑟𝑖𝑚𝑎𝑝ℎ𝑣  is obtained using Eqs.

(14)-(18). Here, the horizontal and vertical edge orientation 

are denoted by ℎ̂  and �̂�,  respectively. 𝐻ℎ , 𝑆ℎ  and 𝑉ℎ

represents the edges detected for each channel with Horizontal 

operator, while 𝐻𝑣 , 𝑆𝑣  and 𝑉𝑣  represent the edges with the

Vertical operator. 

cos(ℎ̂, �̂�) =
ℎ̂ ⋅ �̂�

|ℎ̂| ⋅ |�̂�|
(14) 

ℎ̂ ⋅ �̂� = 𝐻ℎ ⋅ 𝐻𝑣 + 𝑆ℎ ⋅ 𝑆𝑣 + 𝑉ℎ ⋅ 𝑉𝑣 (15) 

|ℎ̂| = (𝐻ℎ
2 + 𝑆ℎ

2 + 𝑉ℎ
2)

1
2 (16) 

|�̂�| = (𝐻𝑣
2 + 𝑆𝑣

2 + 𝑉𝑣
2)

1
2 (17) 

𝑂𝑟𝑖𝑚𝑎𝑝ℎ𝑣 = arccos(cos(ℎ̂, �̂�)) (18) 

The edge orientation map, 𝑂𝑀(𝑥, 𝑦), is obtained using Eq. 

(19), which computes the average of the maps previously 

calculated and quantified into 𝐵𝑂  levels, set to 6.

𝑂𝑀(𝑥, 𝑦) =
(𝑂𝑟𝑖𝑚𝑎𝑝ℎ𝑣 + 𝑂𝑟𝑖𝑚𝑎𝑝𝑑𝑖𝑎𝑔)

2
×

𝐵𝑂

180
(19) 

3.2 Microstructure detection 

Microstructure detection follows the methodology outlined 
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in CMSD [25]. Figure 2 illustrates an example of 

microstructure detection. The method is applied to each 

featured map using a 3×3 block. Detection occurs on all the 

featured map from right to left and from top to bottom with 

four different origins (0,0), (0,1), (1,0) y (1,1), with a stride 

of 3. The process returns four microstructure maps 𝑀1, 𝑀2,

𝑀3 and 𝑀4, respectively for each different origin.

These four maps are then combined following Eq. (20), to 

generate a microstructure image, 𝑀𝑇(𝑥, 𝑦), as show in Figure

3. Finally, the process of microstructure detection in each

feature map returns three microstructures’ images, one for

each feature.

𝑀𝑇(𝑥, 𝑦)

= max(𝑀1(𝑥, 𝑦), 𝑀2(𝑥, 𝑦), 𝑀3(𝑥, 𝑦), 𝑀4(𝑥, 𝑦))
(20) 

Figure 2. Fundamental Microstructure detection 

Figure 3. Microstructure image 

3.3 Structure's detection 

Given the usefulness of structure elements in discriminating 

between images of different categories, we have decided to 

integrate them into our descriptor. Since the methodology to 

obtain the microstructures already generates a map of 

structures during the process, incorporating this process can 

enhance our descriptor by leveraging information we already 

possess from earlier stages. Additionally, we have opted not 

only to focus on structures present in edges but also to consider 

structures found in color and luminosity features. This 

expansion ensures a more comprehensive representation of the 

image content. 

While various types of structures based on shape or 

direction, as demonstrated in Figure 4, and utilized in previous 

works such as [29], exist in the literature, we have proposed 

two new categorizations of structures for our CMED. These 

new categorizations aim to address the limitations associated 

with current structures, particularly in terms of their 

susceptibility to transformations. 

Figure 4. Classical structures 

We have proposed two different ways to categorize the 

structures. One approach is based on the number of elements, 

while the other is based on identifying structures that remain 

invariant under rotation and reflection transformations, which 

we refer to as fundamental structures. 

3.3.1 Number of elements 

Based on the number of elements in the structures, which 

provides tolerance to rotation and a reduced number of types, 

we have established a categorization method. As illustrated in 

Figure 5, this categorization consists of eight different types, 

unlike classical structures, which can have more than 16 types. 

Consequently, the previously detected microstructures are 

labeled into a type according to the number of elements. 

Figure 5. Structures based on number of elements 

Figure 6. Structure histogram vector 
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To obtain the structure elements, the detection process 

begins at the same origin as each feature map and moves a 3×3 

block from left to right and top to bottom with a stride of 3. 

This means that the previously detected fundamental 

microstructure is assigned a type based on the number of 

elements, and the structures detected in the microstructure map 

are saved in a histogram of length 𝑛𝑠, representing the number 

of structure types to consider, in this case, eight or nine if we 

consider the structure without an element. 

The descriptor obtains the structure histogram for each map 

and combines the four vectors, as shown in Figure 6. Finally, 

the result vector is normalized. This process is repeated for 

each feature, resulting in three histograms: one for color, one 

for edges, and one for luminosity, respectively. 

3.3.2 Fundamental structures 

Considering that the proposed methodology based on the 

number of elements in the structures could be overly general, 

we acknowledge that there is a great variety of different shapes 

with the same number of elements, as shown in Figure 7. 

These variations in shape may be important for representing 

the content in the image. 

To obtain a vector with more detailed information in 

structure detection, we propose considering not only the 

number of elements but also the shape of the structures 

detected, while ensuring invariance to reflection and rotation 

transformations. We classify structures derived from rotation 

and reflection transformation as the same type. This means 

that structures obtained from a rotation, as illustrated in Figure 

8, and those obtained from a reflection transformation, as 

shown in Figure 9, are categorized as the same type of 

structure. 

Detecting the type of structure considering rotation and 

reflection transformations requires more than counting the 

number of elements. For this reason, we propose a 

methodology to assign the structure type, considering that 

structures across transformations are the same structure. 

Figure 7. Different shapes with two-element structure 

Figure 8. Four-element structure in different orientations 

Figure 9. Reflection transformation 

Figure 10. Structure detection 

To detect the type of structure, the descriptor extracts the 

eight elements of the structure, meaning the 3×3 block, and 

arranges them in a vector. In this vector, we assign a value of 

one to positions where an element exists and zero to positions 

without an element, as illustrated in Figure 10. 

Once the vector is created, we propose the use of four 

coefficients to classify the structures: 

1) 𝐶𝑡 : following the same idea as LBP-U [31], this

coefficient counts the number of transitions,

indicating the changes from one to zero and vice

versa.

2) 𝐶𝑑 : This coefficient counts the maximum distance

between two elements in the structure.

3) 𝐶𝑙 : Represents the maximum length of continuous

elements in the structure.

4) 𝐶𝑠 : This coefficient represents the number of

different symmetric elements, calculated using Eq.

(21), where 𝑉𝑒 is the vector obtained from the eight

neighbors of the structure.

𝐶𝑠 = ∑|𝑉(𝑖) − 𝑉(𝑖 + 4)|

8

𝑖=1

(21) 

Figure 11. Fundamental structures 
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To calculate all coefficients, we consider position eight in 

the vector as preceding position one in a cyclic manner. These 

four values together form a unique identification code for the 

structure. Figure 10 visually illustrates the representation of 

each coefficient. 

In clarifying the process and demonstrating how these 

coefficients classify structures consistently across 

transformations, we can consider the examples in Figure 9, 

which is the reflection of the example in Figure 10. In this 

example, we obtain 𝑉𝑒 = [1,0,0,0,1,1,1,0] , resulting in the

following coefficients: 𝐶𝑡 = 4; 𝐶𝑑 = 3; 𝐶𝑙 = 3 ; and 𝐶𝑠 = 2 .

Thus, the identification code for the structure is 4332, which 

is identical to the code for the structure in Figure 10. This 

indicates that all structures detected with the same number will 

be classified as structures of the same type. 

Following this process and considering both empty and full 

structures, we detected a total of thirty different types, as 

shown in Figure 11. We call these types “fundamental 

structures”. 

3.4 Microstructure correlation 

To obtain a description that contemplates the relationship 

between low-level features, our proposed descriptor follows 

the microstructure correlation process presented by the 

previous work [25]. Initially, the microstructure map is 

obtained by utilizing two microstructure images to extract 

information from a feature map. Subsequently, these 

microstructure images are combined to yield a correlated 

microstructure map, denoted as 𝑀𝐶(𝑥, 𝑦) as shown in Eq. (22).

Finally, 𝑀𝐶  is employed to extract information from the

feature map, considering the values located within the 

microstructures. This process yields a micro-feature map. The 

entire procedure is repeated for each feature, resulting in the 

Micro-color map, the Micro-orientation map, and the Micro-

intensity map. An illustrative example of this process to obtain 

the Micro-Orientation map is presented in Figure 12, where 

the intensity and orientation microstructure images are utilized 

to extract information from the color map. 

Figure 12. Construction of micro-orientation map 

𝑀𝐶(𝑥, 𝑦) = max(𝑀𝑇
1(𝑥, 𝑦), 𝑀𝑇

2(𝑥, 𝑦)) (22)

3.5 Feature representation 

The descriptor is represented by histograms. Concatenating 

the histogram of the types of structures in each feature results 

in a total of 𝑛𝑠 ∗ 𝑛𝑓  values, where 𝑛𝑠  is the number of 

structures and 𝑛𝑓 the number of features maps. Additionally, 

the histogram of correlation of microstructures of each feature 

is concatenated, resulting in a vector with 72 + 6 + 10 = 88 

values. 

Finally, if we consider the fundamental structures in color, 

orientation, and luminosity (30 fundamental structures, 𝑛𝑠 =
30  and 𝑠𝑓 = 3), the resulting vector length is 120 + 88 =
208. 

On the other hand, when using structures based on the 

number of elements considering the empty structure (𝑛𝑠 = 9 

and 𝑠𝑓 = 3), we obtain a vector length of 27 + 88 = 115. 

Thus, the CMED descriptor contains information on the 

occurrence of each type of structure and microstructures. The 

CMED vector is defined in Eq. (23). Where 𝐻𝑠
𝐶 , 𝐻𝑠

𝑂  and 𝐻𝑠
𝐼 ,

are the histograms of the structure's elements for color, 

orientation, and intensity, respectably. Similarly, 𝐻𝑚
𝐶 , 𝐻𝑚

𝑂  and 

𝐻𝑚
𝐼  the histograms of the Micro-color, Micro-orientation, and 

Micro-intensity map, respectably. 

𝐶𝑀𝐸𝐷 = [𝐻𝑠
𝐶 , 𝐻𝑠

𝑂 , 𝐻𝑠
𝐼 , 𝐻𝑚

𝐶 , 𝐻𝑚
𝑂 , 𝐻𝑚

𝐼 ] (23) 

4. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed CMED 

descriptor, this section presents experiments conducted to 

compare different parameter settings, as well as an objective 

evaluation of its performance compared to the state-of-the-art 

in content-based image retrieval. We evaluated the 

performance of our method using the three metrics used in the 

state-of-the-art, and the metric proposed by the standard 

MPEG-7. 

One of the most used metrics is Precision, which provides a 

percentage of correctly retrieved images in a query. Its 

definition is presented in Eq. (24), where 𝑟(𝑥𝑛) can take a

value of zero or one following Eq. (25), 𝐾 represents the total 

number of retrieved images,𝑥𝑛 denotes the image retrieved at

position 𝑛, and 𝐼𝑐𝑞 is the set of images in the corresponding

category to the query 𝑞 . Thus, 𝑟(𝑥𝑛) will be one when the

image retrieved in position n is relevant. 
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𝑃 = |𝐾|−1 ∑ 𝑟(𝑥𝑛)

𝐾

𝑛=1

(24) 

𝑟(𝑥𝑛) = {
1, 𝑥𝑛 ∈ 𝐼𝑐𝑞

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(25) 

Recall, a widely used metric, complements Precision by 

measuring the percentage of relevant images retrieved relative 

to the total number of images in the query class. 

Mathematically, it is expressed by Eq. (26). Where 𝑅𝑞

represents the total number of images in the class for query 𝑞. 

𝑅 = |𝑅𝑞|
−1

∑ 𝑟(𝑥𝑛)

𝐾

𝑛=1

(26) 

Similarly, Mean Average Precision (MAP) could be 

regarded as a synthesis of the precision and recall processes, 

utilizing the precision at 𝑘, as defined by Eq. (27), for each 

retrieved image. MAP is calculated using Eqs. (28)-(29). 

Where 𝑘 is the position at which the image was retrieved, and 

𝑄 denotes the total number of queries performed. 

𝑃𝑘 = |𝑘|−1 ∑ 𝑟(𝑥𝑛)

𝑘

𝑛=1

(27) 

𝐴𝑃𝑞 = |𝑅𝑞|
−1

∑ 𝑃𝑘

𝐾

𝑘=1

× 𝑟(𝑥𝑛) (28) 

𝑀𝐴𝑃 = |𝑄|−1 ∑ 𝐴𝑃𝑞

𝑄

𝑞=1

(29) 

Finally, the Average Normalized Modified Retrieval Rank 

(ANMRR) metric, as proposed by the MPEG-7 standard, 

serves to evaluate retrieval systems by considering the position 

of the relevant image retrieved. ANMRR provides a 

percentage of error, where results closer to zero indicate better 

performance. The metric can be defined by six equations. 

Firstly, 𝑅𝑎𝑛𝑘𝑛  is assigned to each image 𝑥𝑛  belonging to

the set of images of the query category. 𝑅𝑎𝑛𝑘𝑛 is determined

based on the position 𝑘 at which the image is retrieved in the 

query, as shown in Eq. (30). Additionally, 𝐶𝑞 is a coefficient

obtained by Eq. (31). 

𝑅𝑎𝑛𝑘𝑛 = {
𝑘, 𝑘 ≤ 𝐶𝑞

1.25 × 𝐾𝑞 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(30) 

𝐶𝑞 = min{ 4 × 𝑅𝑞 , 2 × max[𝑅𝑞 , ∀𝑞]} (31) 

𝐴𝑉𝑅𝑞  represents the Average Rank of all images in the

category to which the query belongs, and it can be defined as 

Eq. (32). 𝑀𝑅𝑅𝑞 denotes a Modified Retrieval Rank, which is

subsequently normalized to obtain 𝑁𝑀𝑅𝑅𝑞 . Finally, the

average of all queries' results yields the ANMRR, as illustrated 

in Eqs. (33)-(35). 

𝐴𝑉𝑅𝑞 = ∑
𝑅𝑎𝑛𝑘𝑛

𝑅𝑞

𝑅𝑞

𝑛=1

(32) 

𝑀𝑅𝑅𝑞 = 𝐴𝑉𝑅𝑞 − 0.5 × [1 + 𝑅𝑞] (33) 

𝑁𝑀𝑅𝑅𝑞 =
𝑀𝑅𝑅𝑞

1.25 × 𝑘𝑞 − 0.5 × [1 + 𝑅𝑞]
(34) 

𝐴𝑁𝑀𝑅𝑅 = |𝑄|−1 ∑ 𝑁𝑀𝑅𝑅𝑞

𝑄

𝑞=1

(35) 

For the experiments we used some of the most popular 

dataset obtained from Corel Photo Gallery [32]. The Corel-1k 

dataset is often utilized as a benchmark dataset in image 

retrieval research [33], It consists of 1,000 images covering a 

variety of scenes, objects, and textures, providing a diverse 

range of visual content for evaluation purposes. Each image is 

annotated and categorized into one of ten distinct classes, 

facilitating the assessment of retrieval algorithms across 

different semantic categories. 

Similarly, the Corel-5k dataset offers a larger and more 

varied collection of images, with 5,000 images distributed 

among 50 categories. However, it is worth noting that these 

images may contain artifacts on the edges, which can pose 

additional challenges for retrieval algorithms. Despite this, the 

dataset remains valuable for evaluating the robustness and 

generalization capabilities of image retrieval methods. 

In contrast, the Corel Database for Content-based Image 

Retrieval (Corel-CBIR) dataset [34], provides an extensive 

collection of 10,800 images divided into 80 unbalanced 

concept groups. This dataset offers a more comprehensive and 

diverse set of images, covering a wide range of visual concepts 

and scenes. The unbalanced nature of the concept groups 

introduces additional complexity, requiring retrieval 

algorithms to effectively handle varying levels of 

representation within each category. 

Overall, these datasets serve as crucial resources for 

evaluating and benchmarking the performance of content-

based image retrieval systems. Their diverse content and well-

defined categories enable researchers to assess the 

effectiveness and robustness of different retrieval algorithms 

under various conditions and settings. 

For our experiments, we adopted a systematic approach by 

selecting 10 random images per category to serve as query 

images. This strategy ensured a balanced representation across 

the categories and minimized bias in the evaluation process. 

Consequently, we generated a total of 100 queries (Q=100) 

from the Corel-1k dataset, 500 queries (Q=500) from the 

Corel-5k dataset, and 800 queries (Q=800) from the Corel-

CBIR dataset. 

For practical purposes and considering that people tend to 

seek results in the first retrieved images, we initially conducted 

evaluations at K=12, meaning the top 12 most relevant images 

for each query. However, for a comprehensive assessment, we 

also conducted comparisons with variations of K in the range 

from 1 to 100. 

Furthermore, for evaluations using the ANMRR metric, we 

utilized all retrieved images to ensure proper utilization of the 

metric. 

4.1 Performance evaluation of proposed CMED 

To determine the most effective similarity measure for our 

CMED descriptor, we conducted experiments using three 

commonly used measures: Manhattan Distance Eq. (36), 

Euclidean Distance Eq. (37), and the similarity measure 
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defined in the previous work [29] for the SED descriptor Eq. 

(38). 

 

𝐿1(𝑇, 𝑄) = ∑|𝑇𝑖 − 𝑄𝑖|

𝑀

𝑖=1

 (36) 

 

𝐿2(𝑇, 𝑄) = √(∑(𝑇𝑖 − 𝑄𝑖)2

𝑀

𝑖=1

) (37) 

 

𝐿𝑠(𝑇, 𝑄) = ∑
|𝑇𝑖 − 𝑄𝑖|

1 + |𝑇𝑖 + 𝑄𝑖|

𝑀

𝑖=1

 (38) 

 

These measures were tested using the Corel-1k image set, 

with the number of retrieved images (K) varying from 1 to 100. 

The results, depicted in Figure 13, indicate that while the 

results between the L1 distance and the distance proposed for 

the SED (Ls) descriptor are quite similar, the Ls distance 

consistently outperformed the others. The Ls distance 

demonstrates superior performance throughout the experiment, 

suggesting that it is a more suitable option for descriptors 

based on microstructures. 

Furthermore, to enable the detection of microstructures and 

structures of different sizes, we enhanced the proposed CMED 

descriptor by incorporating a pyramidal sub-sampling 

approach like the used in the SIFT descriptor [35]. This 

experiment considered a maximum depth of eight. The results, 

as illustrated in Figure 14, exhibit a notable decline, likely 

attributable to the size of the image set. Notably, the smallest 

set demonstrates diminished results at depth seven, while the 

largest set experiences a decline at depth five. The most stable 

depth observed was four or less. Overall, the descriptor 

achieved an improvement of 1.75% compared to depth four 

and one. However, depth four entails a higher computational 

cost due to the processing of four different image sizes. 

Table 1 presents the results obtained with the Corel-1k 

image set, where we evaluated different structures 

configurations. Specifically, we also tested using 7 and 28 

elements, excluding structures with 8 and zero elements. This 

approach considers the proposed methodologies based on the 

number of elements and fundamental structures, respectively, 

resulting in four possible configurations: 7, 9, 28, and 30 types. 
 

 
 

Figure 13. Precision of proposed CMED at different 

similarity measures with Corel-1k 

 
 

Figure 14. Results of different depths for CMED with 

precision metric 

 

Table 1. Evaluation of structures and position 

 

Position 
Number of Structures 

7 9 28 30 

MM 78.42% 78.58% 78.50% 78.58% 

CM 47.08% 44.25% 52.25% 47.83% 

 

Additionally, we explored two methods to obtain the 

structures: microstructure maps (MM) and correlation maps 

(CM). This involves considering two microstructure maps 

derived from different image features. 

The results indicate that incorporating more structure types 

enhances retrieval performance by up to 5%, particularly when 

the descriptor obtains structures from the correlation maps. 

However, when structures are detected in the microstructure 

maps, the descriptor performs better, with no significant 

difference between considering nine and thirty types of 

structures. Thus, increasing the number of structures may not 

necessarily lead to improvement and can even incur additional 

computational costs. 

 

4.2 Comparison of CMED with other CBIR descriptors 

 

For this experiment, we utilized the image datasets Corel-

1k, Corel-5k, and Corel-CBIR. Additionally, we compared our 

descriptor against several widely used descriptors in content-

based image retrieval systems, including those specified in the 

MPEG-7 standard such as EHD and CLD [24]. We also 

included state-of-the-art descriptors utilizing microstructures 

such as MSD [22] and CMSD [25], as well as descriptors 

based on structures like SED [29] and feature integration such 

as MIFH [30]. 

To ensure a fair evaluation, we implemented all descriptors 

in the same environment and with configurations 

recommended by their respective authors. For our descriptor, 

we selected the configuration that exhibited the best 

performance, which involved using 9 structures based on the 

number of elements, extracting structures from the 

microstructure maps, and utilizing the Ls (SED descriptor 

distance). 

Figures 15-17 display the precision results obtained across 

the three image datasets. The graphs illustrate that our 

descriptor outperforms others in terms of precision across all 

image sets. This suggests that CMED can retrieve a greater 

number of correct images compared to alternative descriptors. 
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Furthermore, it is evident that CMED exhibits a gentler slope 

in precision reduction as K increases, consistently maintaining 

superior performance compared to others. Notably, at K=12, a 

commonly used threshold for performance evaluation, our 

descriptor achieved a precision of 78.58% on the Corel-1k 

dataset. 

The results demonstrate a significant improvement of over 

19% compared to descriptors proposed by the standard and a 

3.5% enhancement compared to the CMSD descriptor, which 

exhibited the best performance among state-of-the-art 

descriptors. Moreover, on the Corel-5k dataset at K=12, our 

descriptor showcases an improvement of more than 22% 

compared to the MPEG-7 standard and consistently surpasses 

the CMSD descriptor. Similarly, with the Corel-CBIR dataset, 

the proposed descriptor achieves an improvement of over 18% 

compared to standard descriptors and a more than 3.5% 

enhancement over state-of-the-art descriptors. 

The graph in Figure 18 illustrates the results obtained with 

the Recall metric on the Corel-1k dataset. The Recall metric 

provides insight into the retrieval capability of the descriptor 

by indicating how many relevant images it can retrieve in 

response to a query. Ideally, achieving perfect retrieval would 

result in a steep and accurate increase in performance as the 

value of K increases. In the graph, it's evident that the proposed 

descriptor demonstrates a more linear increase compared to 

other descriptors, indicating superior retrieval performance. 

Figure 15. Precision of proposed CMED compared to other 

state-of-the-art descriptors on Corel-1k 

Figure 16. Precision of proposed CMED compared to other 

state-of-the-art descriptors on Corel-5k 

Figure 17. Precision of proposed CMED compared to other 

state-of-the-art descriptors on Corel-CBIR 

Figure 18. Recall of proposed CMED compared to other 

state-of-the-art descriptors on Corel-1k 

Furthermore, the graph illustrates a growing gap between 

the proposed descriptor and others, suggesting that it retrieves 

more images as the value of 𝐾 increases. Specifically, at K=12, 

our descriptor achieves a Recall of 9.43% on the Corel-1k 

dataset, indicating that it retrieves nine to teen images out of 

twelve relevant ones. This performance surpasses that of other 

descriptors on the Corel-1k image set. 

Similarly, Figures 19 and 20 depict the results for Corel-5k 

and Corel-CBIR datasets, respectively, showing comparable 

trends to those observed in Corel-1k. Despite Corel-5k results 

being closely aligned with CMSD, there is a noticeable 

divergence favoring our descriptor in the Corel-CBIR dataset, 

particularly evident with each incremental increase in K. 

Figures 21-23 illustrate the graphs depicting the results 

obtained with the MAP metric. MAP considers both precision 

and recall, indicating how many relevant images are retrieved 

relative to the total number of images in each category. The 

graphs demonstrate that our descriptor outperforms other 

descriptors consistently. Additionally, similar to the recall 

metric, our descriptor maintains a considerable lead over 

others as K increases. Notably, at K=12, the results of our 

descriptor consistently remain superior to those of other 

descriptors. 

1893



 

 
 

Figure 19. Recall of proposed CMED compared to other 

state-of-the-art descriptors on Corel-5k 

 

 
 

Figure 20. Recall of proposed CMED compared to other 

state-of-the-art descriptors on Corel-CBIR 

 

 
 

Figure 21. MAP of proposed CMED compared to other 

state-of-the-art descriptors on Corel-1k 

 

 
 

Figure 22. MAP of proposed CMED compared to other 

state-of-the-art descriptors on Corel-5k 

 

 
 

Figure 23. MAP of proposed CMED compared to other 

state-of-the-art descriptors on Corel-CBIR 

 

 
 

Figure 24. ANMRR metric of proposed CMED compared to 

classical and state-of-the-art methods on Corel-1k, Corel-5k 

and Corel-CBIR 
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Table 2. Category comparison of proposed CMED with other descriptors on Corel-1k 

Category CLD EHD SED MSD CMSD MIFH CMED 

Africa 75.72% 65.90% 38.37% 56.85% 46.02% 40.03% 37.49% 

Beach 86.08% 73.82% 57.19% 44.31% 38.88% 48.25% 35.14% 

Buildings 51.43% 66.97% 74.01% 72.18% 64.07% 62.84% 56.38% 

Bus 69.53% 73.96% 52.36% 47.28% 39.10% 39.47% 43.26% 

Dinosaur 82.45% 21.96% 41.28% 31.81% 33.49% 27.39% 28.97% 

Elephant 0.55% 1.67% 23.61% 4.69% 0.77% 8.01% 0.02% 

Flower 59.83% 69.61% 61.85% 54.00% 43.07% 46.45% 40.76% 

Horse 47.99% 28.60% 28.10% 35.17% 29.55% 33.64% 27.72% 

Mountain 33.15% 32.30% 54.00% 34.99% 27.52% 28.79% 23.56% 

Food 63.60% 69.90% 62.67% 63.10% 57.67% 52.96% 54.55% 

Average 57.03% 50.47% 49.34% 44.44% 38.01% 38.78% 34.79% 

Table 3. Tolerance transformation comparison of proposed CMED with other descriptors on Corel-1k with ANMRR 

Transformation CLD EHD SED MSD CMSD MIFH CMED 

Rotation 90° 57.03% 50.63% 49.91% 52.76% 45.60% 53.05% 40.15% 

Rotation 180° 57.04% 50.61% 48.35% 45.60% 38.94% 40.41% 35.91% 

Scaling 50% 61.52% 56.85% 49.61% 43.75% 38.03% 38.86% 34.81% 

Scaling 80% 62.87% 65.14% 52.46% 44.14% 38.40% 39.20% 35.39% 

Reflection 57.40% 50.30% 49.82% 44.51% 38.01% 38.86% 34.80% 

Average 59.17% 54.70% 50.03% 46.15% 39.80% 42.07% 36.21% 

Figure 24 presents the results obtained with the ANMRR 

metric across the three image datasets. Unlike other metrics, 

ANMRR considers the position of each retrieved image within 

the query class, making it unaffected by the number of 

retrieved images. This metric provides a more comprehensive 

evaluation as it accounts for both the number and position of 

retrieved images by each descriptor. 

The graph indicates that our proposed CMED descriptor 

demonstrates superior retrieval performance, achieving an 

ANMRR of 34.79% on the Corel-1k dataset. This represents a 

notable improvement of over 15% compared to descriptors 

from the MPEG-7 standard and over 3% compared to state-of-

the-art descriptors. Similarly, on the Corel-5k and Corel-CBIR 

image datasets, our descriptor achieves ANMRR values of 

75.33% and 66.93%, respectively, outperforming other 

descriptors. 

These results suggest that our descriptor not only retrieves 

a higher number of images on average but also retrieves them 

in more favorable positions, as indicated by the ANMRR 

metric. 

Table 2 presents the ANMRR results for each category of 

the Corel-1k dataset with K=12, allowing us to identify 

categories where the best performance is observed and 

whether any biases or challenges exist for the descriptor. The 

table indicates that CLD, EHD, MIFH, CMSD, and our CMED 

descriptor achieve the best evaluations. 

Upon closer inspection, our CMED descriptor consistently 

outperforms standard descriptors across most categories. 

Specifically, it demonstrates superior performance in the 

Africa, Beach, Elephant, Flower, Horse, and Mountain 

categories. However, our descriptor exhibits lower 

performance in the building category compared to standard 

MPEG-7 descriptors. 

Overall, while our descriptor may not achieve the highest 

evaluation in every category, it maintains strong performance 

on average. Despite not being the top-performing descriptor in 

each category, it consistently ranks among the best. This 

suggests that the CMED descriptor offers a more stable 

performance across diverse image categories compared to 

other descriptors. 

Table 3 presents the results for each descriptor on the Corel-

1k dataset under five different transformations: 90° rotation, 

180° rotation, 50% rescaling, 80% rescaling, and reflection 

transformation. The table includes precision with K=12 and 

the evaluation obtained with the ANMRR metric. 

The results demonstrate that the proposed CMED descriptor 

consistently retrieves the original image in the first position for 

all queries, indicating robustness to transformations. This 

suggests that the descriptor performs well even when images 

are subjected to various transformations. Additionally, the 

CMED descriptor outperforms other descriptors in terms of 

both precision and ANMRR under all transformations. 

Overall, based on the results obtained with the Corel-1k 

image set, it can be concluded that the CMED descriptor 

exhibits higher tolerance to rotation, scaling, and mirror 

transformations compared to other descriptors. 

5. CONCLUSIONS

In addition to the improve in retrieval performance, our 

CMED descriptor offers several strengths. Firstly, it 

demonstrates stability across various categories, consistently 

outperforming other descriptors on average. Moreover, it 

exhibits robustness to common image transformations such as 

rotation, scaling, and reflection, ensuring reliable performance 

in real-world scenarios where images may undergo such 

alterations. 

Furthermore, CMED leverages both structures and 

microstructures to enhance retrieval of natural images in 

semantic classes. This comprehensive approach not only 

improves representation but also increases tolerance to 

transformations, features that are widely used for content-

based image retrieval tasks. 

However, it's essential to acknowledge some weaknesses of 

the CMED descriptor. One limitation is its computational cost, 

especially when using a depth of four. This may pose 

challenges in scenarios where computational resources are 

limited or where real-time processing is required. Additionally, 

while CMED performs well across most categories, it exhibits 

lower performance in certain categories, such as buildings and 

dinosaurs, compared to descriptors from the MPEG-7 
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Standard. This suggests that further refinement may be needed 

to optimize performance across all images closely related to 

low-level features. It's worth considering that these categories 

had very similar images in terms of color or texture, which 

could be the reason for the better performance of the low-level 

descriptors. 

Furthermore, the performance of the descriptor is highly 

dependent on the low-level features used to construct the 

microstructure and structure maps. Exploring alternative 

feature representations or combinations may lead to 

improvements in retrieval performance. For example, 

incorporating deep learning features extracted from pre-

trained convolutional neural networks (CNNs) could enhance 

the descriptor's ability to capture higher-level semantic 

information from images. 

In real-world scenarios, CMED could benefit applications 

requiring robust and accurate image retrieval, such as image 

search engines, content-based image recommendation systems, 

and multimedia databases. Its ability to handle various image 

transformations makes it particularly suitable for tasks where 

images may be captured under different conditions or from 

different perspectives. Additionally, its effectiveness in 

retrieving images based on semantic content makes it valuable 

for applications requiring precise and contextually relevant 

image retrieval, such as medical image analysis, satellite 

image processing, and surveillance systems. 
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