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Speech quality is a crucial concern, as voice communication is a more noteworthy and 

ubiquitous aspect of everyday life. The emergence of audible echoes is one of the factors 

contributing to uncomplimentary quality deterioration. Network hardware and end-user 

devices are intrinsically prone to this sort of quality deterioration. Designing efficient 

acoustic echo cancellation (AEC) devices is vital for improving listening comfort and voice 

quality. When we utilize inexpensive and small analog components, an echo canceller 

operates poorly or not at all in the system if the net nonlinear distortion is greater than a 

certain value. Many adaptive filters are used to remove the echo from the microphone signal 

to solve this problem. Nonetheless, it is difficult to accomplish the preeminent performance 

of the AEC in real-time circumstances. In this work, we propose nonlinear acoustic echo 

cancellation (NAEC) using dense long short-term memory (LSTM)-based deep learning 

(D2L2). Deep learning has been applied to the concept of speech source separation (SSS). In 

our deep learning based NAEC, the near-end signal is separated from the microphone using 

LSTM layer training. Before learning commences, the Short-Time Fourier Transform 

(STFT) is used to extract frequency-time domain features from the acoustic signal. In the 

learning part of D2L2, two targets are assigned. The spectral Magnitude Mask (MM) is the 

primary, and the Near-end Signal Mask (NSM) is the secondary mask. The simulation shows 

that our D2L2 achieves a higher Echo Return Loss Enhancement (ERLE) than other works. 
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1. INTRODUCTION

Hands-free communication often involves a dialogue 

between two speakers positioned at near-end and far-end 

locations [1]. The primary speech signal is captured by the 

near-end microphone, but it also picks up two unwanted 

signals: background noises and an echo caused by the 

loudspeaker reproducing the far-end signal. The presence of 

echoes, resulting from the convergence of sound waves 

between the speakers and the microphone output, can reduce 

speech intelligibility at the far-end. Numerous experiments on 

acoustic echo cancellation (AEC) devices, which attempt to 

eliminate echoes and preserve near-end speech, have been 

conducted to address this issue. 

In recent years, nonlinear (NL) deviations in the echo 

pathway have been observed that are not negligible in the 

middle of the amplifier's emission or the far-end signal; 

however, these deviations are caused by the miniaturization of 

electrical parts used in hands-free equipment, such as wearable 

technologies, intelligent speakers, and smartphones. Therefore, 

in run-through, echo cancellation systems that assume a linear 

track of echo frequently fail. Different AEC algorithms for 

dealing with nonlinear problems have been suggested for 

determining nonlinear distortions on the echo route to reduce 

this incompatibility [2] further. Despite frequently 

necessitating research, the Volterra successions demonstrated 

victory in modeling NAEC with scrawny nonlinearities and 

reminiscence using nonlinear root functions. The ISF-NSFC 

and PRF cooperative investigation program supported this 

work by providing the necessary apparatus and 

methodological guidance with a high degree of computational 

complexity [3]. 

Hammerstein models provide a condensed form of echo 

cancellation. Additionally, Bayesian state-space modeling, 

adaptive functional link filters, and kernel-based techniques [4] 

are frequently applied to nonlinear AECs. Authors [5] 

approached the issue by taking away a frequency-to-time 

perspective and using sub-band adaptive filtering and 

multiplicative function approximation [6], effective Volterra 

succession modeling with annoyed band components. In 

contrast to conventional methods, artificial NNs offer an 

unconventional structure for highly nonlinear modeling [7]. 

For instance, nonlinear distortions on an echo track were 

estimated using a fully connected CNN (FCCNN) integrated 

with Hammerstein and adaptive filtering, as described in the 

previous study [8]. More recently, Halimeh et al. [9] proposed 

a model incorporating both Hammerstein and Wiener to 

predict linear and nonlinear echoes within an FCCNN. Despite 

yielding promising results, these methods still exhibit 

suboptimal performance in real-world scenarios, potentially 

due to two key factors. Firstly, these models inadequately 

capture the true nature of the distortions introduced by modern 

sophisticated devices onto the distant signal. Secondly, the 

majority of the data is parametric, requiring the pre-
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determination of NL basis functions and memory durations. 

For instance, the models proposed in the previous study [3] 

assume a specific amount of remembrance knocks, and fixed 

nonlinear activation utilities are used inside the neural network 

[8, 9]. In actual installations, these flaws could lead to less-

than-ideal solutions. 

Adaptive filters and other signal-processing techniques are 

frequently used in traditional AEC approaches. However, 

these result in drawbacks such as higher computational 

complexity, instability, filter coefficients failing to converge 

to the optimal value, and sensitivity to signal characteristics 

(echo delay, SNR, reverberation). Recently LSTM networks 

[10] have been applied as an alternate approach for echo 

cancellation and suppression due to their ability to capture NL 

relationships between input and output signals. 

This paper proposes a Dense LSTM Deep Learning D2L2 

algorithm for nonlinear acoustic echo cancellation (NAEC) 

wherein the spectral magnitude plays a major role in 

estimating the speech source of an acoustic microphone signal. 

The target speech is then gradually improved by using the 

near-end speech detector of the binary mask as an extra source 

in the subsequent component for magnitude mask 

determination. The estimated mistakes in near-end speech can 

be corrected by concurrently teaching both target modules 

using a unique loss function MSE. Lastly, the estimated results 

from the spectral mask network and the near-end speech 

detection device of the original signal input are used to 

produce near-end signal. As a result, the cascading 

architecture makes use of each module's advantages and is 

expected to yield accurate magnitude and phase estimates. 

D2L2 has three layers of BILSTM and one fully connected 

layer that is sandwiched between a fully connected input and 

output layer. The usage of multiple BILSTM layers improves 

the model capacity, learning more complex nonlinear mapping 

between input and output signal and learning of hierarchical 

representation of input audio signal. It also improves the 

learning dynamics and performance of echo cancellation. 

The research contributions of this paper are as follows: 

1) This research presents a novel approach to acoustic echo 

cancellation (AEC) using D2L2. In contrast to 

conventional approaches that depend on adaptive filters, 

our method models and suppresses echoes in real-time 

audio signals by utilizing deep learning techniques. 

2) We present a unique architecture made up of several 

layers of Bidirectional long short-term memory (BILSTM) 

that is intended to capture the intricate temporal 

dependencies and nonlinear interactions found in echo 

signals. Our model learns hierarchical representations of 

the input audio data by stacking many BILSTM layers, 

which enables more precise echo cancellation. 

3) To evaluate the performance of the D2L2-based AEC, 

several simulations were run. We have compared state-of-

the-art adaptive filtering techniques, such as KIPNLMS, 

PFLAF, and NSAEC, with simulated and real-world 

datasets and show notable increases in echo suppression 

performance. Quantitative metrics ERLE and 

convergence time indicate superior performance across 

various acoustic environments and echo scenarios. 

4) Our research contributes to advancing the state-of-the-art 

in AEC technology by harnessing the power of deep 

learning and LSTM networks. 

The paper is structured as follows. A review of the literature 

is presented in Section 2. A comprehensive outline of the 

formulation of the proposed D2L2 algorithm is given in Section 

3. In Section 4, the primary objective and performance 

evaluation of the ERLE for both the proposed method and 

recent works are analyzed and compared. Lastly, Section 5 

deals conclusion. 

 

 

2. RELATED WORK 

 

In wireless transceiver communication models and clever 

speakers, the connection between the loudspeaker and the 

microphone produces acoustic echoes. This approach 

considerably lowers the effectiveness of automated speech 

recognition (ASR) in smart speakers and significantly worsens 

speech communication quality. Typical acoustic echo 

cancellation (AEC) techniques employ adaptive algorithms to 

pinpoint the loudspeaker-to-microphone impulse response 

(IR). In delay-sensitive circumstances, the LMS adaptive 

filtering algorithm [10] is frequently used. 

For quick convergence and little computing burden, 

frequency domain LMS algorithms are frequently used [10]. 

Another widely used technique is the frequency-domain 

adaptive Kalman filter (FDKF) [11], which has recently been 

modified [12]. When nonlinear distortion in the acoustic echo 

route is not trivial, LAEC techniques perform noticeably 

worse [13]. 

To further reduce the echo, a residual echo suppression 

(RES) module is typically needed. Typically, RES is carried 

out by calculating the filter coefficients, linear AEC output, 

and far speech to determine the spectrum of residual echoes 

[14]. Nevertheless, achieving stability between near-signal 

distortion and remaining echo attenuation poses a challenge 

for Residual Echo Suppression Systems utilizing signal 

statistics. 

The recent introduction of deep learning methods for neural 

networks has enabled the replication of neural network designs, 

including both time domain and time-frequency (TF) domain 

approaches. In TF domain techniques, spectral information is 

extracted using an STFT. A Fully Connected Network (FCN) 

[15] is required to accommodate multiple input signals in RES. 

Another addition to AEC was the Recurrent Neural 

Network (RNN) constructed by either the BILSTM or the 

LSTM unit [16]. These techniques perform poorly because 

they disregard the link between the phase and magnitude, even 

though this method is incompetent for phase prediction in the 

testing environment [17]. Chen et al. [18] presented an AEC 

approach that entrenched the CNN architecture with full-time 

domain feature representation for an audio source segregation 

network called Conv-TasNet, and the amount produced by the 

adaptive filter was backed to custom many streams. 

While simulations validate the benefits of incorporating 

supplementary signals into the network, the model's reliance 

on a complex network topology proves inefficient in 

leveraging data from multiple streams, resulting in a plethora 

of parameters that hinder its practical implementation. 

Additionally, further research on commercial loudspeakers is 

necessary to substantiate the advantages of multistreams. 

Table 1 outlines the latest techniques in acoustic echo 

cancellation. 
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Table 1. Literature works of NAEC 

 

Year Method Stability Convergence 
Computational 

Complexity 
Remarks 

2004 

Interpolated 

frequency domain 

sampling rate 

conversion (SRC) 

Low Steady Sluggish Low 

Voice chat audio playback has an impact on AEC. 

Corrected only the playback sampling rate; the sample rate 

offset from the microphone is not taken into account. 

2008 Predistorter Steady Rapid Low 

Predistorter included without NL port, the system acts 

exactly like a linear system. Thus, whichever AEC method 

is utilized to eradicate the echo. 

2010 
Filter Model with 

Shortening 

Ascetically 

Steady 
Rapid 

Hinge on the 

Filter method 

A shortening filter drastically reduces the computational 

complexity by reducing the room impulse response. 

2011 
Hammerstein NL 

design 
Steady Sluggish high 

The linear component of the LEM system is modeled using 

a linear section, while the NL is modeled utilizing the NL 

section. 

2011 

DCAF (Drift-

Compensated 

Adaptive 

Filtering) 

Ascetically 

Steady 
Rapid Moderate 

To enhance speech when the target speech is distorted by 

asynchronous interference. 

2012 

An Improved 

Proportionate 

NLMS Algorithm 

Based on The 

10 Norm 

Steady Rapid High 

Utilize the sparsity of the system that must be recognized 

by using the l0 norm. It has a higher rate of convergence 

than the NLMS method, is still practical and reliable to use, 

and does not have issues with fixed-point instability. 

2013 
Nonlinear 

Cascaded Filter 

Ascetically 

Steady 
Rapid Low 

This approach separates the nonlinear from the linear 

components, ensuring constant stability and quick 

convergence. 

2014 

Modified version 

of Partitioned 

Block Frequency 

Domain Adaptive 

Filter 

(PBFDAF) 

Steady Rapid High 
AEC Complexity and Delay does not consider the issue of 

sampling rate incongruity with filter inputs. 

2014 

Proportionate 

functional link 

adaptive filter 

Steady Rapid High 

PFLAF is a proportional adaptation variant of SFLAF, 

which is based on a sparse representation of functional links 

that updates the coefficients for nonlinear modeling. The 

performance of PFLAF is superior in comparison with 

NLMS and SFLAF. 

2017 Volterra Filters Steady Sluggish 

Depends on the 

Adaptive filters 

used 

Adaptive algorithms of any kind can be used to update the 

coefficients. The adaptive algorithm of choice determines 

how difficult the process is. 

2020 

Harmonic 

Distortion echo 

suppressor 

Steady Rapid Low 

Because of its quicker convergence and lesser computing 

complexity, this may primarily be employed for handheld 

devices. 

2020 

Kernelized 

improved 

proportionate 

NLMS algorithm 

Steady Rapid High 

It is the kernelized variant of IPNLMS. The nonlinear echo 

path is easily modeled, and the global minimum is easily 

attained using the kernel method. KIPNLMS algorithm 

performs better than KLMS, KNLMS and KPNLMS. 

2021 

PercepNet joint 

noise and residual 

echo suppressor 

Steady Rapid Moderate 

Integrating a conventional acoustic echo canceller with a 

deep neural network (DNN)/hybrid signal processing-based 

low-complexity combined residual echo and noise 

suppressor. 

2022 
Neural Cascade 

Architecture 
Highly Steady Rapid 

Depends on the 

Sequence Length 

of the signals 

The suggested cascade structural design is accomplished 

from top to bottom with only one loss utility rather than 

utilizing sequential training phases with discrete loss 

functions. 

2022 

Nonlinear 

stereophonic 

acoustic echo 

cancellation 

Steady Rapid High 

NSAEC follows a functional link-based adaptive filtering 

approach and uses a sub-filter approach to enhance the 

convergence. NSAEC has superior performance compared 

to KIPNLMS and PFLAF. 

 

 

3. PROPOSED D2L2-DENSE LSTM DEEP LEARNING 

METHODOLOGY 

 

3.1 System model 

 

The nonlinear AEC's system model is shown in Figure 1. 

The room impulse response (RIR) of h(n) is combined with the 

far-end signal, x(n), to produce an echo signal that is mixed 

with the near-end signal of s(n). The three components of echo, 

near-end, and noise signals construct the microphone signal 

y(n), as shown by: 

 

𝑦(𝑛) = 𝑠(𝑛) + 𝑑(𝑛) + 𝑣(𝑛) (1) 
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Figure 1. Nonlinear acoustic echo cancellation system 

 

The AEC’s goal is to reduce echo d(n) and transfer near-end 

signal s(n) towards the far-end. Adaptive filters are utilized in 

classical AEC methods to estimate the IR ℎ̂(𝑛), where y(n) 

represents the microphone signal and x(n) represents the far-

end signal. The estimated signal �̂�(𝑛)  of the echo is then 

calculated as follows: 

 

�̂�(𝑛) = (ℎ̂(𝑛))
𝑇

x(𝑛) (2) 

 

where, x(n) is the input buffered, ℎ̂(𝑛) is the adaptive filter of 

length L, and T denotes transpose. The microphone signal is 

subtracted from �̂�(𝑛) to yield the system output. This output 

signal or the error signal e(n) is defined as: 

 

𝑒(𝑛) = 𝑦(𝑛) − �̂�(𝑛) (3) 

 

The estimation of the acoustic route h(n) is the crucial step 

in AEC methods. Traditional AEC techniques cannot manage 

nonlinear aberrations because they are inherently linear 

systems. Fast transversal filters [19], adaptive Volterra filters 

[20], Subband filters [21], and Functional link AF [22] 

explicitly represent the AEC system’s nonlinearity. However, 

in actual situations with large nonlinearities and potent 

interference signals, their performance is constrained. 

The AEC’s ultimate objective is to eliminate both the end 

signal of the far-end and the circumstantial noise at the end of 

the near-end, allowing only the signal at the near-end to be sent 

to the far-end. As per speech separation [23], AEC can be 

conceptualized as a separation issue, with the primary 

objective being the isolation of the near-end speech, which 

constitutes the main source of interference in the microphone 

recording. To address this, we utilize controlled speech 

separation to process the microphone inputs and 

simultaneously extract both the original near-end signal and 

far-end signal, instead of directly predicting the acoustic echo 

path. The clear near-end signal from the microphone signal is 

extracted using a dense LSTM architecture that is based on 

deep learning and is covered in the next section. 

 

3.2 D2L2 dense LSTM deep learning-based NAEC 

 

Here we incorporate a deep learning approach into NAEC 

for audio echo cancellation. Figure 2 is a diagram that 

illustrates our suggested method. The schematics use a fully 

connected input layer with 1024 units that passes the signal to 

three BILSTM layers with 512 units in each layer and a fully 

connected layer with 600 units. The signal is then passed on to 

an output layer with 512 units. 

 
 

Figure 2. Proposed D2L2: Dense LSTM deep learning based 

NAEC 

 

Broadly, the approach aims to mitigate background noise 

and acoustic echo, facilitating the extraction of near-end 

speech. This involves estimating both the magnitude mask 

(MM) for the microphone spectral signal and the binary mask 

for near-end speech (NSM) from x(n) and y(n). More precisely, 

a dense LSTM receives acoustic features derived initially from 

both the microphone signal and the far-end signal. To estimate 

the MM and NSM, the top layer of the LSTM functions as a 

mask estimation layer. The near-end signal estimate is then 

resynthesized using the mask estimate to the microphone 

signal. 

 

3.3 STFT-based spectral feature extraction 

 

Generally, speech signals are not stationary. Often, we want 

to examine the spectrum of each phoneme independently, but 

if we convert a spoken phrase to the frequency domain, we 

acquire a spectrum that is an average of all phonemes in the 

sentence. We can concentrate on the signal's characteristics at 

a certain moment by segmenting the signal into shorter chunks. 

We acquire the STFT of the signal by windowing and taking 

the Discrete Fourier transform (DFT) of each window. 

By selecting an appropriate window function, a time-

domain STFT partitions an acoustic wave into segments, 

revealing how frequency components evolve. An advantage of 

STFTs is that their parameters possess a physical and intuitive 

interpretation, corresponding directly to the spectrum. 

 

 
 

Figure 3. STFT spectrogram of the signal 
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Specifically, for an input signal s(n) and window w(n), the 

transform is defined as, 

 

𝑆(𝑚, 𝑘) = ∑ 𝑠(𝑚, 𝑛)

𝑛

𝑒−
𝑗2𝜋𝑛𝑘

𝑁  (4) 

 

𝑠(𝑚, 𝑛) = 𝑠(𝑛) ∗ 𝑤(𝑛 − 𝑚𝐿) (5) 

 

where, the fast Fourier transform (FFT) size is represented in 

terms of 2 orders and denoted here as N, n is the sample time 

index within the given frame, m is the frame index and w(n) is 

the windowing callback with N signals. w(n) is positioned at 

shifting step size L, and 1 −
𝐿

𝑁
 is the overlay ratio among 

continuous frames. The input signals are presented into 16 ms 

frames with an 8 ms delay between successive frames after 

being sampled at 16kHz. Every frame is then subjected to a 

512-point STFT to obtain a vector of spectral magnitudes, 

which results in 256 frequencies. To form the input feature 

vector, we concatenate the STFT features extracted from the 

far-end signal 𝐹𝑥(𝑡)  and the microphone signal 𝐹𝑦(𝑡)  as 

follows: 

 

𝐹(𝑡) = [𝐹𝑦(𝑡), 𝐹𝑥(𝑡)]
𝑇
 (6) 

 

where, the feature vectors of the microphone signal and far-

end speech at time frame m are indicated by the symbols 

𝐹𝑦(𝑡),  𝐹𝑥(𝑡) , as a result, 1024 (512×2) is the input's 

dimensionality. The STFT spectrogram is shown in Figure 3. 

 

3.4 D2L2 network design 

 

RNN is a type of model for recording chronological data 

and is used to tackle a variety of issues, including speech 

recognition [24], machine translation [25], and natural 

language processing [26]. The sequential data have long-term 

dependence, which leads to disappearing and expanding 

gradient difficulties. This problem can be resolved by the 

application of LSTM and gated RNNs. In the LSTM network, 

supplementary memory cells and gate procedures exist. At the 

time of backpropagation, moving out of the gradient will be 

precluded by the gate operations. With fewer gate functions, 

the gated recurrent unit (GRU) performs similarly [27]. 

Gated commentary: Two successive time steps are fully 

connected by an RNN. The depths of the gated feedback (FB), 

feedforward (FF), and recurrent feedback may all be modeled 

together since their connections to the model with orthogonal 

depths do not overlap. We suggest an attention gate with these 

three features, which regulates the flows from each state to 

improve the overall performance via D2L2. Figure 4 depicts 

deep learning methodology and structure. 

 

 
 

Figure 4. Proposed LSTM 

 

3.5 LSTM-based deep learning 

 

In the general structure of the recurrent layer, the preceding 

hidden state ℎ𝑡−1 and input 𝑥𝑡 are used to define each hidden 

state at time t as ℎ𝑡, which is given by: 

 

ℎ𝑡 = 𝜙(ℎ𝑡−1, 𝑥𝑡) = 𝜙(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1) (7) 

 

where, 𝜙  is the "tanh" nonlinear process with each sample 

operation, W is the recurrent layer weight matrix and U is the 

feed-forward weight matrix. For a typical RNN architecture, 

the last hidden state ℎ𝑡−1 will store the previous state inputs 

for further calculations. This leads to poor memory processing 

when the hidden state is allocated less storage space, which is 

reflected in the continuity of the state variables. To overcome 

this problem, a stacked RNN is employed to capture prolonged 

dependencies across multiple state statuses within the hidden 

layers, as illustrated below: 

 

ℎ𝑡
𝑗

= 𝜙(𝑊𝑗ℎ𝑡
𝑗−1

+ 𝑈𝑗→𝑗ℎ𝑡−1
𝑗

) (8) 

 

where, 𝑈𝑗 is the changeover from time step t-1 to time step t 

at layer j, which impacts the weight matrix, and 𝑊𝑗  is the 

transition from layer j-1 to layer j, which affects the weight 

matrix. The sequential data may be modeled across various 

timeframes using the stacked RNN. When prediction data are 

stacked at the top layer, long-term (LT) dependencies are 

highly covered by hidden state storage. Hence, deep recurrent 

network formation is necessary by connecting the current 

hidden state to the previous ones. Thus, we can improve the 

long-term dependency [28], and it is represented as: 

 

ℎ𝑡
𝑗

= 𝜙(𝑊𝑗ℎ𝑡
𝑗−1

+ ∑ 𝑈(𝑘,𝑗)→𝑗ℎ𝑡−𝑘
𝑗

)  

𝐾

𝑘=1

 (9) 

 

where, K is the recurrent depth and 𝑈(𝑘,𝑗)→𝑗  is the weight 

matrix of layer j with the transition occurring from time t-k to 

time t. The shortcut routes from many earlier concealed states 

are made by direct linkages. The model with shortcut 

pathways allows access to earlier hidden states farther away 

from ℎ𝑡
𝑗
 with the same number of transitions as the model 

without shortcut paths. Many recurrent models typically 

establish connections solely among hidden states within the 
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same layer. However, the network layer adaptly mitigates 

numerous timing issues by aggregating feedback connections 

from preceding hidden states  ℎ𝑡−1
𝑗

 to the hidden state ℎ𝑡
𝑗
 

across different layers of ℎ𝑡
𝑗
, as demonstrated below: 

 

ℎ𝑡
𝑗

= 𝜙 (𝑊𝑗ℎ𝑡
𝑗−1

+ ∑ 𝑈𝑖→𝑗

𝐿

𝑖=1

ℎ𝑡−1
𝑖 ) (10) 

 

where, the feedforward depth is L and 𝑈𝑖→𝑗  is the weight 

matrix transition from time t-1 to t. The global gate is designed 

to regulate the number of streams between diverse hidden 

states with diverse time measures [27]. 

 

ℎ𝑡
𝑗

= 𝜙 (𝑊𝑗ℎ𝑡
𝑗−1

+ ∑ 𝑔𝑖→𝑗

𝐿

𝑖=1

𝑈𝑖→𝑗ℎ𝑡−1
𝑖 ) (11) 

 

The gate controlling the flow of information from each 

hidden state (HS) to multiple preceding HSs across all layers 

is denoted as 𝑔𝑖→𝑗. 

 

𝑔𝑖→𝑗 = 𝜎(𝑤𝑔ℎ𝑡
𝑗−1

+ 𝑢𝑔
𝑖→𝑗

ℎ𝑡−1
∗ ) (12) 

 

where, ℎ𝑡
𝑗−1

 is the same size as the state vector 𝑤𝑔 and ℎ𝑡−1
∗  is 

the size of the state vector 𝑢𝑔
𝑖→𝑗

. It has been established that for 

a concatenated vector comprising all hidden states from the 

mentioned time step, the sigmoid function applied 

elementwise to the vector is denoted by *. 

In gated LSTM, the output gate 𝑜𝑡
𝑗
, forget gate 𝑓𝑡

𝑗
, input 

gate 𝑖𝑡
𝑗
, and memory cell gate �̃�𝑡

𝑗
 are defined as follows: 

 

𝑖𝑡
𝑗

= 𝜎(𝑊𝑖
𝑗
ℎ𝑡

𝑗−1
+ 𝑈𝑖

𝑗→𝑗
ℎ𝑡−1

𝑗
) (13) 

 

𝑓𝑡
𝑗

= 𝜎(𝑊𝑓
𝑗
ℎ𝑡

𝑗−1
+ 𝑈𝑓

𝑗→𝑗
ℎ𝑡−1

𝑗
) (14) 

 

𝑜𝑡
𝑗

= 𝜎(𝑊𝑜
𝑗
ℎ𝑡

𝑗−1
+ 𝑈𝑜

𝑗→𝑗
ℎ𝑡−1

𝑗
) (15) 

 

�̃�𝑡
𝑗

= 𝜙 (𝑊𝑐
𝑗
ℎ𝑡

𝑗−1
+ ∑ 𝑔𝑖→𝑗

𝐿

𝑖=1

𝑈𝑐
𝑖→𝑗

ℎ𝑡−1
𝑗

) (16) 

 

Like in conservative LSTM, the memory cell gate �̃�𝑡
𝑗
 has a 

feedback loop for gates in gated LSTM. Using gates and the 

memory cell state in (13)-(16), the new hidden state ℎ𝑡
𝑗
 and 

new memory cell state 𝑐𝑡
𝑗
 are modeled as 

 

𝑐𝑡
𝑗

= 𝑓𝑡
𝑗
. 𝑐𝑡−1

𝑗
+ 𝑖𝑡

𝑗
. �̃�𝑡

𝑗
 (17) 

 

ℎ𝑡
𝑗

= 𝑜𝑡
𝑗
. 𝜙(𝑐𝑡

𝑗
) (18) 

 

where, the default dot product denotes matrix multiplication. 

 

3.6 Modelling of D2L2 

 

Deep learning networks can be trained more effectively 

when skip-linking state connections are incorporated as they 

enable connections to bypass certain layers. This approach 

which involves Skip linking state connections to feedback 

connections has been utilized in various studies [29, 30]. We 

apply skip-linking state connections to recurrent connections 

in this work. The skip-linking state connections over time are 

equivalent to the shortcuts from the various HSs that came 

before to the hidden state at time t. The feedback linkages 

between several layers of various time steps are among the 

shortcut routes. The attention gate normalizes each connection, 

resembling closely the global gated feedback RNN. The dense 

recurrent neural network is represented as follows: 

 

ℎ𝑡
𝑗

= 𝜙(𝑊𝑗ℎ𝑡
𝑗−1

+ ∑ ∑ 𝑔(𝑘,𝑖)→𝑗

𝐿

𝑖=1

𝐾

𝑘=1

𝑈(𝑘,𝑖)→𝑗ℎ𝑡−𝑘
𝑖 ) (19) 

 

where, the attention gate is mathematically denoted as 𝑔(𝑘,𝑖)→𝑗 

below: 

 

𝑔(𝑘,𝑖)→𝑗 = 𝜎(𝑤𝑔
𝑖 ℎ𝑡

𝑗−1
+ 𝑢𝑔

(𝑘,𝑖)→𝑗
ℎ𝑡−𝑘

𝑖 ) (20) 

 

where, (20) is a gate callback of the foregoing HS at time t-k 

and layer i, and (12) is a callback of all the interconnected 

foregoing HSs. The dense recurrent neural network is 

straightforwardly extended to dense LSTM and is described as 

follows: 

 

𝑖𝑡
𝑗

= 𝜎(𝑊𝑖
𝑗
ℎ𝑡

𝑗−1
+ ∑ ∑ 𝑔𝑖

(𝑘,𝑖)→𝑗

𝐿

𝑖=1

𝐾

𝑘=1

𝑈𝑖
(𝑘,𝑖)→𝑗

ℎ𝑡−𝑘
𝑖 ) (21) 

 

𝑓𝑡
𝑗

= 𝜎(𝑊𝑓
𝑗
ℎ𝑡

𝑗−1
+ ∑ ∑ 𝑔𝑓

(𝑘,𝑖)→𝑗

𝐿

𝑖=1

𝐾

𝑘=1

𝑈𝑓
(𝑘,𝑖)→𝑗

ℎ𝑡−𝑘
𝑖 ) (22) 

 

𝑜𝑡
𝑗

= 𝜎(𝑊𝑜
𝑗
ℎ𝑡

𝑗−1
+ ∑ ∑ 𝑔𝑜

(𝑘,𝑖)→𝑗

𝐿

𝑖=1

𝐾

𝑘=1

𝑈𝑜
(𝑘,𝑖)→𝑗

ℎ𝑡−1
𝑖 ) (23) 

 

�̃�𝑡
𝑗

= 𝜙(𝑊𝑐
𝑗
ℎ𝑡

𝑗−1
+ ∑ ∑ 𝑔𝑐

(𝑘,𝑖)→𝑗

𝐿

𝑖=1

𝐾

𝑘=1

𝑈𝑐
(𝑘,𝑖)→𝑗

ℎ𝑡−1
𝑖 ) (24) 

 

In contrast to the gated FB-LSTM, the parameter g is 

distributed across all memory cell states and gates. We 

examined the spontaneous adjustment of dense connections. 

Figure 5 illustrates the state connection diagram of dense 

LSTM. Figure 5 (a) shows the conventional LSTM unfolded 

in time, and Figure 5 (b) represents the gated feedback LSTM. 

Figure 5 (c) shows the preceding state connections across the 

LSTM, and Figure 5 (d) shows the dense LSTM related with 

Figure 5 (b) and Figure 5 (c). HSs are marked in red. The links 

of dense LSTM utilized in FF steps are highlighted in bold. 

The FB-states between the higher and inferior layers are 

represented in yellow. 

 

3.7 D2L2 training targets 

 

For training the proposed novel D2L2  algorithm, training 

inputs and training targets are constructed. The extracted 

STFT magnitude features are the input for training in D2L2. 

There are mainly two training targets. One of the targets is the 

MM of spectral extracted far-end and microphone signals. The 

second target is the NSM. 
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Figure 5. Dense LSTM state representations 

 

3.7.1 Magnitude mask (MM) 

The MM, which is defined as follows, is utilized as the 

training objective for near-end speech extraction. 

 

𝑀𝑀 = √
𝑆2

𝑌2
 (25) 

 

𝑆2 is the spectral magnitude of the clean signal, and 𝑌2 is 

the spectral magnitude of the microphone signal. 

 

3.7.2 Near-end signal mask (NSM) 

To improve the predicted MM better, NSM is used. NSM is 

a binary detector based on streams that show whether nearby 

signals are present. In contrast to the Dual Talk Detector 

(DTD), which assesses simultaneous interaction between 

near-end and far-end speakers, the proposed NSM focuses 

solely on near-end speech. 

 

NSM(𝑡) = {
1, 𝑖𝑓 max

𝑓
|𝑆(𝑡, 𝑓)| > 0

0 ,                           𝑒𝑙𝑠𝑒
 (26) 

 

For each sample stream, the microphone signal's echo and 

background noise estimation is further refined, excluding 

near-end speech while ensuring the predictability of near 

speech by the MM in other frames. Subsequently, the 

estimated NSM is employed on the estimated MM, serving as 

a residual echo suppressor with supervision. 

The ultimate propulsion mask of the dense LSTM is 

M=MM*NSM, which can also be expressed in polar 

coordinates: 

 

{
𝑀𝑚𝑎𝑔 = 𝑀

𝑀𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑀)
 (27) 

The projected near speech �̂� will be calculated by, 

 

�̂� = 𝑌𝑚𝑎𝑔  . 𝑀𝑚𝑎𝑔 . 𝑒𝑌𝑝ℎ𝑎𝑠𝑒+𝑀𝑝ℎ𝑎𝑠𝑒  (28) 

 

The value range of the training objectives ranges from zero 

to one. The activation cascade is a sigmoid function at the 

output layer of the regression. BiLSTM is trained by the loss 

function MSE which is the mean square error between S and �̂� 

and solved with the Adam optimizer [31]. 

The inverse STFT receives the phase of the microphone 

signal and the estimated spectral magnitude of the near-end 

speech to produce a near-end waveform signal estimation. 

 

 

4. SIMULATION SETUP 

 

For this deep learning-based NAEC evaluation, the AEC 

Challenge 2023 [32] dataset is utilized. These datasets include 

a synthetic dataset as well as synthetic recordings from over 

10,000 genuine audio equipment and real-world settings 

containing human speakers. 

Four different signal types namely near-end speech, 

background noise, far-end speech, and matching echo signals 

must be provided to train the network. The official synthetic 

dataset for near-end speech s(n) has 10,000 utterances; we 

chose the first 500 utterances as the test set, which is excluded 

from the training. A total of 9,500 additional utterances were 

used for practice. Table 2 provides a comprehensive overview 

of the dataset. For these multiple scenarios, we use the 

MATLAB simulation tool version 2020a. Table 3 provides the 

configuration of the simulation environment. 

For each signal, 16000 samples were tested, and four signal 

combinations were taken for the process: far-end signal, near-

end signal, echo signal, and microphone signal. The inputs 
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given to dense LSTM are the microphone signal and far-end 

spectral magnitude. 
 

Table 2. Simulation environment 
 

Parameters Value 

Dataset 

Testing Samples 500 

Training Samples 9500 

Each Sample Archive 
Near-end signal, Far-end signal, 

Microphone signal, Echo signal 

STFT 

Sampling Rate 16KHz 

Window Length 16ms 

Overlap 8ms 

Size 512 

Noise-Symbol 

Energy 
1 MHz 

𝑫𝟐𝑳𝟐: Dense LSTM Deep Learning 

Number of Epochs 50 

Minimum Batch Size 32 

Solver Optimizer ADAM 

Learning Rate 0.001 

Learning Rate 

Schedule 
Piece Wise 

Learning Rate Drop 

Factor 
0.9 

Learning Rate Drop 

Period 
1 s 

L2 Regularization 

Factor 
0.0001 

Activation Function Stochastic Gradient Descent 

Momentum 0.9 

Gradient Decay 

Factor 
0.9 

Dominator Offset 10−8 

Execution 

Environment 
CPU 

 

Table 3. Configuration of simulation environment 
 

AEC-Challenge 2023 

Key Words Real Datasets Synthetic Datasets 

Number of 

Recordings 
50000 120000 

Number of 

Different 

Speakers 

10000c 1627 

Recording 

Platforms 

Microsoft Windows, 

Android Devices 

LibriVox Project 

[9], 

Free sound and 

DEMAND 

Audio Mode WASAPI raw audio ITU-T P.808 

Sampling Rate 48 KHz 16 KHz 

Audio 

Duration 
10 sec 10 sec 

Sentence List 

Source 
TIMIT [15] 

LibriVox Project 

[9] 

Noise Range Real-time 0-40 dB 

Echo Ratio Real-time -10dB to 10dB 

RT60 
Desktop- 4387 

200ms to 1200ms 
Mobile-1251 

Gender Clips Male- 500, Female-500 Randomly selected 

Number of 

Scenarios 
6 5 

 

1. Without path change of 

echo, single talk far-end 
1. Single Talk 

2. With path change of 

echo, single talk far-end 
2. Double Talk 

3. Without path change of 

echo, single talk near-end 
3. Near-end Noise 

4. Without path change of 

echo, double talk 
4. Far-end Noise 

5. With path change of 

echo, double talk 

5. Nonlinear 

Distortions 

6. RT60 estimation by 

Sweep signal  
 

 

 

5. RESULTS AND DISCUSSION 

 

In this section, we experiment with our proposed D2L2 

algorithm for NAEC and compare it with previous adaptive 

filter-based echo cancellation methods from recent works, 

such as NSAEC, KIPNLMS, and PFLAF [33-35]. The key 

metrics for AEC's performance are the convergence time and 

the echo return loss enhancement (ERLE). 

ERLE variation is frequently used to assess the performance 

of AEC systems when there is background noise, and it is 

defined as: 

 

𝐸𝑅𝐿𝐸 = 10 log10[
∑ 𝑦2(𝑛)𝑛

∑ �̂�2(𝑛)𝑛

] (29) 

 

It measures the reduction in echo after applying the 

cancellation algorithm. 

The cross-validation technique is used to assess the stability 

and generalization performance of the algorithm. This is done 

by dividing the data set into training and validation sets 

multiple times. The training set is used to train the model, 

while the validation set is used to evaluate its performance. 

 

 
 

Figure 6. Estimation of ERLE for an echo canceled signal 

 

 
a) Far-end Signal and spectrogram 
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b) Near-end Signal and spectrogram 

 

 
c) Microphone Signal and spectrogram 

 

 
d) Echo Cancelled Signal and spectrogram 

 

Figure 7. Non-linear echo cancellation results of proposed D2L2 

 

Figure 6 depicts the ERLE performance in the presence of 

background noise for the corresponding desired signal of the 

near-end. This finding led to the development of the D2L2 

algorithm to abate the influence of nonlinear distortion despite 

predicting the echo cancellation signal spectrum. The inverse 

STFT causes the magnitude of the spectrum signal to increase 

to the real signal of the near-end to recover. 

Figure 7 depicts the signal and spectrograms of test samples 

of far-end, near-end, and microphone signal in circumstances 

with nonlinear distortions, background noise, and double-talk 

in Figure 7 (a), Figure 7 (b), and Figure 7 (c) respectively. 

The predicted outcomes of the echo cancellation signal 

under consideration are shown in Figure 7 (d). The suggested 

technique overcomes the best echo clampdown and leaves the 

least amount of noise and echo in the recovered signal. 

Figure 8 demonstrates the improvement in the ERLE 

achieved by the proposed D2L2 algorithm compared with that 

achieved by the NSAEC, KIPNLMS, and PFLAF methods for 

signals without background noise. A maximum of 29dB for 

dense LSTM and 21, 16.5, and 15dB of ERLE for the NSAEC, 

KIPNLMS, and PFLAF methods, respectively, were obtained 

from implementation. In Figure 9, noise is applied, and the 

evaluations are verified by the ERLE for all the methods. As 

the SNR increases, the ERLE improves and reaches 36.5 dB 

for Dense LSTM and 19 dB for the PFLAF method at the peak 

location of the signal. 

Figure 10 shows the ERLE when the SNR is set to 20 dB. 

With the dense LSTM touching 40.3 dB, the NSAEC attained 

29.7 dB of ERLE, which is more than the 10 dB improvement 

in D2L2. 

In Figure 11 and Figure 12, we exemplify the ERLEs at 

SNR=30 dB and SNR=40dB in that order. With an increase in 

the SNR of 10dB, the ERLE increases to 8dB, 5dB, 4dB, and 

3dB for DenseLSTM, NSAEC, KIPNLMS, and PFLAF, 

respectively. 

In Table 4 (a) and Table 4 (b), we show the numerical 

comparison of the ERLE and computational time complexity 

for distinct SNRs in the range of 0-40dB. According to the 

base concept, when SNR intensification occurs, the ERLE 

escalates. Similarly, as shown in Table 4 (a), the proposed 

dense LSTM network reaches the highest ERLE of 51.8dB at 

an SNR of 40dB. This value is nearly 15dB greater than that 

of the NSAEC, 22dB greater than that of the KIPNLMS, and 

26dB greater than that of the PFLAF. For PALAF, there is a 

100% improvement in the ERLE for the proposed D2L2 

algorithm. 

 

 
 

Figure 8. ERLE measure when no background noise 

 

 
 

Figure 9. ERLE measure with SNR 10dB 
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Figure 10. ERLE measure with SNR 20dB 

 

 
 

Figure 11. ERLE measure with SNR 30dB 

 

 
 

Figure 12. ERLE measure with SNR 40dB 

 

Table 4. Comparison of ERLE 
 

(a) Assessment of Peak ERLE(dB) with different SNR 

 

SNR (dB) 𝐃𝟐𝐋𝟐: Dense LSTM NSAEC KIPNLMS PFLAF 

0 29 21 16.5 15 

10 36.5 26 20.6 19 

20 40.3 29.7 24.1 21 

30 44.6 31.3 25 23.2 

40 51.8 36 28.4 26 
 

(b) Assessment of computation time(s) with different SNR 

 

SNR (dB) 𝐃𝟐𝐋𝟐: Dense LSTM NSAEC KIPNLMS PFLAF 

0 25.39 33.15 38.78 35.12 

10 26.01 32.69 39.11 37.34 

20 25.84 34.88 39.35 36.09 

30 24.93 32.73 38.90 38.02 

40 27.38 34.04 37.88 35.59 

 

The time complexity is analyzed to prove the superiority of 

the proposed algorithm with respect to the overall factors. The 

computational times of the methods are depicted in Table 4 (b). 

On average, the 𝐷2𝐿2 algorithm needed 25 sec of computation 

time, which was 7 sec, 11 sec, and 12 sec less than that needed 

by the NSAEC, KIPNLMS, and PFLAF methods for echo 

cancellation, respectively. 

 

Table 5. Comparison of relative mean ERLE 

 

SNR 

(dB) 
LMS NLMS KIPLMS PFLAF NSAEC 𝑫𝟐𝑳𝟐 

0 0.59 0.61 1 0.65 1.57 2.12 

10 0.53 0.57 1 0.61 1.44 1.94 

20 0.58 0.66 1 0.75 1.44 1.94 

30 0.49 0.51 1 0.88 1.53 2.06 

40 0.52 0.54 1 0.91 1.51 2.04 

 

In Table 5 mean ERLE of various algorithms is compared 

relatively against KIPLMS. From Tables 5 and 4 (b) it can be 

seen that the D2L2 approach has considerable improvement in 

echo cancellation performance with computational time less 

than other algorithms. 
 

 

6. CONCLUSIONS 

 

This work revealed that our proposed project 

D2L2: DenseLSTM-based deep learning method for nonlinear 

acoustic echo cancellation has low time complexity and high 

accuracy even for configured noises and distortions. The 

results are highlighted by comparing the performance of our 

method with those of earlier methods. We substantiated that 

the phase and magnitude spectral data are highly meritorious 

when applied through the magnitude mask and NSM 

prediction from the D2L2 module. Investigational outcomes in 

NLD settings and circumstantial noise conditions were also 

tested, revealing that our algorithm is effective in acoustic 

echo environments. In future work, we will focus on 

implementing time domain signal speech source separation 

without the STFT method. 
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NOMENCLATURE 

 

Acronym Description 

AEC Acoustic echo cancellation  

NAEC Nonlinear Acoustic Echo Cancellation 

SSS Speech source separation  

MM Magnitude mask 

NSM Near-end signal mask 

NL Nonlinear 

ERLE Echo return loss enhancement 

ANN Artificial Neural Network 

CNN Conventional Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short term memory 

BILSTM Bi-Long Short term memory 

D2L2 Dense LSTM Deep Learning 

ASR Automated speech recognition 

LMS Least mean square 

FDKF Frequency-domain adaptive Kalman filter 

STFT Short-time Fourier transform 

RIR Room impulse response 

DFT Discrete Fourier transform 

GRU Gated recurrent unit 

NSAEC Nonlinear Stereophonic Acoustic echo 

cancellation 

KIPNLMS Kernel improved proportionate Normalized 

LMS 

PFLAF Proportionate Functional Link Adaptive 

Filters 
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